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Abstract

It is important that firebases are available on standby at strategic locations in a nature
conservation area from where wildfire ignition points can be reached rapidly and such fires
brought under control before they spread. Two facility location models are proposed in this
paper which may form the basis for decision support when deciding on the locations of such
firebases in a nature conservation area. Both of these models are multi-objective in nature.
They are able to produce solutions that embody trade-off decisions between minimising the
cost of locating firebases and maximising the coverage of key areas in a conservation area.
These trade-offs may be based on a variety of coverage importance criteria, such as aiming
to cover terrain portions exhibiting a steep ground slope, terrain portions that experience a
high annual mean wind speed, or terrain portions in which many wildfires have ignited in
the past. The coverage criteria are typically case-specific and may therefore be specified by
the decision maker. Both models, as well as their approximate solution methodology, are
implemented in the form of a computerised decision support system in order to render them
accessible to non-mathematically inclined decision makers. The decision support system is
validated by applying it to a special case study involving Table Mountain National Park, a
nature conservation area in the Western Cape, South Africa.
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1 Introduction

Fynbos covers approximately 6.7 percent of the area of South Africa, and is only found in
a wide coastal belt stretching from Clanwilliam on the West Coast to Port Elizabeth on
the Southeast Coast. A number of conservation areas have been declared in this region to
protect these unique species of flora. The region boasts sixteen national parks (spanning
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an area of 528 km2), ninety six provincial nature reserves (spanning an area of 8 924 km2),
seven Department of Water Affairs and Forestry reserves (spanning an area of 118 km2),
and a host of non-statutory reserves together spanning an area of 9 780 km2 [49].

Fire can be both the lifeblood of fynbos and its most serious threat. This is because
Fynbos is a fire-adapted family of plant species which can only survive if it experiences
regular fires [13]. In the absence of fire, alien species of plants have been observed to
replace fynbos gradually [23]. This poses a threat to the fynbos — not only because it is
being overtaken — but also because such alien growth increases the biomass in the veld.
When a fire does occur, this alien biomass increases the intensity of the fire. In some cases
the fire becomes so intense that new seeds cannot germinate and, instead of fulfilling its
role of rejuvenating the fynbos, the fire then kills it.

Areas inhabited by fynbos are usually subjected to prescribed and carefully controlled
burning on a regular basis so as to kill alien growth and allow the fynbos to germinate.
The pre-planned frequencies and locations of these prescribed fires give rise to what is
called a fire schedule. An optimal fire schedule requires that fynbos burns approximately
once every ten to fourteen years [13]. Managing fires according to this optimal frequency
is, however, quite a daunting task. Apart from fires that occur due to anthropogenic
causes, two other types of fires occur in fynbos conservation areas: prescribed fires (as
mentioned above) and wildfires that are caused by natural elements [56]. The difficulty in
fire management arises with this second type of fire.

Although models exist for predicting wildfire occurrences [2, 4, 20, 21, 46, 58], such models
are usually area-specific and not very accurate, making it very hard to avoid the damaging
effects of wildfires entirely. It is therefore essential that a collection of strategically placed
firebases should be available in any fynbos conservation area from which natural wildfires
can be brought under control quickly.

These firebases should be placed in such a manner that the largest possible number of
potentially critical wildfire ignition points are accessible within a certain time frame from
one of the bases. When placing these firebases in a conservation area there are many
factors to take into account, such as the cost of building a firebase at a proposed location
within the area, the average prevailing wind speeds and directions in various areas of the
park, and the locations of firebreaks, to name but a few.

A decision support system (DSS) is put forward in this paper which can take geographic
information system (GIS) data related to a nature conservation area as input and use
these data to suggest an appropriate number of semi-mobile firebases for the effective
management of wildfires within the area as well as suitable locations for these bases within
the area. This DSS is based on two multi-objective firebase location models. The number
of firebases placed may be limited either by sufficiency with respect to the (conflicting)
placement criteria considered or by the conservation area’s budget. A collection of high-
quality trade-off firebase location solutions is recommended by the DSS from which the
management of the conservation area may subjectively select a solution.

The paper is organised as follows. After briefly reviewing the literature related to firebase
location in §2, two novel, multi-objective combinatorial optimisation models are derived for
firebase location in §3. Since these models cannot be solved exactly for realistically sized
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problem instances, the approximate solution methodology of (multi-objective) simulated
annealing is described in §4, which is employed to solve the models of §3. Both models of §3
and the solution methodology of §4 are then incorporated into a computerised DSS in §5,
so as to render the models accessible in various problem settings to non-mathematically
inclined decision makers. The working and practical suitability of this DSS is finally
demonstrated by applying it in §6 to a case study involving Table Mountain National
Park, a nature conservation area in the Western Cape, South Africa, after which the
paper closes in §7 with a brief summary and some ideas for possible future work.

2 Literature review

Most firebase location models in the literature are variations on, or enhancements of, five
basic classes of facility location models from the realm of operations research [15, 45].
The first and simplest of these model classes is the class of set cover models originally
proposed in the context of emergency facility location by Toregas et al. [59]. In a set
cover model, the objective is to find a set of facility locations from among a finite set of
candidate facility locations in such a manner that every demand point is covered by at
least one facility while simultaneously minimising the cost associated with the entire set
of facility locations. It is usually assumed that a demand point may be considered covered
by a facility if the distance that separates the two does not exceed some pre-determined
threshold [22]. The set cover modelling approach has two key shortcomings [15]. The
number of facilities required to cover all demand points often exceeds the number that is
practically or financially feasible. Furthermore, the demand points are treated as if they
are equally important to cover — such models typically do not allow for the rating of
certain demand points as more important than others in terms of coverage.

The second model class is the class of maximum coverage models proposed by Church and
ReVelle [11]. This model class is a generalisation of the first class, addressing the above-
mentioned shortcomings. A maximum coverage modelling approach allows the decision
maker to specify an upper bound on the number of facilities whose placement would be
practically feasible. The approach also allows for the rating of the different demand points
in terms of their relative coverage importance. The objective is then to identify a set of
facility locations of a cardinality not exceeding the upper bound specified, which maximises
the coverage of demand weighted by the importance values of the various demand points
[45]. Such importance values are usually based on multiple placement criteria and are
specified in advance of model formulation. If the specified bound on the number of facilities
to be placed is smaller than the minimum number of facilities required to cover all demand
points, the model will be constrained from covering all demand points. In essence, the
modelling approach therefore relaxes the condition that all demand points have to be
covered.

As in the set cover modelling approach, it is required that every demand point should be
covered in the class of centre models originally proposed by Hakimi [26], but the approach
limits solutions by specifying the number of facilities that should be placed exactly [7].
Models in this class are formulated so as to minimise the maximum coverage distance
between a demand point and the facility nearest to that demand point. Unlike in the
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previous two model classes, centre models are therefore focussed on satisfying demand at
extremal demand points, rather than at all points explicitly.

In all three model classes mentioned above, it is assumed that if a demand point is covered
by a facility, all its demand is fulfilled from that facility (and it receives no demand
fulfilment if it is outside the coverage radius of all facilities, if such a radius is imposed).
In reality, however, this is often not an appropriate assumption — in many practical cases,
demand satisfaction at a demand point is a function of the distance over which demand
fulfilment occurs in the sense that the coverage benefit decreases as this distance increases
[15]. In the class of median problems, also proposed by Hakimi [26], this assumption is
relaxed by allowing any location to satisfy a fraction of any demand point’s demand, with
the aim of minimising the total distance over which demand is satisfied, weighted by the
volume of demand satisfied, and subject to the requirement that each demand point’s
demand is totally satisfied by some combination of facilities.

When taking the number of facilities as a measure of the cost of locating facilities, as is the
case in all four the aforementioned model classes, it is indirectly assumed that construction
costs of facilities at different locations are equal. In many real-world cases, however, this
is an invalid assumption. The class of fixed charge facility location models addresses this
unrealistic assumption by allowing for the specification of the cost of building a facility
at every candidate location. In this modelling paradigm, the objective is to minimise the
total cost of locating facilities, which comprises a fixed cost component (i.e. the cost of
building the facilities at the locations chosen for them) and a variable cost component (i.e.
the cost of satisfying demand, usually modelled as in the class of median problems) [1].

One of the earliest models for the location of fire stations dates back to 1968 and is
due to Hogg [29], who sought to minimise the journeying cost of fire engines from fire
stations to fires in the United Kingdom city of Bristol. His model is essentially a median
problem solved by a centre of gravity heuristic applied to expected fire demand data. Plane
and Hendricks [47], on the other hand, adopted a set cover approach toward minimising
the number of fire stations (of different companies) so as to cover expected fire call-out
demand by the Denver Fire Department in the United States. Walker et al. [61, 62]
describe a model, called the Firehouse Site Evaluation Model, which was developed to
help fire department administrators and other local government officials to determine
good locations for a city’s fire houses. In this model, the user can select either a centre
problem or median problem modelling approach, adopting as optimisation criterion either
the expected travel time of or the distances travelled by fire engines.

Another early development was the simultaneous modelling of facility location and equip-
ment allocation [51], which is particularly important in urban areas where high-rise build-
ings, for example, require very specific fire fighting equipment. Hausner et al. [27] con-
ducted a cost-benefit analysis for New York City in respect of how many fire houses and
fire companies the city needed, taking into account the required equipment, and they also
considered heuristically where these houses and companies should be located.

All four of the aforementioned fire station location models are, however, applicable in
urban settings, where the location criteria are typically dominated by city lay-outs and
traffic density patterns. This is because in urban applications, fire station coverage is
typically weighted by fire engine travel times and/or travel distances. Kolesar et al. [37],
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in fact, analysed a large data set of fire engine travel times and travel distances in New
York City and sought to determine an analytic relationship between these two parameters.

The body of literature on emergency response facility location in urban settings is far
larger than that on firebase location in the context of wildlife management in natural
areas. While Doeksen and Oehrtman [18] considered optimum locations for fire-fighting
equipment in a rural fire system within a large county in Oklahoma state, their study was
concerned with the protection of developed farmland and livestock instead of fauna and
flora in a natural conservation area. In the context of natural conservation areas, Chow and
Regan [10], proposed a location and relocation model for air tanker initial attack basing
in California for regional wildland fires combatted with multiple air tankers that may be
co-located at the same air base. Meyer et al. [43] adopted both a set cover modelling
approach and a maximum coverage modelling approach in an attempt to provide decision
support to Table Mountain National Park in respect of suitable firebase locations. All
three the latter models were, however, based on a distance-related placement criterion.

Little attention has been afforded in the literature to the inclusion of GIS-related emer-
gency response facility location criteria other than travel distance or response time, such
as terrain elevation, terrain slope, wind data and type of terrain, which are exceedingly
important criteria in nature conservation applications. A notable exception is the model
of Dimopoulou and Giannikos [17], who employed a maximum coverage model, taking into
account the classification of a forest by varying coverage importance in regions of differ-
ent GIS classes and applied the model to the area of Parnitha, near Athens in Greece.
Although Liu et al. [40] also employed GIS-related data in their model for emergency
response facility location, this was in the urban context of covering transportation routes
for hazardous materials in Singapore.

A recent development in emergency facility location within a nature conservation context
has been an integrated modelling approach involving the simultaneous consideration of
fuel management (the practice of maintaining forest age mosaics that result from carefully
designed planting schedules and/or prescribed burning) and the traditional approaches
of suppression preparedness planning of the above-mentioned models. Bettinger [6] and
Minas et al. [44] adopted this modelling approach, but their models remain essentially
single-objective. Whereas multi-objective facility location models do exist — Schilling
[50] was one the early pioneers in this area — such models are few and far between. The
vast majority of facility location models in general, and of firebase location models in
particular, are single-objective or at most an aggregation of various placement criterion
scores into one objective function when purporting to be multi-objective. Although an
approximation of the Pareto front may, in principle, be traced out for a convex multi-
objective model by varying the weights assigned to criteria in a single objective function,
the accuracy of this approximation depends sensitively on the method used to assign
weights to the criteria [54]. The most popular method of weight assignment is the linear
weighted sum method, but many other schemes also exist [30, 31, 32, 33, 35, 48, 55].
Attempts at finding weighting methods that yield close Pareto front approximations may
be tedious and are usually highly problem-specific. Other complexities that may arise
when combining multiple criteria together in a single objective function are described by
Das and Dennis [14].
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It has, in fact, been suggested by various authors that weighting multiple objectives to-
gether in a single objective function is bad practice, because it results in poor objectivity
and that the multi-objectivisation of problems that are essentially single-objective may
even result in improved optimisation [38, 55, 63].

Apart from the work of Schilling [50], another example of a truly multi-objective approach
to emergency response facility location is the work of Yang [65], who used a genetic
algorithm to approximate solutions to a fuzzy multi-objective programming model for the
optimisation of fire station locations in the Derbyshire Fire and Rescue Service in the
United Kingdom. Yet another such instance is the fuzzy multi-objective programming
approach of Tzeng and Chen [60] in which a genetic algorithm was employed to come up
with trade-off decisions in terms of the number of fire stations required at an international
airport and where these fire stations should be located. A final example is the integer goal
programming approach adopted by Badri et al. [5] to solve their multi-objective model for
urban fire station locations in which they considered seven objectives that are conflicting
to some degree (including the minimisation of fixed costs, fire engine travel costs and fire
engine travel times, as well as the maximisation of coverage capability). Unfortunately
all of these multi-objective modelling approaches find application in an urban context,
employing location criteria that are not always applicable to firebase location problems in
natural conservation areas.

3 Mathematical models

In this section, two novel, multi-objective mathematical models are put forward for firebase
location in conservation areas. The median problem modelling approach is followed, which
is popular in the literature. Double-counting of importance values associated with covering
demand points is permitted in respect of various coverage importance criteria in the first
model version, but is avoided in the second version. The relative effectiveness of these two
modelling approaches are compared later by applying the models to a special case study.

3.1 Double-counting model

Denote the set of firebase candidate locations in a conservation area by I = {1, . . . , |I|}
and the set of demand points requiring firebase coverage by J = {1, . . . , |J |}. Further-
more, index the set of demand point importance criteria by K = {1, . . . , |K|}. Examples of
coverage importance criteria indexed by K may be aimed toward covering locations expe-
riencing large annual mean wind speeds (since wind accelerates the spread rate of a fire),
locations at which the ground slope is very steep (since fires spread very quickly upwards
against steep inclines) or locations at which large numbers of wildfires have ignited in the
past. Let fi be the fixed cost associated with locating a firebase at candidate site i ∈ I
and suppose the importance value associated with covering demand point j ∈ J according
to criterion k ∈ K is denoted by hjk.

An |I| × |J | binary matrix, called the coverage capability matrix and denoted by C, is
associated with the firebase candidate locations and park demand points. The rows of
this matrix represent the firebase candidate locations and its columns represent the park



A decision support system for firebase location in a nature conservation area 63

demand points. The entry in row i and column j of the coverage capability matrix is

Cij =

{
1, if demand point j ∈ J is covered by a firebase at candidate location i ∈ I,
0, otherwise.

The binary coverage capability criterion used to populate the matrix C may be based on
a distance-related coverage radius or a time-constrained coverage response area around
each potential firebase candidate location, as required by the decision maker(s).

Let dij represent the distance between a firebase located at i ∈ I and demand point j ∈ J .
Suppose further that exactly P firebases are to be placed at locations in I and define the
decision variables

xi =

{
1 if a firebase is placed at candidate location i ∈ I,
0 otherwise.

Then the model’s objectives are to

minimise Z0 =
1

γ0

∑

i∈I
fixi (1)

and to

maximise Zk =
1

γk

∑

i∈I

∑

j∈J

Cijhjk
dij

xi, k ∈ K, (2)

subject to the constraints

∑

i∈I
xi = P, (3)

xi ∈ {0, 1}, i ∈ I. (4)

The objective in (1) is to minimise the total fixed cost associated with the location of the
firebases, while the objective in (2), in fact, represents |K| different coverage objectives
according to the coverage importance criteria in K. The accumulation of the coverage
importance rating in (2) is scaled by dividing by the distance dij between a covering
firebase at location i ∈ I and the covered demand point j ∈ J . The logic behind this
scaling may be elucidated by the following example. Suppose there are two firebases,
each covering a specific demand point, but that one firebase is three times as far from
the demand point as the other firebase. If the importance rating of the demand point
is not divided by the relevant distances between the demand point and the two firebase
locations as in (2), these two firebases will be considered to perform equally well in terms
of covering the demand point in question according to criterion k ∈ K, which would be an
inappropriate reflection of reality. Constraint (3) finally ensures that exactly P firebases
are located, while constraint set (4) enforces the binary nature of the decision variables.

In objective function (1), γ0 is an upper bound on the cost of placing P firebases (i.e.
the sum of the P largest costs in the set ∪i∈I{fi}), while γk in (2) is an upper bound on
the accumulation of importance ratings that can be achieved by P firebases according to
criterion k ∈ K when viewed in isolation from the other criteria (i.e. the sum of the P
largest values in the set ∪i∈I{

∑
j∈J Cijhjk/dij}). The purpose of dividing by γ0 and γk in
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(1) and (2), respectively, is to normalise the objective function values to within the unit
interval [0, 1].

Although the model (1)–(4) can, in principle, accommodate any number of coverage impor-
tance criteria, it is noted that as the number of objectives increases (i.e. as |K| increases),
non-dominated solutions may become rare. This is because the presence of more objec-
tives renders domination of a candidate solution in terms all the objectives unlikely. In
such cases, multi-objective optimisation methods may struggle to converge, as discussed
by Hughes [30] and by Purshouse and Fleming [48].

Note, however, that double-counting occurs in (2), in the sense that if demand point j ∈ J
is covered by p ≤ P firebases, then the importance value hjk will be accounted for p times
in (2). This process of double-counting is intentional and may, in fact, be desirable in
some cases because it will encourage a measure of fail-safeness in the sense of multiple
coverage of very important demand points. This might be a desirable feature in cases
where firebases are unavailable to respond to fires at these important demand points (e.g.
if multiple fires were to occur and a firebase covering an important demand point is already
otherwise occupied — then there may possibly be another firebase covering the demand
point if the demand point in question is considered very important).

3.2 Single-counting model

In case the practice of double-counting of coverage importance values of firebases that
overlap in their coverage in the model of the previous section does not sit well with the
decision maker, an alternative model, capable of avoiding such double-counting, is put
forward in this section.

The practice of double-counting in the model of the previous section may be avoided by
replacing Zk in (2) by the alternative objective of

maximising Z ′k =
1

γ′k

∑

j∈J
max
i∈I

Cijhjk
dij

xi, k ∈ K. (5)

In this single-counting model version, γ′k is again an upper bound on the accumulation
of importance ratings that can be achieved by P firebases according to criterion k ∈ K
when viewed in isolation from the other criteria (i.e. the sum of the P largest values in
the set ∪i∈I{maxj∈J Cijhjk/dij}). Unlike in the previous model, the objective in (5) will
discourage overlapping coverage of demand points by firebases.

4 Approximate solution methodology

In this section, the approximate solution methodology is described that was adopted to
solve the models of §3. The solution method of choice is briefly motivated in §4.1 and
described in §4.2, after which the parameter values selected for implementation are doc-
umented in §4.3. Finally, the validation of the solution methodology implementation is
described in §4.4.
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4.1 Choice of solution methodology

The high computational complexity associated with solving the models of §3 places a brute-
force model solution (i.e. consideration of all

(|I|
P

)
candidate solutions in the construction

of a Pareto set) out of reach of current computing technology for realistically sized problem
instances. A more intelligent, almost-exact solution approach may, of course, involve a
binary programming approach employing, for example, the standard branch-and-bound
method [39]. In such an approach the multi-objective model nature may be accommodated
by constraining all but one of the objective functions at appropriate levels and solving the
single-objective problem with the remaining objective function optimised. This process
may be repeated in an experimental design of “appropriate levels” of objective function
limits in order to trace out a good approximation of the Pareto front in objective space.
Anticipated disadvantages of this approach are two-fold: it may take excessively long to
solve a single-objective iteration by the branch-and-bound method, and the number of
iterations required to trace out a Pareto set approximation of suitable resolution may be
very large (especially if |K| is large). Deb [16] also describes other disadvantages of this
solution approach. These disadvantages may be alleviated to some extent by employing
an advanced solution technique from the realm of combinatorial optimisation, such as
Benders decomposition [12], but even such a sophisticated solution approach is expected
to require long computation times for realistically sized problem instances.

An approximate solution methodology is therefore instead employed in this paper to solve
the models of §3. Various (meta)heuristics (such as a variety of local search heuristics [57],
the method of tabu search [24] and the method of simulated annealing [36]) were considered
for this purpose. Of these, the method of Simulated Annealing (SA) was selected due to
its flexibility, its relatively small set of parameters requiring user-specification and its ease
of implementation.

4.2 The method of simulated annealing

The method of SA, originally proposed by Kirkpatrick et al. [36] in 1983, is an approximate
solution methodology for single-objective optimisation models based on the principles of
statistical mechanics traditionally employed in the annealing of solids. Various improve-
ments to and generalisations of the original algorithm have been proposed by a variety
of authors over the years [25], including extensions to multi-objective optimisation. The
multi-objective extension of Smith et al. [53] is employed here. The algorithm requires the
following sets of input data:

• an initial solution,

• an initial temperature,

• a cooling schedule,

• an epoch management protocol,

• a description of the neighbourhood structure of a candidate solution from which the
next current solution may be selected, and

• termination criteria for ending the search.

The method of SA is trajectory-based, and so a single current candidate solution is main-
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tained during every iteration of the algorithm. This solution is encoded in binary decision
vector form as described in §3.1 (a binary vector x = [x1, . . . , x|I|] of weight P — i.e.
containing exactly P ones and |I| − P zeros).

The current solution of the next iteration is generated from the current solution x of the
present iteration by randomly selecting an alternative solution x′ from the neighbourhood
of that solution according to a uniform distribution. If x′ is better than x in at least
one of the objective function values in (1), (2) or (5), it is accepted as the new current
solution with probability 1. Otherwise, it is accepted as the new current solution with
probability exp(−∆E(x,x′)/Ti), where Ti denotes the temperature during search epoch i
and ∆E(x,x′) denotes the increase in energy associated with moving from x to x′ in the
search space. This energy increase is taken as the largest deterioration of the objective
function value when moving from x to x′.

An epoch is either terminated by triggering a reheating cycle (i.e. increasing the tempera-
ture to its initial value, but retaining the current solution in a bid to promote exploration)
or by lowering the temperature according to a cooling schedule for application during
the next epoch (so as to encourage intensification). The well-known geometric cooling
schedule

Ti+1 = αTi, i = 0, 1, 2, . . . , (6)

is employed where α ∈ (0, 1) is the so-called cooling parameter.

The neighbourhood structure of a current solution is specified by an |I|×|I| binary matrix,
called the neighbourhood matrix and denoted by N . Both the rows and columns of this
matrix represent firebase candidate locations. The entry in row i and column j of the
neighbourhood matrix is

Nij =

{
1 if candidate locations i and j are considered to be adjacent,
0 otherwise.

An alternative solution x′ is randomly selected as follows from the neighbourhood of the
current solution x. A unit entry of x is randomly selected. Suppose this unit entry occurs
in position i of x (i.e. xi = 1). Then a column, j (say), of the neighbourhood matrix N
is randomly selected in which there occurs a unit entry in row i, with the proviso that
xj = 0. The vector x′ = [x′1, . . . , x

′
|I|] is then formed by letting

x′b =





0 if b = i,
1 if b = j,
xb otherwise.

During the course of execution of the algorithm, an archive of nondominated solutions to
the models of §3.1 and §3.2 is maintained by inserting the current solution into the archive
if it is not dominated by any candidate solution already in the archive, upon which any
solutions already in the archive that are dominated by such an insertion, are removed from
the archive. The algorithm is initialised with a random initial solution, which is both the
first current solution and also forms the initial archive of nondominated solutions. The
search is continued until the first of a number of pre-specified termination criteria is met.
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4.3 Parameter tuning

Busetti [8] suggests that the initial temperature should be chosen so that approximately
80% of all non-improving moves are accepted at the start of the SA search. Such an
initial temperature may be estimated by conducting a trial search during which all non-
improving moves are accepted. The initial temperature for the full search may then be
taken as T0 = ∆+/ ln 0.8, where ∆+ denotes the mean change in objective function value
as a result of accepting non-improving moves during the trial search.

The number of iterations spent by the search in epoch i is determined by a Markov chain of
length Li. As Busetti [8] states, the value of Li should ideally depend on the optimisation
problem at hand, rather than being a function of i (that is, the length L of the Markov
chain should not be epoch-specific). It would, in fact, make sense to require a minimum
of Amin move acceptances during any epoch before lowering the temperature, where Amin

is a pre-specified parameter. As Ti approaches zero, however, non-improving moves are
typically accepted with decreasing probability and so the number of trials expected before
accepting Amin moves should increase without bound as the search progresses, no matter
the value of the positive integer Amin. A suitable compromise is therefore to terminate
an epoch once L moves have been attempted, by reheating to the initial temperature,
or once Amin moves have been accepted, by lowering the temperature according to the
cooling schedule (whichever occurs first), for some positive integers L and Amin satisfying
L > Amin. Following the rule of thumb proposed by Dreo et al. [19], it is acceptable to
take L = 100|I| and Amin = 12|I|.
An initial solution of weight P was selected randomly for each run of the SA algorithm.
After some numerical experimentation, it was decided to select the value α = 0.99 for the
cooling parameter in (6). This value resulted in searches uncovering high-quality trade-off
solutions because of sufficient exploration taking place during the initial epochs. Finally,
the SA search was terminated if any one of the following three stopping criteria was met:

• once three successive epochs had elapsed without accepting a candidate solution,

• once the temperature had decreased below a user-specified parameter ω � 1, or

• once a user-specified CPU time Ω had elapsed since the search initialisation.

4.4 Implementation validation

In order to validate the solution methodology, it was applied to a number of small, hy-
pothetical problem instances and the quality of its non-dominated fronts were compared
to that of the true Pareto front calculated by brute force. Hypervolume [52] was used
as the performance metric for this purpose, performing computations according to the
hypervolume by slicing objectives algorithm of While et al. [64].

The results obtained by solving both models of §3 is reported for one of these problem
instances, namely for a 24 × 24 (equidistant) discretisation grid of firebase candidate lo-

cations, requiring the placement of three firebases. This resulted in
(
242

3

)
= 31 684 800

possible placement combinations. Functions representing the fixed costs of placing fire-
bases and |K| = 1 coverage importance criterion rating were generated stochastically.
These functions are shown in Figure 1.
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(a) Cost (b) Coverage importance

Figure 1: Placement criteria for the test problem instance.

The models of §3 were solved for the above-mentioned problem instance by the method
of SA, as described above. Two types of search runs were performed in Matlab [41] — a
short run lasting at most Ω = 1 000 seconds and a long run lasting at most Ω = 15 000
seconds on an an Intel(R) Core(TM) i3-4030U CPU within a 64-bit Windows operating
system. The hypervolumes achieved in objective space by the SA algorithm are shown in
Table 1, normalised in each case according to the hypervolume of the true Pareto front
(obtained by brute force, as mentioned). In all cases, the hypervolume reference point was
taken as the nadir point [16].

Run Hyper- Search
Model type volume iterations

Double-counting Short 93.53% 38 728
Double-counting Long 96.44% 928 285

Single-counting Short 98.37% 44 458
Single-counting Long 99.65% 1 066 995

Table 1: SA hypervolume comparison for a small, hypothetical instance of the firebase
location models of §3.

As may be seen in Table 1, the solution quality increases as the search is allowed to progress
for longer, as expected. The long search runs are indeed capable of uncovering very high-
quality nondominated fronts in objective space — in fact, finding large proportions of the
true Pareto fronts. It would seem from the results of Table 1 that the double-counting
model returns slightly lower-quality solutions than the single-counting model, but this is
merely an artefact of the crude method of normalisation described in §3.1 (i.e. the choice
of the normalisation constants γk in (2)).

5 Decision support system

The firebase location models of §3, as well as the (approximate) model solution method-
ology of §4, were embedded in the design of a DSS, called Firebase Location Decision
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Support System (FLDSS). The design of this DSS is generic so that it can be applied to a
wide range of application instances. In other words, FLDSS is not case-specific, but can
approximate the Pareto-optimal location of a set of firebases of user-specified cardinality
in various conservation area applications according to a set of user-specified importance
criteria. The design of the DSS is presented in §5.1, after which a computerised concept
demonstrator of FLDSS is described in §5.2.

5.1 Design of the system

The primary design requirement for the FLDSS user interface was to enable the user
to enter the required input data easily, and also so that the output results are easily
accessible. This design is presented according to a top-down approach to diagramming
data movement using data flow diagrams (DFDs), as described by Kendall and Kendall
[34], and adopting the notation in Table 2.

Symbol Meaning

P The number of firebases to be located
G The number of times the method of SA should be re-initiated
D The coverage capacity of a firebase, measured in units of discretisation grid

cells (also called matrix units) as half the side length of a square with the
firebase at its centre

Initial The solution with which the SA algorithm is initialised
MatrixCombo The matrices specifying the importance of covering each demand point with

respect to the criteria in the set K of §3.1 as well as the matrix that provides
all the candidate firebase locations

CostMatrix The matrix of location costs of firebases at each candidate location
Archive The nondominated set of solutions uncovered by the SA algorithm
ParetoPosition The positions in decision space of the firebases corresponding to solutions in

the Pareto approximation set
FirebaseComboNumber The collection of firebase location sets which form part of the Pareto approx-

imation set, and for which the user would like to inquire specific positions
within the conservation area

AllCandidateLocations A matrix containing all the firebase candidate locations of solutions in the
Pareto approximation set

Table 2: Notation used in the DFDs.

The general, high-level working of FLDSS is illustrated in DFD 0, shown in Figure 2(a),
elucidating the user inputs required and the outputs displayed to the user. After receiving
the number of firebases to be located, an upper bound on the number of SA search runs, the
coverage capability of each firebase, a solution with which the first SA search run should be
initialised, matrices of importance weightings for each of the criteria in K, and a matrix of
firebase location costs for all candidate sites as input from the user, the process of Firebase
placement optimisation can be initiated according to the user’s choice between the single-
or double-counting model of §3. This process is labeled 1 in Figure 2(a), and the child
diagram of this process is shown in Figure 2(b). Once this process has been completed,
the user is informed and the output of this process (an archive of nondominated firebase
location sets) is stored to the workspace. The process according to which the user may
access the output of Process 1 is encapsulated in the View optimisation results process.
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(a) Diagram 0 of the DSS showing all user inputs and outputs

(b) The child diagram of Process 1 in part (a)

(c) The child diagram of Process 2 in part (a)

Figure 2: DFD description of the design of FLDSS.
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This latter process is labelled 2 in Figure 2(a), and its child diagram is shown in Figure 2(c).

5.2 DSS concept demonstrator

A screen shot of the user interface of a computerised concept demonstrator of FLDSS
is shown in Figure 3. The number of firebases to be placed, the coverage capability
of a firebase, and the number of times the SA algorithm should be re-initiated during
its search may be entered into the text boxes labelled accordingly in the top left-hand
corner of the screen. The candidate firebase locations may be specified by selecting the
Geographic matrix button, while the cost of locating a firebase at each candidate location
may be specified by selecting the Cost Objective button. The importance rating of covering
each demand point with respect to the various objectives, may be specified by selecting
the Objective1, Objective2, and Objective3 buttons. Finally, the initial solution, may be
specified by selecting the Initial button, upon which a file selection dialog will open. In this
dialog, the user may select the appropriate Matlab type file containing the data pertaining
to a location problem instance in the form of a matrix created beforehand in Matlab. Once
the appropriate data have been entered and selected, the SA algorithm may be initialised
by selecting either the Single-counting model (of §3.2) button or the Double-counting model
(of §3.1) button.

Once the SA algorithm has completed its search in the context of the firebase location
model selected, a message is displayed on the screen, guiding the user through the proce-
dure to be followed so that the results can be accessed. When the user selects the Plot
Pareto front button, a surface plot of the attainment front found over all the searches is
plotted on the set of axes contained in the user interface. Upon selecting the View Pareto
front values button, the search results with respect to the various objective functions are
tabulated in numerical form at the bottom of the user interface. Furthermore, if the user
wishes to view the actual positions in decision space corresponding to a specific set of
firebase locations on the attainment front, the user is prompted to enter the firebase com-
bination number of the location set of interest into the small text box at the bottom right
of the screen and select the Geo Location button. Finally, if the user requires a summary
of all the candidate firebase locations, along with their relative labels, her or she may
select the Position button.

6 A case study: Table Mountain National Park

In this section, the DSS of §5 is validated by applying its concept demonstrator to a special
case study involving Table Mountain National Park (TMNP). In §6.1, a brief introduction
to the case study is given, while the input data required by the DSS in the context of TMNP
are described in §6.2. Section 6.3 finally contains a summary of the results obtained by
the DSS in the form of firebase locations in the park suggested by the models of §3.

6.1 The park

TMNP is situated in the Cape Peninsula, and is surrounded on all sides by either the
City of Cape Town or by the Atlantic Ocean [23]. The park comprises three disconnected
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Figure 3: User interface of the computerised concept demonstrator of FLDSS.
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natural areas, a northern section, a central section and a southern section, as shown in
Figure 4. Since the City of Cape Town and TMNP are popular tourist destinations, the
safety of visitors to the park and that of people living and visiting areas in close proximity
to the park are of the utmost importance.

Fynbos, the dominant indigenous vegetation of the park, constitutes approximately 90% of
the park’s vegetation and requires a specific fire-regime in order to maintain its diversity
and ecosystem processes [56]. TMNP is, however, greatly invaded by alien shrubs and
trees which are not only spread by fire, but also threaten the biodiversity of the area,
increasing the biomass of the veld and hence the intensities of fires in the park. This
seriously influences the recovery and survival of fynbos and other natural vegetation after
fires in the area [23].

It is therefore important that effective fire management takes place, and that the limited
resources available for fire-fighting in the park are managed in the best manner possi-
ble. The park management is responsible for the difficult task of balancing the need to
combine fire with other measures of alien plant control, maintaining features that provide
safe boundaries, maintaining post-fire mosaic fynbos age patterns and providing available
manpower to control and contain fires so as to reduce the risk of damage to the urban
fringe of the park. Therefore, the TMNP Fire Management Plan [56] has two main ob-
jectives: to ensure the conservation and continued survival of viable populations of all
indigenous biota in the area, and to minimise the potential and actual damage caused
to private property by fires [23]. Major factors exacerbating the problem of providing
fire protection include poor planning and unplanned wildfires as this sets back alien plant
control operations and is a severe risk to the urban park fringe.

There are currently three permanent and independent firebases in the park, located as
indicated in Figures 4 and 5, while a fourth semimobile firebase, situated in the north of
the park, is on standby for all areas of the park and plays an integrating role between these
firebases [56]. These four firebases are under extreme pressure to provide rapid response
using the least amount of resources, especially during the hot, dry summer months (De-
cember to March). Fire-management teams have to keep fire-fighting costs to a minimum,
and the most important factor influencing the cost of fighting a fire is the time it takes
for fire-fighters to respond to a fire; response being measured as the length of time that
has elapsed between when a fire is reported and when the first line of fire-fighters arrive
at the scene. The longer it takes for a fire-fighting team to reach a fire, the more out-of-
control the fire becomes which, in turn, increases the cost of containing and extinguishing
that fire. The locations of firebases in the park significantly affect the time it takes for
fire-fighters to respond to a fire, and an effective placement of these firebases can therefore
greatly reduce the costs of fire management.

6.2 Input data

During a meeting with TMNP’s management it was determined that fire-fighters take the
following aspects into account when predicting the threat rating of a wildfire:

• the number of wildfires that have previously started in that area (i.e. historical data
pertaining to ignition points of wildfires in the park),
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Figure 4: Map of TMNP in the Cape Peninsula.
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the objective in the UFLM is to

minimise Z ′′ =
∑

j∈J
fjxj +

∑

i∈I

∑

j∈J
cijzij (8)

subject to the constraints
∑

j∈J
zij = 1, i ∈ I, (9)

∑

j∈J
xj = p, (10)

zij ≤ xj , i ∈ I, j ∈ J (11)

zij , xj ∈ {0, 1}, i ∈ I, j ∈ J . (12)

Figure 2: Discretisation of the
TMNP into 694 square cells. The
locations of the current permanent
firebases in the TMNP are indi-
cated.

The parameter fj in (8) represents the fixed cost
associated with locating a facility at site j ∈ J .
Constraint set (9) ensures that a demand point is
covered by exactly one facility, while constraint (10)
ensures that exactly p facilities are placed. Con-
straint set (11) performs a linking function ensuring
that a demand point i ∈ I is only assigned to a fa-
cility at candidate site j ∈ J if, in fact, there is a
facility at that site.

4 Analysis

We discretised the area of the TMNP into a grid
of square cells (each approximately 650m× 650m in
size), as shown in Figure 2. This resulted in 162,
161 and 371 candidate locations for firebases in the
northern, central and southern sections of the park,
respectively. The locations of the current three per-
manent firebases in the park are also indicated in
Figure 2. Our first step was to evaluate the effective-
ness of these existing firebases within each section of
the park according to the five response radii shown
in Figure 3. Measuring this effectiveness as the ra-
tio of the number of cells within these neighbour-
hoods of each firebase to the total number of cells
in the corresponding section of the park, we found
the effectiveness values in Table 1(A) during a sen-
sitivity analysis with respect to increasing firebase
response radii. The small effectiveness percentages
in Table 1(A) achieved by the existing firebases in
the northern and central sections of the park may be
attributed to the fact that these bases are situated

Figure 5: Discretisiation of TMNP into 694 candidate firebase locations.

• the slope of the terrain in which the fire broke out (the steeper the slope, the more
dangerous), and

• the wind speed in the area (the greater the wind speed, the larger the chance that
the fire spreads out of control).

Despite an elaborate search by the authors, appropriate wind speed data at a resolution
high enough to be meaningful could not be found for TMNP — there are only six wind
speed stations in the Cape Peninsula (Signal Hill, Clifton, Muizenberg, Kommetjie, Wit-
sands, and Cape Point) [9]. Wind speed data could therefore not be incorporated as one
of the coverage criteria in the set K of the coverage criteria in §3. Furthermore, in the
model formulations of §3, the minimisation of the construction cost of firebases was one
of the objectives. In the case of TMNP, however, the park is very well developed with
respect to access roads, resulting in construction costs of firebases in various areas of the
park being practically indistinguishable. Hence it was decided not to include fixed cost of
firebase location explicitly in monetary terms as one of the objectives. The cost of placing
firebases is rather simply taken to increase directly proportional to the number of firebases
placed in the park (i.e. firebase location fixed costs are included implicitly by assuming
them to be equal for all firebase candidate locations).

The slope of the terrain in the park was taken as the first coverage importance criterion
in this case study. The greater the slope, the more important it is to cover that area by
a firebase. This is because a fire spreads much quicker up a slope than along a flat plain.
A contour plot of the terrain in the park may be seen in Figure 6(a). Slope data were
derived from these data for TMNP using the software suite ArcGIS [3].



76 R Reed & JH van Vuuren

(a) Contour plot of the TMNP terrain (b) Wildfire ignition points

Figure 6: Firebase location criterion data for the TMNP case study.
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The locations of historical wildfires in various areas within the park was taken as a second
coverage importance criterion, in the sense that firebases should be placed so that they
are close to areas in which many wildfires have ignited in the past. A plot of the wildfire
ignition points over the past thirty years may be found in Figure 6(b).

Following Meyer et al. [43], the TMNP was discretised into a grid of square cells (each
approximately 650 m × 650 m in size), as shown in Figure 5. This resulted in 162, 161
and 371 candidate firebase locations in the northern, central and southern sections of the
park, respectively. During a typical search for the location of three or four firebases in
TMNP at this resolution, the SA algorithm would complete between 500 000 and 800 000
search iterations in total, requiring between 4 200 and 5 300 seconds of computation time
in the hardware environment described in §4.4.

6.3 Numerical results

Using the DSS of §5, the models of §3 were solved in the context of the two TMNP covering
importance criteria (of slope and proximity to historical wildfire ignition points) for four
different firebase coverage capabilities, namely three matrix units, five matrix units, seven
matrix units, and ten matrix units in each (horizontal and vertical) direction. It was thus
confirmed that the solutions corresponding to a coverage capability of ten matrix units
in each direction outperform solutions corresponding to smaller coverage capabilities. For
each of the above-mentioned coverage distances, each of the models of §3 was solved in
pursuit of the placement of three firebases, and then four firebases in TMNP. This gave
rise to 2 × 4 × 2 = 16 sets of placement results (two models, four coverage distances and
two firebase set cardinalities). Each of the sixteen sets of results reported in this section
is the attainment front of ten applications of the SA algorithm.

The following acronyms are used in this section for result reporting purposes in the contexts
of both the single-counting and double-counting models proposed in §3: three bases and
three coverage capability (THBTHC), three bases and five coverage capability (THBFC),
three bases and seven coverage capability (THBSC), three bases and ten coverage capability
(THBTC), four bases and three coverage capability (FBTHC), four bases and five coverage
capability (FBFC), four bases and seven coverage capability (FBSC), and four bases and
ten coverage capability (FBTC).

The attainment fronts uncovered by the simulated algorithm in the context of the single-
counting model of §3.2 for the placement of three and four firebases are shown in Fig-
ures 7(a) and 7(b), respectively, while the attainment fronts of the double-counting model
of §3.1 for the placement of three and four firebases are shown in Figures 7(c) and 7(d),
respectively. The extremal solutions (i.e. top performing solutions with respect to each
of the objectives individually) have been labelled A–H in these figures. The locations
of the firebases corresponding to these extremal solutions are shown (in decision space)
in Figure 8(a) for the single-counting model and in Figure 8(b) for the double-counting
model.

Comparing the results in Figure 8, it is clear that there is a substantial difference in the
locations of solutions to the single-counting and double-counting models. As expected, the
double-counting model tends to recommend placement of multiple firebases within certain
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(a) Three firebases, single-counting model (b) Four firebases, single-counting model

(c) Three firebases, double-counting model (d) Four firebases, double-counting model

Figure 7: Attainment fronts uncovered by the SA algorithm when placing three or four
firebases in TMNP.

key areas, whereas the single-counting model tends to favour placements of firebases that
are spread out over various different important locations throughout the park. In this
respect, the single-counting model seems to suggest solutions that are more practical than
the double-counting model.

Comparing the results in Figure 7, it would furthermore appear that the SA algorithm
consistently finds higher quality solutions for the double-counting model than for the
single-counting model. This is due to the greedy way in which the performance of so-
lutions has been normalised (as described in §3). If three firebases are, for example, to
be placed, the three top-performing firebase locations are simply selected independently
from one another and the performances of solutions in the attainment front are then nor-
malised by the sum of the performance values of these three firebases. This method of
normalisation therefore ignores the possibility that the coverage areas of firebases might
overlap. The double-counting model also ignores the fact that firebase coverage areas may
overlap, and thus in theory should be able to find better performing firebase locations
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(a) Single-counting model (b) Double-counting model

Figure 8: Solutions A–H of Figure 7 in decision space.

when adopting this method of normalisation. The single-counting model, on the other
hand, takes overlapping firebase coverage areas into account and decreases the perfor-
mance of the corresponding solutions accordingly. It is, however, usually the case that the
top-performing firebase locations do overlap. It is therefore hard for the SA algorithm to
find these top-performing firebases in the context of the single-counting model.

The performance of the existing firebases in TMNP are finally compared with those of the
solutions suggested by the DSS, as reported in Figure 8. As indicated in Figures 4 and 5,
there are currently three permanent, independent firebases in the park: one at Newlands,
a second at Silvermine and a third at Klaasjagersberg. There is, however, also a fourth
semi-mobile firebase at Kloofnek which acts as support to any area in the park.

The performance of the three permanent firebases, as well as that of all four firebases
together, is compared with the performances of the DSS-suggested firebase locations in
Figure 9 for a coverage capability of ten matrix units. As may be seen in the figure, the
solutions suggested by the DSS in the contexts of both the single-counting and double-
counting models outperform the current placement of firebases by a significant margin.
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Figure 9: The performance of the current TMNP firebase locations compared to those of
the DSS suggestions.

It may, however, be argued that the current firebase locations were not necessarily selected
in order to maximise the coverage of key areas in the park, but that a balance between
covering key areas and making it easy for personnel to reach the firebases from the city
might instead have been pursued to some extent. This would explain why most of the
current firebases are located near the park’s boundary.

7 Conclusion

Two novel firebase location models (a single-counting model and a double-counting model)
were formulated in this paper with a view to facilitate a comparison of trade-off perfor-
mances of different sets of firebase placement locations. The implementation of these
models within a user-friendly computerised DSS render them capable of being applied by
non-mathematically inclined decision makers to a variety of scenarios by receiving, for a
specific scenario, certain geographic information (such as terrain elevation data, ground
slope data and wind data), cost data, and other information. The DSS is flexible in terms
of a number of user-specifiable parameters, including the coverage capability of a firebase,
the number of firebases that should be placed, and the number of times that the SA
algorithm should be re-initialised during its approximate solution search process. Other
multi-objective firebase location models involving GIS-related location importance criteria
(other than travel distance or time) in a nature conservation context, were not found in
the literature. All firebase location models in the literature are capable of accommodating
only a single objective function, albeit sometimes as the aggregation into one function (by
linear combination, for example) of various placement criteria, or are applicable in urban
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settings, as described in §2. The models in this paper are, to the best of the authors’
knowledge, the first truly multi-objective mathematical treatments of the problem of na-
ture conservation firebase location in the sense of encouraging consideration of trade-off
solutions along a Pareto front. The models certainly represent a considerable improvement
on the previous firebase placement models utilised within the context of TMNP [42, 43],
as demonstrated in Figure 9.

The coverage capability of a firebase was modelled in this paper as a square surface area
with the firebase at its centre. Modelling the coverage response area of a firebase in this
manner is perhaps not realistic. Another option would be to model the coverage area of a
firebase as a truncated circle or oval (when viewed from above) so as to account for certain
areas that may be easier to cover as a result of terrain slope considerations, for example.
Alternatively, the coverage capability of a firebase may be modelled in a time-dependent
manner instead of adopting a distance-dependent modelling approach, taking into account
terrain features such as contours and access roads.

Finally, the location models formulated in this paper ignore the fact that there might be
existing, immovable firebases in the conservation area. The only way in which the current
model can accommodate existing firebases is if the user ensures that the area represented
by the current firebases’ locations are rated as extremely important to cover. In this
case the model will then automatically suggest placement of firebases in these locations —
thereby, in essence, reproducing the existing firebases in solutions. The models put forward
in this paper may, however, be extended by including a capability of both accommodating
existing firebases in an explicit manner, and by allowing the user to limit the areas in
which new firebases can be placed.
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