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Abstract

We present new rotation moment invariants based on multiresolution filter bank
techniques. The multiresolution pyramid motivates our simple but efficient feature
selection procedure based on the fuzzy C-mean clustering methodology combined with
the Mahalanobis distance measure. The proposed procedure verifies an impact of
random noise as well as an interesting, less known impact of noise due to spatial
transformations. The recognition accuracy of the proposed technique has been tested
with the Zernike moments, the Fourier-Mellin moments as well as with wavelet based
schemes. The numerical experiments, with more than 30 000 images, demonstrate a
tangible accuracy increase of about 3% for low level noise, 8% for the average level
noise and 15% for high level noise.

Key words: Pattern recognition, rotation moment invariant, wavelets, filter bank scheme, feature

selection, fuzzy C-mean, Mahalanobis distance.

1 Introduction

The first region-based rotation moment invariants introduced by Hu, as described in [16,
21, 22], are projections of the image onto monomial functions. The moments are believed
to be reliable for complex shapes, because they involve not only the contour pixels but all
the pixels of the object. However, a dramatic increase in complexity associated with the
relevant projections renders Hu’s moments impractical. Besides, the redundancy of the
Hu moments, noticed in [22], clearly indicates a need for further research. Shortly after
Hu’s paper, a variety of invariant moments were proposed and analyzed [3, 4, 9, 10, 11,
14, 18, 19, 20, 21, 22, 25, 28]. The major developments are characterized by the Legendre
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moments [14, 21, 22], the orthogonal Zernike moments [9, 10, 11, 14, 22], the Fourier-
Mellin moments [10, 9, 22], the complex moments [3, 4, 22], the Tchebichef moments [25]
and the Krawtchouk moments [28]. As a matter of fact, almost every known system of
orthogonal polynomials has been tested and analyzed. Finally, Shen [20] introduced a
rotationally invariant moment representing the image by projections onto wavelets. It has
been demonstrated that such wavelet invariants may ensure a higher classification rate.

The multiresolution pyramid is well-known [12]. However, to the best knowledge of the
authors, it has not been applied to construct moment invariants. Therefore, we propose to
develop the idea of wavelet-based moments by introducing the filter bank representation.
As opposed to conventional wavelets, this representation is rotationally invariant due to
the circular Fourier-transform prior to multiresolution analysis [12]. Since the Mallat-like
expansion is always overcomplete, the features are selected by the Fuzzy C-mean (FCM)
clustering method endowed with the Mahalanobis distance measure and the elimination
of redundant and noise sensitive features. It should be noted that the sensitivity of the
moment invariants to image noise has been mentioned repeatedly in the literature (see,
for instance, [22]). As a consequence the moments are rotationally invariant only when
they are computed from ideal images. Even in the absence of noise induced by physical
devices, there always exists noise due to finite resolution of the image subjected to spatial
transformations. Therefore, in practice, the spatial transformations themselves affect the
invariance. Since this transformation noise may appear even at low frequencies, the mo-
ment invariants should be evaluated by the response not only to random high frequency
noise, but also to rotations and scaling.

First of all, we construct the multiresolution pyramid using a fast quadrature mirror filter
(QMF). Next, we eliminate the features belonging to different resolution levels sensitive to
either random or transformational noise. Furthermore, features from different resolution
levels are considered in combinations. The objects are represented by means of FCM
clusters. A minimum of the FCM-function corresponds to a better discriminative set.
At this step, the use of the Mahalanobis distance is important, since the entire set of
moments is redundant [1]. Additional redundancy appears due to over completeness of
the multiresolution analysis.

The recognition rate of the algorithm has been tested on 30 000 different images and
compared with the Zernike moments, the Fourier-Mellin moments as well as with a wavelet
based representation proposed by Shen [20]. Our proposed technique provides a significant
accuracy increase ranging from 3% to 15%.

2 Rotationally Invariant Moments

A general moment M of a function f(r, θ) with respect to a function F (r, θ), in a polar
coordinate system with the origin at the centroid of the object is defined by

M =
2π∫
0

1∫
0

f(r, θ)F (r, θ)rdrdθ.

In the context of image processing, the function f(r, θ) is the image intensity (the gray
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Figure 1: Silhouettes of aircraft. (a) Alpha Jet. (b) MiG-29. (c) MiG-17 Fresco. (d) An-12

Cub. (e) Jastreb. (f) Am-X.

level). We assume that F (r, θ) = R(r)G(θ), where R(r) denotes a basis function such as
the Zernike polynomial and G(θ) an angular function. Taking G(θ) ≡ GΓ (θ) = ei Γ θ for
some Γ, provides the rotational invariance. Note that if Γ is a continuous variable, then
the integral with regard to θ is none other than the circular Fourier-transform. Usually
(but not necessarily), in the theory of rotational invariant moments, Γ is an integer called
the angular order [20]. We represent the above integral by

MΓ =
1∫

0

R(r)SΓ(r)rdr,

where

SΓ(r) =
2π∫
0

f(r, θ)GΓ(θ)dθ.

Note that if M̃Γ is a moment of the rotated image f(r, θ + φ), where φ is the angle of
rotation, then M̃Γ = eiΓφMΓ. Therefore, |M̃Γ| = |MΓ|. Thus, rotation of the object affects
the phase but not the magnitude. Furthermore, the moment phase cancellation may be
performed by multiplication of appropriate powers of moments rather than just by taking
the moments’ magnitudes (since the latter case yields a redundant feature system). Flusser
[3, 4] has shown that the rotation invariants can be constructed as products

∏n
i=1M

ki
Γi

from
some minimal set defined by a supplementary integer equation with regard to Γi and ki

(see [3] for further details). Given the magnitudes, the Flusser invariants may be evaluated
by the identity ∣∣∣∣∣

n∏
i=1

Mki
Γi

∣∣∣∣∣ ≡
n∏

i=1

|MΓi |ki .

Furthermore, from a functional analysis point of view, each object is represented by an
infinite and unique set of the invariants if R(r) constitutes a basis in the appropriate
functional space. A wavelet basis has a number of advantages, since it may be adapted to
the spectrum as well as to the spatial properties of a particular set of objects. In [9, 20] a
set of the radial functions is given by

Rm,n(r) = ψm,n(r) =
1√
m
ψ

(
r − n

m

)
,

where ψ(r) is the mother wavelet, m the dilation parameter (the scale index) and n the
shifting parameter. Our forthcoming multiresolution analysis employs the most common
choice m = 2j , where j is an integer.
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Coordinates of rSΓ(r) in the basis Rm,n(r) given by

Mm,n,Γ ≡
1∫

0

Rm,n(r)SΓ(r)rdr

are called the wavelet moments. A periodic treatment (see, for instance, [5]) is used when
SΓ(r)r is integrated at the boundaries.

(a) (b) (c) (d) (e) (f)

(g)

Figure 2: Impact of rotation (a) |S1(r)| Alpha Jet, 120◦. (b) MiG-29, 280◦. (c) MiG-17, 215◦.

(d) An-12 CUB, 165◦. (e) Jastreb, 125◦. (f) Am-X, 40◦. (The original silhouette: the solid line,

the rotated version: the dashed line.) (g) Relative error and standard deviation of normalized

|M0,1,1|.

Observe that this procedure requires variation of the angular order along with the scale
index and the shifting parameter. Therefore, the number of features may be very large.
From the point of view of multiresolution analysis, such projections correspond to the
so-called “details” associated with the high frequency part of the object shape. Therefore,
such coefficients are usually sensitive to noise and not always appropriate.

Furthermore, the multiresolution pyramid is well-known. However, to the best knowledge
of the authors, it has not been applied to construct rotation moment invariants. There-
fore, our approach includes multiresolution analysis combined with FCM clustering, the
Mahalanobis distance measure and a selection procedure which eliminates the redundant
features.
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3 Accuracy of the wavelet moment invariants

As mentioned in the introduction, the spatial transformations induce some noise, even
when physical noise is negligible. We show that such noise may affect a pattern recogni-
tion system drastically and therefore requires special attention when applying the feature
selection. Sensitivity of the conventional moments has been mentioned repeatedly in the
literature and the rotation noise is not an exception. For instance, the error induced by
rotation noise for the seventh order Hu moment, applied to the images presented in this
section, is larger than 100%. Furthermore, we show that the wavelet moments (which are
thought of as less noise-sensitive features [19]) may be affected by the transformations as
well. Consider the B-spline mother wavelet in the Gaussian approximation form [20, 9, 26]
given by

ψ(r) =
4ak+1√

2π(k + 1)
σw cos(2πf0(2r − 1)) exp(− (2r − 1)2

2σ2
w(k + 1)

),

where k, a, f0 and σw are the parameters of the mother wavelet.

Also consider six silhouettes of aircraft [27] being rotated by 360◦ in increments of 5◦ by
means of standard graphics software, such as Photoshop (see Figure 1), using bilinear
interpolation. In order to eliminate accumulation of errors due to multiple re-sampling,
each rotation has been performed by rotating the original silhouette. Figure 2 shows a
typical impact of the rotations on S1(r) and |M0,1,1|. Let us evaluate the accuracy by
measuring the standard deviation of the normalized features [6].

Figure 2(b) shows that rotations may have a drastic impact on the wavelet invariants.
For instance, in our case the invariant |M0,1,1| varies from 0 to 15.71% with the maximum
produced by the Alpha Jet rotated by 120◦.

The accuracy analysis reveals a good performance of |M1,0,1| with a maximum error of
approximately 1.17% for the 25◦ rotated Alpha Jet. It should be noted that the extrema
of ψ1,0(r) and |S1(r)| are close, which results in an accurate and representative feature
(see Figure 3(b)).

The standard deviation of normalized |Mm,n,1|, Alpha-Jet
m n = 0 n = 1 n = 2 n = 3 n = 4

Sofw. Phys. Sofw Phys. Sofw. Phys. Sofw. Phys. Sofw. Phys.
0 0.006 0.0083 0.0063 0.0096 0.0069 0.0103 0.0084 0.0163 0.0132 0.0193
1 0.0043 0.0058 0.0068 0.0117 0.007 0.0131 0.0073 0.0127 0.0081 0.0141
2 0.0215 0.0339 0.0121 0.0207 0.0226 0.0493 0.0179 0.0341 0.033 0.0565
3 0.0423 0.0411 0.0705 0.0681 0.0424 0.0481 0.0358 0.0397 0.0569 0.063

Table 1: The standard deviation at Γ = 1. Light gray: the best for particular frequency; dark

gray: the best for all of the frequencies.

Consider Table 1. Clearly, some values of ψm,n produce poor results, since the rotation
noise has been magnified [18, 19]. Another reason for the poor results is that the infor-
mation has been “washed out” (for instance, when ψm,n is small at the peak of SΓ(r)).
Since the rotation may shift the centroid of the object, the spatial noise may appear at
low frequencies [18, 19]. Therefore, a large error is also induced by the transformation
noise appearing at the same frequencies with SΓ(r) [18, 19].
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Finally, we compare the rotations performed physically and by the software (see Table 1).
The physical rotation may produce larger errors due to illumination, additional random
noise, etc. However, in our case physically rotated objects display almost the same level
of inaccuracies.

Scaling produces considerable errors — in particular when combined with rotations. Con-
sider the wavelet moment invariants |M1,0,1| and |M1,2,1| applied to represent the scaled
and rotated Alpha Jet (see Figure 4). Note that |M1,0,1| is the most accurate feature for
the Alpha Jet and |M1,2,1| for the MiG-29.

(a)

(b)

Figure 3: (a) ψm,n(r) versus |S1(r)|. (b) Relative error of normalized features.

The maximum error in |Mw
1,0,1| is 2.34%, 2.96% and 4.39% of the rotated Alpha Jet scaled

20%, 40% and 60% respectively. The maximum error in |Mw
1,2,1| is 7.94%, 11.26% and

19.96%. The above error is significant and should be considered when selecting features
for pattern recognition. Here a w superscript denotes “wavelet.”



A filter bank for rotationally invariant image recognition 131

(a)

(b)

Figure 4: (a), (b) Relative error and standard deviation of normalized
∣∣Mw

1,0,1

∣∣ and
∣∣Mw

1,2,1

∣∣.
4 Filter bank moment invariants

In this section, we introduce new moment invariants based on the filter bank technique. In
the case of discrete orthogonal wavelets the low-resolution coefficients may be calculated
from higher resolution coefficients by a scheme called the filter blank. The QMF is a fast
algorithm first proposed by Mallat [12] and extended to the biorthogonal case by Unser
et al. [2, 23, 24]. The approximation and the detail wavelet moments are constructed as

Am,n,Γ =
∑
q

H2n−qAm+1,q,Γ

and Dm,n,Γ =
∑
q

G2n−qAm+1,q,Γ

respectively for m = L− 1, L− 2, . . . , 0, where L is the finest resolution level. Here H,G
are the so-called finite impulse response filters, AL,n,Γ = SΓ(rn)rn and rn = n 1

K for all
n = 1, 2, . . . ,K [2, 12, 23, 24]. It is not difficult to demonstrate that |Am,n,Γ| and |Dm,n,Γ|
are rotation invariants for any Γ.
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5 Selecting the Filter Bank Invariants

Selection of features [8] is a crucial step for any shape recognition system. In general, larger
feature sets do not necessarily provide better discrimination. The mutliresolution moment
invariants imply that for dissimilar objects the features should be taken mostly from the
approximation coefficients. However, for similar objects one should employ the details.
In order to find the best combination of the approximation and the detail coefficients,
we first examine the features individually and we discard those with a low discriminatory
capability. Further selection is done by analyzing combinations of the features. The entire
feature selection procedure is presented as follows:

1. Discard the noise-sensitive angular orders by considering the least square error given
by

Error(Γ) =

I∑
i=1

J∑
j=1

K−1∑
k=0

(∣∣∣SΓ(rk)i, T emplate
∣∣∣− ∣∣SΓ(rk)i,j

∣∣)2

I J K
,

where I is the number of classes, J the number of objects in each class and
SΓ(rk)i,T emplate is the circular Fourier-transform of the template associated with
class i. The resulting set Γ∗ = {Γ1,Γ2, . . . ,ΓL} is fed to the next step of the proce-
dure.

2. For each Γ ∈ Γ∗ implement the QMF scheme.

3. Reduce the dimension of the feature space by analyzing the features individually.
We eliminate the redundant features using ANOVA [13]. It is a powerful statistical
procedure which compares the class means by employing analysis of the variance.
We use a one-way ANOVA with a randomized complete block design to verify the
assumption µ1 6= µ2 6= . . . µi 6= . . . 6= µI , where µi is the mean-feature of class i.

4. Analyze combinations of the features. At this stage, the multiresolution analy-
sis is combined with the FCM technique [7, 17]. First of all, the features should
be normalized [6] (otherwise the FCM function may be larger for a better fea-
ture set). Then, we consider all possible combinations of the features at a scale
a; Fa = {Ma,Γ1 ,Ma,Γ2 , ...,Ma,ΓL

}. Next, we consider combinations of the features
selected from the scales a, b, c, d, e, . . . as follows:

Fab = {{MaMb}Γ1 , {MaMb}Γ2 , . . . , {MaMb}ΓL
},

Fabc = {{MaMbMc}Γ1 , {MaMbMc}Γ2 , . . . , {MaMbMc}ΓL
},

Fabcd = {{MaMbMcMd}Γ1 , {MaMbMcMd}Γ2 , . . . , {MaMbMcMd}ΓL
}, etc.

The discriminatory capability of a set is evaluated by minimizing the FCM-function. A
minimum of the function corresponds to a better set. As mentioned before, the filter bank
moment invariants are redundant. Therefore, the algorithm involves the Mahalanobis
distance measure [1]. The Mahalanobis distance makes it possible to eliminate redundant
features. It also provides better separability. Consider the scattergrams |A3,13,1|/|A3,14,1|
associated with two similar aircraft Alpha Jet and Am-X, and |A2,10,1|/|A2,11,1| associated
with the capital letters O and Q in Figures 5(a) and 6(b) respectively. The training classes
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form an elliptical shape. The circles representing the classes in terms of the Euclidean
distance are overlapping. However, the two ellipses representing the Mahalanobis distance
are separable. Moreover, even if the sets are separable in both metrics, the Mahalanobis
metric usually requires fewer FCM iterations (see Figures 6(a) and 6(b)).

(a) (b)

Figure 5: Scattergrams of Alpha Jet and Am-X and the characters O and Q corrupted by 0–2%

impulse nose. (a) Aircraft. (b) Characters.

(a) (b)

Figure 6: Convergence of the FCM-function, two rotated/scaled objects corrupted by 0–

2% impulse noise. (a) Aircraft, F = {|A3,13,1| , |A3,14,1|}. (b) Characters O and Q, F =
{|A2,10,1| , |A2,11,1|}.

Finally, once an appropriate feature set has been selected, the classification templates are
automatically found as the centroids of the FCM clusters.

6 Experimental Results

We evaluate performance of the proposed algorithm by means of two data sets. The first
data set consists of 37 500 noisy images [27] based on fifteen basic aircraft silhouettes:
Alpha Jet, Am-X, Jaguar, Hawk, An-12 Cub, An-24 Coke, An-32 Cline, C-130 Provider,
C-137 Hercules, G-222, MB-326, MB-339A, Mig-29, MiG-17 and Jastreb. Each silhouette
produces 1 600 training images and 900 testing images. Our second data set, based on the
online database NIST [15], consists of machine-printed characters, namely, 9 000 Roman
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capitals (bold, courier). We use 5 800 letters for training and 3 200 for testing. Both
data sets are degraded by an impulse noise varying from 1% to 8% and transformation
noise. We perform the experiments via the filter blank moment invariants obtained by
means of cubic B-splines. The orthogonal Daubechies wavelets of order 6, 4 and 2 and the
Coiflet wavelets have been tested as well. Although the orthogonal wavelets easily allow
reconstruction of the image, the B-splines always seem to perform slightly better. We also
analyzed the wavelet moment invariants introduced by Shen [20]. As mentioned before,
the Shen’s invariants obtained by projecting ψm,n(r) onto SΓ(r)r correspond to Dm,n,Γ.

We denote our proposed algorithm by QMF-FCM-M in the case of the Mahalanobis dis-
tance and by QMF-FCM-E in the case of the Euclidean distance. We use the notation
FCM to indicate our feature selection algorithm and the notation I if the features were
selected individually (see, for instance, [20]). For example, Shen-I-E, means “Shen’s in-
variants with individual selection in terms of the Euclidean distance.”

Classification rates
Algorithm Aircraft Upper case characters

silhouettes (NIST data base)

QMF-FCM-M 92.8% 94.0%
QMF-FCM-E 89.4% 90.9%
Shen-FCM-M 91.2% 92.6%
Shen-FCM-E 86.9% 89.0%
Shen-I-E 84.7% 88.4%
Zernike-I-E 82.8% 86.1%
Fourier Mellin-I-E 77.1% 80.3%

Table 2: Average classification rates.

Impulse noise ratio η % 0 ≤ η < 2% 2 ≤ η < 4% 4 ≤ η < 6% 6 ≤ η < 8%

QMF-FCM-M 98.7 93.9 86.2 67.3
Shen-FCM-M 98.1 92.0 82.7 61.9
Shen-I-E 96.4 86.2 73.3 53.8
Zernike-I-E 95.9 85.1 71.8 51.6
Fourier Mellin-I-E 90.7 78.7 59.5 43.7

Table 3: Aircraft images, impulse noise.

The comparison of an average classification rate of the proposed QMF-FCM-M versus the
most popular moment invariants is shown in Table 2. Table 2 includes degradation by
all types of noise, rotation, translation, scaling and random noise. Besides, in the case of
NIST, we consider an interesting effect of the boundary noise appearing after separation
of touching letters by means of dilation. Consider Tables 2 and 3. Shen-I-E applied
to the NIST symbols exhibits an 88.4% average recognition rate, whereas our method
achieves a 94% recognition rate. The table shows that every component of the algorithm
is almost equally important (namely, combining the QMF with the FCM shows a 1.5%
increase whereas the Mahalanobis distance increases the recognition rate further by 2%).
Differentiation by the intensity and the type of noise given in Tables 1–6 reveals that
our algorithm almost always outperforms Shen’s invariants and in particular when they
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are based on the individual feature selection and the Euclidean distance. The efficiency
of the algorithm compared to that of the preceding techniques, becomes apparent when
increasing the noise intensity. The most impressive result is an almost 28% absolute
increase (45% relative increase) with regard the Fourier-Mellin invariants in the case of
the aircraft silhouettes degraded by 6–8% impulse noise and rotation noise. Tables 5 and 6
exemplify the experiments with the NIST printed characters. Note that the rotation and
segmentation noise has a more significant impact on the characters, since the centroids
of the characters often lie outside the character body. Consequently, the centroids are
much more sensitive to the noise. However, for 4.5–6% noise and a combination of the
impulse and the transformation noise Shen’s invariants, the Zernike invariants and the
Fourier-Mellin invariants achieve 51.5%, 46.7% and 37.8% recognition rates respectively,
whereas the filter bank invariants achieves a 67.5% recognition rate.

Impulse noise ratio η % 0 ≤ η < 2% 2 ≤ η < 4% 4 ≤ η < 6% 6 ≤ η < 8%

QMF-FCM-M 96.3 91.6 82.3 62.6
Shen-FCM-M 95.4 90.3 78.4 55.0
Shen-I-E 93.1 82.7 65.6 45.3
Zernike-I-E 91.8 80.9 62.9 41.9
Fourier Mellin-I-E 87.3 71.9 47.1 34.5

Table 4: Aircraft images, impulse noise combined with rotation and scaling.

Impulse noise ratio η % 0 ≤ η < 1.5% 1.5 ≤ η < 3% 3 ≤ η < 4.5% 4.5 ≤ η < 6%

QMF-FCM-M 99.7 94.3 88.3 72.9
Shen-FCM-M 99.2 92.4 85.6 68.8
Shen-I-E 97.7 89.6 80.8 61.4
Zernike-I-E 96.9 88.3 78.4 58.6
Fourier Mellin-I-E 94.8 82.1 70.1 49.8

Table 5: The NIST characters, impulse noise and segmentation noise.

Impulse noise ratio η % 0 ≤ η < 1.5% 1.5 ≤ η < 3% 3 ≤ η < 4.5% 4.5 ≤ η < 6%

QMF-FCM-M 97.3 93.6 85.3 67.5
Shen- FCM-M 96.6 91.2 81.9 60.1
Shen- I-E 94.7 86.1 72.8 51.5
Zernike -I– E 92.6 83.9 68.3 46.7
Fourier Mellin- I –E 89.3 77.4 61.2 37.8

Table 6: The NIST characters, impulse noise and transformation noise.

7 Conclusions

The proposed filter bank invariants extend the idea of applying wavelets for rotation
invariant pattern recognition. Our approach based on the analysis of the high and the low
frequency filter bank coefficients, combined with elimination of the redundant features,
always seems to lead to a tangible improvement in the recognition rate when compared
to those of conventional methods. For instance, we obtain an increase of approximately



136 S Rodtook, SS Makhanov & EJ Vanderperre

3% for low level noise, 8% for the average level noise and 15% for high level noise, on
average. A large number of testing images and the variety of the sources of noise supports
the expectation that our proposed technique will also perform better than existing ones
for other objects.
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