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Abstract

The power of canonical variate analysis (CVA) biplots, when regarded as extensions of or-
dinary scatterplots to describe variation and group structure in multivariate observations, is
demonstrated by presenting a case study from the South African wood pulp industry. It is
shown how multidimensional standards specified by users of a product may be added to the
biplot in the form of acceptance regions such that the roles of the respective variables that
influence the product can be ascertained. The case study considers an alternative to CVA
and multivariate analysis of variance (MANOVA) when the application of these procedures
becomes questionable as a result of dealing with small sample sizes and heterogeneity of
covariance matrices. It is explained how analysis of distance (AOD) analogous to analysis
of variance may be performed in such cases. Biplots to accompany AOD are provided. The
biplots and AOD illustrated in the case study from the wood pulp industry have the potential
to be used widely where a primary product, influenced by several variables, is produced and
where this product is of importance to various secondary manufacturers depending on which
set of multidimensional specifications are met.

Key words: Analysis of distance, biplot, canonical variate analysis, multidimensional scaling, multi-

variate analysis of variance, permutation tests, wood pulp.

1 Introduction

The identification, description and separation of different groups are of primary importance
in diverse fields of human activity. In risk management, for example, a financial institution
is awarded a credibility rating of A, B, C or D according to various financial indicators; in
car insurance clients are divided into different risk groups on the basis of criteria such as
age, sex, residential area and type of car; archaeological artefacts are ascribed to different
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time periods according to various properties measured; a manufacturer of a consumer
product seeks advice on differences in personal characteristics of clients buying its different
brands. It follows from the above examples that several properties of any product or
process can simultaneously determine group membership.

Several multivariate statistical techniques have been developed to address the problem
of finding groups in data (see for example Kaufman and Rousseeuw (1990), McLachlan
(1992), Hastie et al. (2001) and Johnson and Wichern (2002)). In addition to providing the
necessary algebraic derivation for optimally separating the groups according to statistically
defined criteria these techniques consist of accompanying graphics for displaying the results
of the analysis. Canonical variate analysis (CVA), closely related to linear discriminant
analysis, is a popular technique for separating groups by finding those linear combinations
of the variables that optimise the ratio of the between group variation to the within group
variation.

The aims of this paper are twofold: firstly, we illustrate how graphical displays accompa-
nying a CVA may be enhanced by extending the well-known scatterplot of two variables
to any number of variables. These enhancements include the display of predefined groups
together with information of all variables contributing to group separation, as well as prod-
uct specifications, as stipulated by a user. Secondly, the aim is to point out how to perform
a statistical analysis together with the necessary graphical displays when the assumptions
underlying a CVA are not met. In order to pursue these aims a case study from the South
African wood pulp industry is presented. In the next section a CVA biplot is introduced
for the simultaneous display of eight characteristics measured for five pine species. This
biplot is related to a multivariate analysis of variance (MANOVA) performed for the pine
species data set. In section 3 we show how to add specifications for two different paper
products to a CVA biplot. Our second aim is addressed in section 4 where we consider
the analysis of distances (AOD) as an alternative to a MANOVA when the assumptions
underlying the latter procedure are violated. Finally, some concluding remarks are offered
regarding the use of CVA and related AOD biplots in practice.

2 A case study from the Southern African pulp industry

Product quality is influenced by the homogeneity of the raw material(s) and/or the re-
peatability of the processing steps involved during manufacturing. The importance of
this principle has to be emphasised strongly when the conversion of biomass material into
finished products is considered. One of the largest problems for a wood pulp mill is the
variability introduced by the raw material, wood. In plantation forestry there is some
control, i.e. the optimal selection of tree species, age and environmental factors such as
growth site, climate, altitude, etc. However, this is not the case with natural forests.
Pulp mills and their downstream clients, the papermakers, have to control and manage
raw material variability in wood obtained from different sources, so as to optimise pulp
strength properties and yield, and to ensure pulp uniformity.

Usutu Pulp Company Ltd, Swaziland, embarked in 1985 on a program to assess and
manage wood quality variation at the mill and to further exploit or add value to the
material, once the underlying causes of variation had been understood. Sampling of pine
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species in their plantations took place in 1989 and the principal findings of the project were
published by Morris et al. (1997) and Barnes et al. (1999). All wood from the available
forests was fibre-typed, so that the homogeneity of the furnish at the pulp mill could be
controlled through the chip pile. The effects of major genetic (species), physiological
(growth rate and age) and environmental (altitude) factors on wood and unbleached kraft
pulp properties were examined. In addition to the above papers a report on this work was
jointly published by the Oxford Forestry Institute, the University of Oxford, and Sappi
Forest Research, South Africa (see Clarke, et al. (2003)). This report was presented with
general interpretations and conclusions without exhaustive statistical analysis, but the
data were placed in the public domain with the intention to invite researchers to conduct
their own statistical analyses. This paper represents an effort in this regard.

Clarke et al. (2003) reported on a CVA performed on the five pine species: Pinus el-
liottii, P. kesiya, P. maximinoi, P. patula and P. taeda, using height growth (m) at 11
years (Growth), wood density (kg m−3) (Density), total pulp yield (% of original mass)
(TotYield), alkali consumption (%) (Alkali), tearing index (mN m2 g−1) (Tear), burst in-
dex (kPa m2 g−1) (Burst), tensile index (Tensile) and tensile energy absorption (mJ g−1)
(TEA). The CVA results in two linear combinations of the eight independent variables
separating the five pine species optimally. These two canonical variates account for 80.7%
and 10.9% of the between species variation respectively. According to Clarke et al. (2003)
TotYield, Density and Burst are the most important variables for distinguishing between
the selected five pine species. These authors provide a conventional scatterplot similar to
Figure 1 of the first and second canonical variate scores of the five species. Figure 1 sug-
gests that the five species form three distinct groups: P. elliottii on its own, P. maximinoi
and P. patula grouped together and a third group formed by P. kesiya and P. taeda.

Figure 1: Scatterplot of the first and second canonical variate scores of five pine species.

Figure 1 provides striking evidence about the group structure of the five pine species, but
it has a serious shortcoming: no information regarding the original physical variables is
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displayed. This limitation may be addressed by constructing a CVA biplot of the data.
Gabriel (1971) introduced a biplot as the simultaneous display of the rows (the sampling
units) and the columns (the variables) of a data matrix. Gabriel’s biplot has been applied
to many diverse fields, among them chemi-mechanical pulping trials by Broderick et al.
(1995). These authors were able to utilise the Gabriel biplot for monitoring changes in a
large number of pulp quality responses simultaneously. However, since the rows and the
columns of the data matrix are represented by Gabriel as two sets of vectors in a biplot,
distances between sample units are in terms of inner products. Consequently interpretation
of this form of the biplot is not straight-forward. Gower and Hand (1996) presented a
form of the biplot that is more accessible to non-statistical audiences by regarding it as a
multivariate extension of an ordinary scatterplot: sample points appearing as points in a
biplot that is equipped with p axes (instead of only two) representing all p > 2 variables
simultaneously. Figure 2 is a CVA biplot according to the methodology provided by Gower
and Hand (1996) of the data displayed in Figure 1.

Comparing Figure 2 to Figure 1 we draw attention to the following:

• The biplot in Figure 2 aims to separate the five groups optimally and to preserve inter
data point distances. Unlike in Figure 1 the distances between all points including
the means in Figure 2 can be evaluated in terms of ordinary Euclidean distances,
since special care has been taken in the construction of Figure 2 to ensure that a
change of one unit in a horisontal direction is geometrically the same as a similar
change in a vertical direction.

• The canonical variates are not shown in Figure 2, but form the scaffolding for con-
structing a graph in which the sample points are shown together with eight axes
representing the variables.

• Each axis in Figure 2 is calibrated in the original units of measurement; therefore it
allows — similar to an ordinary scatterplot — for reading-off the value of the respec-
tive variable for a given point. This process is illustrated for the mean Tensile value
of P. kesiya. All other mean values may be obtained similarly. These graphically
obtained values compare favourably with the true mean values given in Table 1.

TotYield Alkali Density TEA Tensile Tear Burst Growth

P. ell 43.30 74.57 543.86 91.85 1799.09 11.90 6.15 14.31
P. kes 44.36 74.28 529.97 96.16 1810.00 9.71 6.57 16.30
P. max 45.63 75.68 456.58 93.58 1761.67 10.85 6.55 13.73
P. pat 46.44 74.39 497.68 93.63 1624.44 13.20 6.19 15.24
P. tae 44.24 74.64 567.50 96.00 1808.00 11.78 6.55 15.58

Table 1: Means of five species of pines on eight variables.

• Unlike an ordinary scatterplot, the axes in Figure 2 cannot be used for placing
a new point on the biplot. The axes provided are called prediction axes and are
only to be used for reading-off values of existing points for the different variables.
Instead of prediction axes we could have equipped the biplot with axes that allow
placement of new points. Such axes are called interpolation axes. Gower and Hand
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(1996) or Aldrich et al. (2004) may be consulted for the algebraic derivation of
prediction axes, interpolation axes and calibrating biplot axes. Since it is natural to
use scatterplot axes for reading-off values, we prefer to equip biplots with prediction
axes and execute placement of new points programmatically, based on the algebraic
derivation of interpolating such points onto the biplot scaffolding (see Aldrich et al.
(2004) or Gower and Hand (1996)).

Figure 2: CVA biplot of the pine species with group means shown as solid symbols respectively.

• The biplot in Figure 2, unlike Figure 1, provides suggestions as to which of the
variables contribute to separation between the five species: e.g. the variable Burst
separates relatively high valued P. kesiya and P. taeda from relatively low valued
P. elliottii with P. patula and P. maximinoi in between; the variable Density
separates relatively high valued P. kesiya, P. taeda and P. elliottii from low valued
P. patula and P. maximinoi ; the variable TotYield separates high-valued P. patula
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and P. maximinoi from relatively low valued P. kesiya, P. taeda and P. elliottii.
The conclusions of Clarke et al. (2003) are thus supported.

• The quality of the CVA biplot, as measured by the size of the eigenvalues associated
with the first two canonical variables, is 91.6%.

• Gower and Hand (1996) proposed an adequacy measure of how well each variable is
represented in the biplot. The adequacies for the eight variables in the pine species
data set are given in Table 2.

Total Yield Alkali Density TEA Tensile Tear Burst Growth

0.615 0.005 0.909 0.004 0.134 0.392 0.399 0.375

Table 2: Adequacies associated with the axes (variables) in Figure 2.

It is clear, from Table 2, that Alkali and TEA have very low adequacies and these variables
are, therefore, not well represented in Figure 2. Reconstructing the CVA biplot by omitting
these two variables results in only negligible changes in the positions of the sample points,
the group means and the remaining axes (see Figure 3).

Contrast TotYield Alkali Density TEA

P. ell – P. kes –3.37 1.25 –4.11 4.69 –65.26 93.05 –10.59 1.96
P. ell – P. max –4.51 –0.16 –5.25 3.03 12.80 161.76 –7.64 4.16
P. ell – P. pat –5.07 –1.22 –3.48 3.85 –19.78 112.15 –7.02 3.44
P. ell – P. tae –3.25 1.37 –4.47 4.33 –102.79 55.52 –10.43 2.12
P. kes – P. max –3.87 1.32 –6.34 3.54 –15.49 162.25 –4.47 9.62
P. kes – P. pat –4.48 0.31 –4.66 4.44 –49.57 114.15 –3.96 9.01
P. kes – P. tae –2.59 2.83 –5.52 4.80 –130.35 55.29 –7.20 7.52
P. max – P. pat –3.07 1.45 –3.01 5.59 –118.45 36.25 –6.18 6.08
P. max – P. tae –1.20 3.99 –3.90 5.98 –199.79 –22.05 –9.46 4.63
P. pat–P. tae –0.19 4.60 –4.80 4.30 –151.68 12.04 –8.85 4.12

Contrast Tensile Tear Burst Growth

P. ell – P. kes –385.62 363.80 –1.06 5.43 –0.94 0.09 –4.81 0.84
P. ell – P. max –315.17 390.02 –2.01 4.10 –0.89 0.08 –2.08 3.23
P. ell – P. pat –137.61 486.91 –4.01 1.40 –0.47 0.38 –3.29 1.42
P. ell – P. tae –383.62 365.80 –3.13 3.36 –0.92 0.11 –4.09 1.55
P. kes – P. max –372.35 469.02 –4.78 2.51 –0.56 0.60 –0.60 5.74
P. kes – P. pat –201.95 573.06 –6.84 –0.13 –0.15 0.91 –1.87 3.97
P. kes – P. tae –437.39 441.39 –5.87 1.74 –0.58 0.62 –2.59 4.03
P. max – P. pat –228.94 503.38 –5.53 0.82 –0.14 0.86 –4.27 1.25
P. max – P. tae –467.02 374.35 –4.58 2.71 –0.58 0.57 –5.02 1.32
P. pat–P. tae –571.06 203.95 –1.94 4.78 –0.89 0.17 –3.26 2.58

Table 3: Simultaneous Bonferroni 90% confidence intervals for all pairwise contrasts among five

pine species. Intervals excluding zero are highlighted.

The close ties between CVA and MANOVA (see for example Kshirsagar (1972) and Gittins
(1985)) allow simultaneous confidence statement techniques associated with MANOVA to
be used for investigating the significance of contrasts among the five species with respect
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to the individual variables. The overall MANOVA null hypothesis of equal group mean
vectors is rejected at a very small significance level (the p-value approaching zero) and
the resulting Bonferroni simultaneous 90% confidence intervals for all contrasts are given
in Table 3. Perusal of Table 3 suggests that the only variables that differ statistically
significant when comparing the species pairwise are TotYield, Density and Tear viz. when
investigating P. ell – P. max ; P. ell – P. pat ; P. max – P. tae and P. kes – P. pat.

3 Specifications for different usages of paper products

Diverse qualities of wood pulp are of importance to different users of paper products.
The suitability of wood pulps for specific end uses, such as kraft liner or sack paper, may
be expressed in terms of the wood and processing characteristics. Based on practical
experience, guiding range values, as specified in Table 4, were compiled.

Kraft liner Sack paper
Min Max Min Max

Total Yield 43 50 43 50
Alkali 70 85 70 85
Density 422 550 422 550
TEA 85 Large 90 Large
Tensile 1400 2400 1800 2600
Tear 8 15 10 17
Burst 5 6 6 7

Table 4: Specifications for two different end uses of paper products.

In addition to displaying sample points and all variables in a single graph, biplot method-
ology allows for interpolating product specifications, such as given in Table 4, in the form
of acceptance regions into the plot. This is illustrated in the CVA biplot in Figure 3.

It follows from Figure 3 that none of the five pine species may be regarded as good for
kraft liner, but that P. maximinoi and P. patula are suitable for sack paper. It appears
that, in the case of the remaining three species, both Density and Tensile are on the high
side of what is required by manufacturers of sack paper.

4 Analysis of distances

CVA was initially derived by Fisher as a non-parametric method, but it requires homo-
geneity of group dispersion matrices, since the within covariance matrix is formed by
pooling the covariance matrices of the different groups (see, for example, Gittins (1985)).
If hypothesis testing is to be performed as part of a CVA the assumption of multivari-
ate normality also has to be made, establishing a close connection between CVA and
MANOVA. Inspecting the variances of the variables for the different pine species casts se-
rious doubt upon the use of a pooled covariance matrix in CVA and MANOVA in the data
set considered in the previous sections. Furthermore, due to the small sample sizes, some
of the species have singular covariance matrices while multivariate normality is doubt-
ful. However, the basic formula for a variance can be expressed in terms of the squared
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distances between all pairs of points, since

1
n− 1

n∑
i=1

(xi − x̄)2 =
1

2n(n− 1)

n∑
i=1

n∑
j=1

(xi − xj)2. (1)

Equation (1) thus provides the connection between analysis of variance and analysis of
distance (AOD). Gower and Krzanowski (1999) showed that AOD is akin to analysis
of variance in that the intersample distances can be broken down into a within sum of
squared distances component and a between sum of squared distances component (T =
W + B). Moreover, in AOD no distributional assumptions are made nor any assumption
of homogeneity of dispersion matrices.

Figure 3: CVA biplot with acceptance regions for two different end uses of paper products.

The pine species data may be arranged in a matrix X of size n× p with n = 36 and p =
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8. Let dij denote the Euclidean distance {
∑p

k=1 (xik − xjk)2}1/2 between samples i and j
for i, j = 1, . . . , n. The squared distances may be gathered to form the symmetric n × n
matrix D with ij-th element 1

2d2
ij . The matrix X satisfies the equation

−(In − 1s′)D(In − s1′) = XX′, (2)

where the vector s satisfies s′1 = 1, with 1 a vector of ones and In the n×n identity matrix.
Any solution of (2) for X yields coordinates, say Y of the sample points. There are various
ways of obtaining Y; in particular, classical metric scaling (see, for example, Borg and
Groenen (1997), Cox and Cox (2001) as well as the references contained therein). Classical
metric scaling is also known as principal coordinate analysis (PCO) (Gower (1966)). The
PCO solution of (2) for s = 1

n1 is based upon the spectral decomposition

−(In − 1
n11′)D(In − 1

n11′) = VΛV′ (3)

with V an n × n the matrix of orthonormalised eigenvectors and Λ the diagonal matrix
containing the corresponding eigenvalues. Thus the PCO coordinate matrix is given by
Y = VΛ1/2. If the n sample points are divided into g groups with corresponding sizes
n1, n2, . . . , ng, the group structure may be described by the n× g indicator matrix G with
ij-th element equal to 1 if sample point i is in group j and zero otherwise. Let N be the
diagonal matrix with diagonal elements the respective group sizes, n1, n2, . . . , ng. Then
the coordinates of the group means are given by

Ȳ = N−1G′Y. (4)

As mentioned, Gower and Krzanowski (1999) proved that the total sum of squared dis-
tances T may be decomposed as T = W + B, where

T = 1
n1′D1, (5)

W (within-group sum of squared distances) =
g∑

j=1

1
nj

1′
jDjj1j , and (6)

B (between-group sum of squared distances) = 1
nn′∆̄n. (7)

In equations (6) and (7) Djj refers to the matrix D being partitioned into g2 submatrices
Drs of dimensions nr×ns such that Drs consists of 0.5 times the squared distances between
each individual in group r and each individual in group s; n is a vector containing the
group sizes, while ∆̄ is a symmetrical g× g matrix with rs-th element being 0.5 times the
squared distance between the means of groups r and s.

Since the units of measurement of the variables used in the pine species data set are not
commensurable, each variable was centred and scaled to unit variance before performing
the AOD. The AOD of the centred and scaled values results in T = 280.00, B = 84.67
and W = 195.33. Similar to MANOVA the question of importance now is whether these
results indicate a significant difference between the respective group means. This question
can be addressed without having to make any distributional or homogeneity of covariance
matrices assumptions by using permutation tests. The basic idea in the above context is
as follows: if the B-term in the above AOD expression indicates no group difference then
its contribution to T should remain approximately constant over random permutations of
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the sampling units into g groups of fixed sample sizes. However, if the null hypothesis does
not hold, permutation of sampling units should tend to reduce between-group variability.
A large number of random permutations can thus be carried out and the B-value (7)
calculated for each of these permutations. The obtained value of B = 84.67 is now
compared with the distribution of permutation B-values. The achieved significance level
of this testing procedure is the proportion of times the value of B = 84.67 is exceeded by
the permutation replicates of this statistic. We employed the algorithm provided by Good
(2000) with 10 000 permutations leading to a significance level of less than 1 in 10 000 of
rejecting the null hypothesis of equal group means. This seems to support the MANOVA
p-value we found to be approaching zero.

Biplots to accompany the above AOD may also be constructed. Our AOD of the pine
species data set focused on the corresponding group means (4). A biplot that provides a
graphical display of the separation and overlap between the five groups, analogous to the
CVA biplots that accompany the MANOVA, may be obtained as follows:

The coordinates, Ȳ, for the group means may be found from the spectral decomposition
of

−(Ig − 1
g11′)D∗(Ig − 1

g11′) = ȲȲ′, (8)

where D∗ = N−1G′DGN−1. This amounts to a standard PCO, leading to a display in
which the origin of the axes is at the centroid of the group means points not weighted by
the group sizes. Alternatively, a weighted PCO may be performed using

−(Ig − 1
n1n′)D∗(Ig − 1

nn1′) = Ȳ Ȳ′. (9)

This leads to a graphical display in which the origin of the axes is at the centroid of the
n individual points. After finding a graphical representation of the group means in, say, 2
dimensions it is of interest to display the individual sample points about their respective
means. Following Gower (1968) this may be accomplished by plotting

−1
2(Ȳ∗′Ȳ∗)−1Ȳ∗′(Ig − 1

n11′)(di − d0) (10)

for i = 1, 2, . . . , n. In (10) Ȳ∗ denotes the two dimensional approximation of Ȳ obtained
from the spectral decomposition of (9). The vector di contains the squared distances of
the i-th sample point to each of the g group means on the graph, while the elements of
d0 are the squared distances of the respective group means to the origin of the axes. If
a weighted PCO is performed the individual points may similarly be plotted by replacing
(10) with

−1
2(Ȳ∗′Ȳ∗)−1Ȳ∗′(Ig − 1

n1n′)(di − d0). (11)

In order to complete the biplot, information about the original variables must be added
in the form of calibrated axes. We implement the procedure Gower and Hand (1996)
proposed for metric multidimensional scaling, leading to the biplot displayed in Figure
4. This biplot results from a standard PCO and has an overall quality of display of
75.8%. The corresponding biplot for a weighted PCO is almost identical and is therefore
not repeated here. Note also that although the data were scaled to unit variances before
performing the AOD the biplot axes in Figure 4 are calibrated to show the original units of
measurement. Performing the AOD on the unscaled data leads to a biplot in which all the
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data points lie along the Tensile axis. In this case the achieved significance level obtained
with the permutation testing procedure turns out to be 0.1966. We do not include the
biplot for the unscaled case here. Suffice it to say that, although a CVA biplot is invariant
with respect to the scaling of variables to unit variances, the above example shows this
not to be the case for AOD biplots. Therefore users should carefully consider the influence
of the scaling of variables on the appearance of AOD biplots and associated hypothesis
testing.

Figure 4: Standard principal coordinate analysis biplot displaying the AOD of the pine species

data set.

Although there are conspicuous similarities between Figure 4 and Figures 1 through 3 the
AOD biplot in Figure 4 shows the five groups to be differently separated than suggested
by the CVA biplots: P. maximinoi has been shifted away from P. patula, while P. taeda
and P. kesiya are further apart from each other than in the CVA biplots. Distortion due
to dimension reduction may be responsible for these differences. In view of the relatively
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large quality values obtained it seems likely that these differences are attributable to
the influence of the incorrect pooling of heterogeneous (and in some cases singular) class
covariance matrices. The biplot in Figure 4 not only provides suggestions of the variables
responsible for the differences among the various pine species, but also portrays the role of
the relatively large variances characteristic of some of the groups. In particular, the large
tensile variance of P. elliottii is noteworthy.

5 Conclusion

We have demonstrated the capabilities of a CVA biplot when regarded as a multivariate
extension of an ordinary scatterplot for providing information regarding overlap and sep-
aration between five different pine species, as well as the respective roles played by eight
wood and processing characteristics of these species. A further extension allows users of
pulp to inspect visually whether their specifications for a particular usage are met by a
particular pine species.

We also provide evidence questioning the appropriateness of MANOVA and hence also
of ordinary CVA biplots in the case of the pine species data set discussed by Clarke, et
al. (2003). However, even though lack of homogeneity among the covariance matrices of
the different pine species casts some doubt about constructing ordinary CVA biplots for
a detailed description of the pine species data set, its usefulness for the visual display of
multivariate variation, of group structure and of the roles of more than just two variables
together with multidimensional specifications as demanded by users is not to be disputed.
Indeed, Figures 2 and 3 illustrate the potential of the CVA biplot as an extension of an
ordinary scatterplot for both producers as well as consumers of a product, the qualities of
which depend on several correlated variables.

The small sample sizes and heterogeneous group covariance matrices found to question
CVA and MANOVA procedures in the case of the pine species data set are often encoun-
tered in practice. As an alternative to the analysis of variance we show how the analogous
analysis of distance can be used in such cases. The AOD procedure is invariant with
respect to distributional assumptions. Furthermore, it is unaffected by small sample sizes
and heterogeneous group covariance matrices, while permutation test procedures may be
employed when hypothesis testing is required. Since the biplots discussed in this paper
are designed for the accurate display of distances the multidimensional biplot illustrated
in Figure 4 is an invaluable aid for a visual display of an AOD. Moreover, all features and
extensions of CVA biplots are available for AOD biplots.
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