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Abstract

In this paper, we develop two novel pricing methods for solving an integer program. We
demonstrate the methods by solving an integrated commercial fishery planning model (IFPM).
In this problem, a fishery manager must schedule fishing trawlers (determine when and where
the trawlers should go fishing, and when the trawlers should return the caught fish to the
factory). The manager must then decide how to process the fish into products at the factory.
The objective is to maximise profit. The problem may be modelled as a single integer pro-
gram, with both the trawler scheduling and production planning parts integrated. Inventory
constraints connect the two parts of the problem. Production planning alone would result
in an easy linear program, but due to the trawler scheduling aspect, the IFPM is a hard
integer program in the sense that traditional solution methods result in computation times
that are far too long to be practical. The two pricing methods developed in this paper are a
decomposition–based O’Neill pricing method and a reduced cost–based pricing method. We
demonstrate the methods by means of numerical examples for different planning horizons,
corresponding to differently sized problems.

Key words: Decomposition, pricing, reduced cost, fishing trawler scheduling.

1 Introduction

In this paper we present recent research on the solution of an integer program for an inte-
grated commercial fishery’s activities. Two loosely-connected problems arise in a modern
commercial fishery. The first is to schedule trawlers for fishing, including deciding where
and when those trawlers should work, and, crucially, when they should return to land the
fish. The landed fish generally becomes inventory, which is raw material for a processing
plant. The processing plant cleans, processes, and packages the fish for the market. The
second problem is to schedule the processing of different types of products.

Based on real data for a commercial fishery in New Zealand, we previously developed
a model (Hasan and Raffensperger, 2006) to solve this problem: the integrated fishery
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planning model (IFPM). The IFPM is designed to co-ordinate trawler scheduling and
processing. The model can theoretically be updated and solved periodically to aid in a
manager’s decision making. Unfortunately, for realistic planning horizons of 20 periods
or more, computational times involved in solving the IFPM are quite long, even with
methods such as Dantzig-Wolfe decomposition and subgradient optimisation. We have
since developed two novel column generation algorithms to solve the IFPM. These al-
gorithms show promise and are based on the decomposition-based pricing algorithm of
Mamer and McBride (2000), combined with the integer variable pricing method of O’Neill
et al. (2005).

1.1 The fishery planning literature

Wide-ranging research has been reported on fisheries. Many papers describe biological
models, but only a few consider production planning. Mikalsen and Vassdal (1981) devel-
oped a multi-period linear programming (LP) model for one month production planning
so as to smooth the seasonal fluctuations of fish supply. Their model is market-driven and
incorporates the acquisition of raw material purchased (rather than acquired with their
own fishing fleet).

Jensson (1988) developed a product mix LP model to maximize profit of an Icelandic
fish processing firm over a five period planning horizon. He addressed both production
planning and labour allocation for that processing firm, but did not consider any fleet-
specific issues or quota sizes.

Gunn et al. (1991) developed a model for calculating the total profit of a Canadian com-
pany with respect to integrated fishing and processing. Their model includes a fleet of
trawlers, a number of processing plants and market requirements. However, their model
ignores the trawler scheduling and labour allocation in the processing firm. Indeed, none
of these papers report models that attempt to integrate both trawler scheduling and pro-
duction.

1.2 The integer programming literature

The literature on integer programming is extensive. We describe only a few papers here
that have informed our work.

Martin et al. (1985) presented a reduced cost-based branch-and-bound method for solving
mixed integer linear programs (MILPs). The authors formulate two candidate problems
on the basis of 0-1 integer variables and then optimize both of the candidate problems in
order to obtain the MILP solution.

Mamer and McBride (2000) developed a decomposition-based pricing (DBP) procedure
for linear programs (LPs). Their algorithm works by solving subproblems just as the
Dantzig-Wolfe algorithm uses subproblems. However, the DBP master problem exhibits
the same form and structure as the original model, but with far fewer variables. Variables
that are positive in the subproblem are brought directly into the master problem; all
other variables are omitted from the master problem. Our work in this paper builds
substantially on the ideas of Mamer and McBride (2000). A DBP approach has also
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been adopted by De Carvalho (2006) for cutting stock, and by Raffensperger and Schrage
(2007) for scheduling training in a tank battalion. We have also previously adopted a DBP
approach with respect to an IFPM in Hasan and Raffensperger (2007). In this paper, we
describe two improved DBP methods.

The first method we call decomposition-based O’Neill pricing (DBONP), because it is
based on the work of O’Neill et al. (2005). These authors developed a technique for
constructing a set of linear prices by solving a MILP and an associated LP, based on a
theorem of Gomory and Baumol (1960). They first solve a MILP, set the integer variables
to their optimal values, and then remove the integrality constraints to convert the MILP
to an LP. They use the dual prices obtained from this LP to form an efficient contract
(the dual of the IFPM ) in the context of an electricity market.

The second method is a reduced cost-based pricing (RCBP) method. Unlike Martin et al.
(1985), we set constraints for both 0-1 integer variables (O’Neill et al., 2005) in the same
candidate problem, which is the restricted master problem in the proposed RCBP method.
In this method, we do not solve a subproblem at all. Instead, we choose new variables
for the restricted master problem based on a reduced cost calculation, and we bring a set
of variables into the restricted master problem at each iteration. We show that both of
these methods produce better solutions than those reported in our earlier work (Hasan
and Raffensperger, 2007).

The remainder of this paper is organized as follows. In §2, we briefly present the IFPM.
In §3, we review O’Neill’s pricing method and describe the mathematical formulation
of the proposed DBONP method. We also present the DBONP algorithm along with
numerical examples. In §4, we present the mathematical formulation of the proposed
RCBP method, and also present the RCBP algorithm along with numerical examples.
The solutions obtained by the DBONP and RCBP methods are compared with that of
DBP in §5. Some conclusions follow in §6.

2 The fishery model in matrix notation

In this section we briefly describe our IFPM. The details of the model can be found in
Hasan and Raffensperger (2006). We have omitted details of the model in order to focus
on the algorithm.

Parameters
Let Vt,v be the profit earned by trawler v during period t and let It denote the cost per kg
of fish landed during period t. Furthermore, suppose Pi,j,l is the price per kg of fish type i
converted into product j of quality l and let A(0)

a,i,t,v denote the amount of raw fish i that

will be landed during period t by trawler v from area a. Also, let A(1)
i,l,t,v denote the mass

transformation for raw fish type i from trawler v of quality l during period t, and let A(2)
i,j,l,t

denote the mass transformation for raw fish type i into finished product type j of quality l
during period t. Finally, let d(1)

a,t,v denote the mass balance coefficients on trawler v during

period t in area a and let d(2)
i,j,l,t denote the mass transformation for raw fish type i into

finished product type j of quality l during period t.
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Decision variables
Let wp,a,u,t,v be a binary decision variable taking on the value of 1 if a trawler v will go
fishing during period u in area a from factory p and lands its catch during period t, or
0 otherwise. Furthermore, let the variable fi,l,t denote the current quantity of fish type i
of quality l during period t and let the variable xi,j,l,t denote the amount of fish type i
converted into product j of quality l during period t.

The objective in the IFPM is to

maximize
∑
t,v

Vt,v

∑
p,a,u

(u− t)wp,a,u,t,v −
∑

t

It
∑
i,l

fi,l,t +
∑
i,j,l

Pi,j,l

∑
t

xi,j,l,t,

subject to

∑
p,u,v

A
(0)
a,i,t,vwp,a,u,t,v = fi,l,t for all i, l, t, (1)

∑
a,p,u,v

d
(1)
a,t,vwp,a,u,t,v = b

(1)
t for all t, (2)

∑
j

d
(2)
i,j,l,txi,j,l,t = b

(2)
i,l,t for all i, l, t, (3)

∑
v

A
(1)
i,l,t,vfi,l,t +

∑
j

A
(2)
i,j,l,txi,j,l,t = b

(0)
i,l,t for all i, l, t, (4)

wp,a,u,t,v ∈ {0, 1}, for all p, a, u, t, v (5)
fi,l,t, xi,j,l,t ≥ 0 for all i, j, l, t, (6)

where b(0)
i,l,t denotes the restriction on the quantity of fish type i of quality l during period t,

b
(1)
t denotes the restriction on the trawler scheduling constraint and b

(2)
i,j,t denotes the

restriction on the quantity of fish type i converted into product j during period t.

Constraint set (1) represents the relationship of the trawler scheduling variables w to
landed fish f , as a mass balance in movement of fish from trawlers to the factory, while
(2) expresses constraints involving only trawler scheduling, indicating, for example, that
a trawler may be in only one place at a time. Constraint set (3) expresses fish processing
restrictions, modelling the flow of fish through the factory as raw fish is converted into
various products. Constraint set (4) constitutes mass balance constraints, representing
the flow of raw landed fish inventory into the fish processing factory. When the integer
constraints (5) are relaxed, the model is the usual linear programming relaxation.

The IFPM consists of trawler scheduling and processing, connected by inventory con-
straints, either (1) or (4). Using Lagrangean relaxation, one can relax either of these
side constraints, in which case the model decomposes into an integer program for trawler
scheduling, and a linear program for the fish processing. These separate problems are
easier to solve, and the sum of their objective values represents an upper bound (since
it is a maximization problem) on the optimal objective function value of the IFPM. For



Two pricing methods for solving an integrated commercial fishery planning model 119

example, if we relax (4), we obtain the two subproblems,

maximize
∑
i,j,l

Pi,j,l

∑
t

xi,j,l,t −
∑
i,l,t

θi,l,t

∑
j

A
(2)
i,j,l,txi,j,l,t

subject to
∑

j

d
(2)
i,j,l,txi,j,l,t = b

(2)
i,l,t for all i, l, t,

xi,j,l,t ≥ 0, for all i, j, l, t,


P1(θ) (7)

and

maximize
∑
t,v

Vt,v

∑
p,a,u

(u− t)wp,a,u,t,v −
∑

t

It
∑
i,l

fi,l,t

−
∑
i,l,t

θi,l,tfi,l,t

∑
v

A
(1)
i,l,t,v

subject to
∑
p,u

A
(0)
a,i,t,vwp,a,u,t,v = fi,l,t for all i, l, t,

∑
a,p,u,v

d
(1)
a,t,vwp,a,u,t,v = b

(1)
t for all t,

wp,a,u,t,v ∈ {0, 1} for all p, a, u, t, v



P2(θ), (8)

where θ = [θi,l,t] is the matrix of dual prices on (4) assuming that the IFPM is solved as
an LP, not as an integer program (IP). It is unfortunate that P2(θ) cannot be directed by
some kind of standard price information on the integer variable w = [wp,a,u,t,v] . In fact,
the DBONP method actually finds such price information, and uses it.

Following the decomposition-based pricing method for this problem (Hasan and Raf-
fensperger, 2007), the master problem follows from the original problem, assuming its
structure and including all its constraints. However, initially only enough variables are
included to allow a feasible solution. In the IFPM, the zero matrix is feasible, as the
fishery manager can simply choose to do nothing.

At iteration k, the master problem Mk is solved as a linear program, in order to find the
necessary dual prices θ. These prices are passed to the subproblems P1(θ) and P2(θ),
which are then solved. Positive variables from the subproblems are then passed to the
master problem, increasing the total number of variables that it contains. The set of
variables in the master problem is tracked by the indices of the positive variables found
thus far, in an index set Ik. Thus, a variable with its index in Ik has been positive in a
subproblem in some previous iteration, and will appear in the master problem. Variables
that have always been zero in every subproblem do not have their index in Ik, and thus
do not appear in the master problem. In the master problem Mk the objective is to

maximize
∑
t,v

Vt,v

∑
p,a,u

(u− t)wp,a,u,t,v −
∑

t

It
∑
i,l

fi,l,t +
∑
i,j,l

Pi,j,l

∑
t

xi,j,l,t,
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subject to
∑
p,u,v

A
(0)
a,i,t,vwp,a,u,t,v = fi,l,t for all i, l, t,

∑
a,p,u,v

d
(1)
a,t,vwp,a,u,t,v = b

(1)
t for all t,

∑
j

d
(2)
i,j,l,txi,j,l,t = b

(2)
i,l,t for all i, l, t,

∑
v

A
(1)
i,l,t,vfi,l,t +

∑
j

A
(2)
i,j,l,txi,j,l,t = b

(0)
i,l,t for all i, l, t,

wp,a,u,t,v, fi,l,t, xi,j,l,t ≥ 0, for all p, a, u, t, v, i, l, t, j

fi,l,t, wp,a,u,t,v, xi,j,l,t ∈ Ik for all p, a, u, t, v, i, l, t, j,

where Ik is the index set of positive variables found in the subproblems, and where fi,l,t,
wp,a,u,t,v, xi,j,l,t = 0 for fi,l,t, wp,a,u,t,v, xi,j,l,t /∈ Ik. The index set Ik increases in size with
each iteration because each iteration of the subproblems adds new positive variables.

While this decomposition approach is already better than a direct integer programming
approach using CPlex, for example, we wished to improve the method further.

3 Decomposition-based O’Neill pricing (DBONP)

In this section, we first discuss the notion of O’Neill pricing in §3.1. In §3.2, we then
present the mathematical formulation of the DBONP and present the DBONP algorithm.
This is followed by a presentation of numerical examples over different planning horizons
§3.3.

3.1 O’Neill’s pricing method

O’Neill et al. (2005) developed a technique for constructing a set of linear prices from
solving an MILP and an associated LP, based on the following theorem of Gomory and
Baumol (1960).

Theorem 1 An MILP with m continuous variables and n integer variables that has a
feasible and bounded optimal solution in (Rm × Zn) can be converted to an LP with at
most (m+ n) continuous variables and at most n additional linear constraints. �

These authors were not interested in a solution as such, nor in the associated computation
time, but in finding efficient prices for indivisible objects. To find these prices, they first
solved an MILP to optimality. They then added new constraints that fix the integer
variables to their optimal values, and removed the integrality constraints to convert the
MILP to an LP. Solution of this problem gave dual prices to the new constraints. They
showed that the dual variables in the LP have a traditional interpretation as prices. The
dual variables explicitly price integral activities, and clear the market in the presence of
nonconvexities. They used these dual prices to form an efficient contract in the context of
a market for electricity.
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3.2 Mathematical formulation for DBONP

To apply the method of O’Neill et al. (2005) in the context of DBP, our method

1. finds an optimal solution w = [wp,a,u,t,v] to the restricted master problem as an
integer program;

2. fixes the integer variables to their optimal values w∗ by means of new constraints of
the form w = w∗ and solves the restricted master problem as an LP, thus obtaining
dual price information θ1 on the constraints in (9);

3. then uses the resulting dual prices θ1 to better inform the trawler scheduling sub-
problem as to which variables should be selected. The trawler subproblem can use
this new information through Lagrangean relaxation of the new constraints, that is
by solving the following problem, called P (θ,θ1), in which the objective is to

maximize
∑
t,v

Vt,v

∑
p,a,u

(u− t)wp,a,u,t,v −
∑

t

∑
i,l

fi,l,t

−
∑
i,l,t

θi,l,t

∑
v

A
(1)
i,l,t,v

−
∑
i,l,t

1θi,l,t(u− t)
∑
p,a,u

(wp,a,u,t,v − w∗p,a,u,t,v)

subject to
∑
p,u

A
(0)
a,i,t,vwp,a,u,t,v = fi,l,t for all i, l, t,

∑
a,p,u,v

d
(1)
a,t,vwp,a,u,t,v ≤ 1bt for all t,

wp,a,u,t,v ∈ {0, 1}, for all p, a, u, t, v
fi,l,t ≥ 0, for all i, l, t.



P (θ,θ1)

4. Positive variables from both subproblems are brought into the restricted master
problem. Two stopping criteria are enforced, namely when no new positive variables
are produced, or when the objective values of the subproblems and master problem
are equal. By explicitly pricing the integer variables, and using that price information
in the subproblem, we bring better variables into the restricted master problem, and
return to step 1.

Note, however, that this approach requires solving the restricted master problem as an
integer program at every iteration. This is computationally expensive. We therefore
employ ordinary DBP, solving the restricted master problem and subproblems as LPs,
until we find an LP optimum. We then switch to the formal DBONP method, and continue
iterating. This approach creates two separate loops. The first loop does not utilize the
constraints (9), whereas the second loop does.

Loop 1. Relax the inventory balance constraint (4), and then apply the DBP method, to
obtain the final restricted master problem as an LP.

Step 0: Initialize. Set iteration number k ← 1 and the initial prices θ1 ← θ.
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Step 1: Solve subproblems P1(θ) and P2(θ), treating P2(θ) as an IP. For wi > 0
put i in Ik, where Ik = {i : wi > 0 in P1(θ), and P2(θ) for any iteration
1, 2, . . . , k}.

Step 2: Solve Mk as an LP to obtain dual prices θk and pass them to the subprob-
lems.

Step 3: If v (P1(θ) + P2(θ)) = v
(
Mk+1

)
, then go to Loop 2. Else k ← k + 1 and

go to step 1. Here v (P1(θ) + P2(θ)) represents the objective function value of
the subproblems and v

(
Mk+1

)
represents the objective function value of the

restricted master problem.

Loop 2. Solve the current restricted master problem as an IP, and add constraints which
fix the integer variables to their optimal values. Solve the master problem as an LP
and obtain the dual prices on the inventory balance constraint (4), and the equations
associated with the integer variables. We have the dual prices θk as before, but now
we also have new dual prices θ1 from the new constraints.

Step 4: Solve the restricted master problem as an IP.

Step 5: For integer variables, fix wi = wi∗.

Step 6 : Solve the master problem as an LP with wi fixed. Obtain dual prices θk

and θ1, and pass them to the subproblems.

Step 7: Solve the subproblems P1(θ) and P2(θ,θ1) with the dual prices obtained
from step 6. If no new variables enter into the restricted master problem, then
stop. Else go back to step 4.

We present the logic of the DBONP algorithm in the form of a flowchart Figure 1.

3.3 Numerical results

We compare the solutions of the DBONP approach with those obtained from the original
IFPM, LP relaxation problem, and DBP algorithm. The results are presented in Table 1.
We observe no duality gap for the 5, 10 and 25-period models, thus confirming optimality.
However, the 15, 20, and 30-period models exhibit small gaps. For example, a 30-period
model exhibits a 0.02% duality gap. The average duality gap is only 0.04% computed
over the six different planning horizon models. These gaps may be considered negligible.
Notice that for the results described above we started with dual prices of θ = 0. Instead,
we also attempted creating the initial dual prices naively. Results are reported in Table 2.
Solutions obtained from DBONP are close to the true optima. The average duality gap is
only 0.06%, but sometimes worse than in Table 1.

Tables 1 and 2 show that the solutions obtained via the DBONP approach are either equal
to or very close to the optimal solutions (15-period, 20-period and 30-period models). To
see why a small difference in profit remains, we compared the true optimal solution with
that obtained by the DBONP algorithm for a 30-period planning horizon problem. The
total number of trawler trips in the DBONP solution coincides with that in the exact
solution, but the schedule is slightly different, as shown in Figures 2 and 3. As a result,
there is a slight change in the processing and holding costs.
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Solve
trawler subproblem P1(θ)

processing subproblem P2(θ).

Is wi ≥ 0,

for i /∈ Ik?

Add index i to Ik,

Solve master LP over Ik.

Solve master IP.

Fix integer variables wi = wi∗

Solve LP master

Solve P1(θ), P2(θ)

v(P1(θ), P2(θ))
= v(M) ?

Stop

yes

yes

no

Dual price θ

no

Figure 1: Flowchart of the DBONP procedure.

1 4 7 10 14 18 22 26 30

Figure 2: Trawler 1 schedule in the optimal solution. Here the edges represent periods and

vertices represent the required number of periods for a trip.

1 4 7 11 15 19 23 26 30

Figure 3: Trawler 1 schedule in the DBONP solution. Here the normal edges represent the

trawler trips which coincide with the schedule obtained by the exact (IP) solution and the dashed

edges represent the trips which are slightly different from the schedule obtained by the exact (IP)

solution.

Figures 4, 5, and 6 show the solution times, duality gap, and number of iterations, for
different planning horizon models respectively, when solved by the DBP and DBONP
algorithms. The DBONP approach requires a larger number of iterations and more com-
putation time, but produces better solutions than the DBP approach.

In this section we employed both DBP and O’Neill pricing to develop the DBONP tech-
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Length of
planning Number of Number of Solution DBP DBONP Duality
Horizon variables iterations time (s) solution solution gap

5 489 29 217 $522 764 $522 764 0.00%
10 1 284 27 216 $1 065 540 $1 065 775 0.00%
15 2 229 33 345 $1 579 309 $1 579 570 0.15%
20 3 324 48 912 $1 874 097 $1 878 580 0.08%
25 6 440 45 796 $2 120 282 $2 121 887 0.00%
30 6 938 44 3 562 $2 293 803 $2 300 230 0.02%

Table 1: Comparison of the solutions obtained by the DBP and DBONP methods. All com-

putations performed on a Pentium III processor with a clock speed of 665 MHz and 384 MB

RAM.

Length of
planning Number of Number of Solution DBP DBONP Duality
Horizon variables iterations time(s) solution solution gap

5 1 264 29 208 $522 764 $522 764 0.00%
10 2 601 30 266 $1 065 540 $1 065 540 0.02%
15 4 087 36 387 $1 579 309 $1 580 670 0.08%
20 4 926 50 1045 $1 874 097 $1 873 950 0.30%
25 6 259 43 710 $2 120 282 $2 121 887 0.00%
30 8 277 50 3129 $2 293 803 $2 300 460 0.01%

Table 2: Comparison of the number of iterations, computation times and solutions obtained by

the DBP and DBONP methods. All computations performed on a Pentium III processor with a

clock speed of 665 MHz and 384 MB RAM.

nique. We found that the DBONP algorithm requires slightly longer computation times,
but produces better solutions than our earlier DBP procedure. To improve further on the
computation times, we also developed a reduced cost–based pricing method.

4 The Reduced cost–based pricing for IFPM

One reason why the DBONP algorithm took a relatively long computation time was due
to solution of the trawler scheduling subproblem as an IP. We therefore attempted to
eliminate this step. Instead, we use the O’Neill price information to find the reduced
cost for each integer variable. Under this approach we are moving away from the DBP
philosophy for the trawler scheduling aspect of the problem, but we continue to use DBP
for the fish processing subproblem. So the processing subproblem, and the restricted
master problem, are the same as with the DBP approach. Instead of employing the
trawler scheduling subproblem, we merely calculate the reduced cost of the variables of
that subproblem, which is extremely fast.

4.1 The Reduced cost of a variable

The reduced cost of a variable wj with associated objective function coefficient cj is the
net change in the objective function when generating one unit of wj , and is defined as



Two pricing methods for solving an integrated commercial fishery planning model 125

 

Dated: 15
th
 March 2008. 

To  

The Editor 

ORiON. 

 

Dear Sir, 

I have made necessary changes according to your suggestions as follows: 

1) 
(a) All the figures should have the same font size (for the labels).=== done (attached) 
(b) Y-axis label should be parallel to the y-axis and not parallel to the x-axis as it is now. (See the 
attached file t11.pdf for an example of what we want.) ==== done(attached) 
 
(c) In Figures 4 and 10 the abbreviation for seconds should be "s" i.e.the label should read "Time 
(s)" ==== done(attached) 
 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30

Periods

T
im

e 
(s
)

DBONP

DBP

 

Figure 4: Solution times for different planning horizons by DBP and DBONP. 
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Figure 5: % Duality gap of DBP and DBONP.

c̄j = cj − zj , where zj denotes cBVB
−1aj . Here cBV are the cost coefficients of the basic

variables, B−1 is the inverse of the basis matrix, and aj is the corresponding column of the
basic variables. The reduced cost gives the marginal value of a variable on the objective
function related to the current basic solution. For a maximization problem, the variable
with largest positive reduced cost will be the incoming variable. Following the notation
in AMPL (Fourer et al., 1993), we denote the reduced cost of variable w as w.rc. Denote
λ1 and λ2 as the dual prices on (1) and (2) respectively, with a0 and d1 as the relevant
columns of A0 and D1 respectively. Then

w.rc = c1 − λ1a0 − λ2d1 − θ′ (9)

This reduced cost calculation has an explicit term for the integrality constraint. In the
next section, we show how to use this reduced cost calculation.
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Figure 5: % solution gap of DBP and DBONP. 
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4.2 The RCBP algorithm

The RCBP algorithm proceeds as follows:

Step 0. Set k ← 1.

Step 1. Solve Mk as an IP.

Step 2. Add constraints of the form (9) for the integer variables. Solve the restricted
master problem as an LP. Obtain dual prices for the trawler scheduling constraints
(1), (2), and (9).

Step 3. Calculate w.rc in (11). Scan the reduced costs for all integer variables. Include
integer variables with positive reduced cost to the restricted master problem. For
the continuous variables from the fish processing part of the problem, there are two
options:

Option 1: All continuous variables appear in every restricted master problem.
Option 2: Continuous variables with positive reduced cost are added to the re-

stricted master problem at each iteration.

Step 4. For the processing subproblem, solve the processing LP subproblem, and add all
positive variables to the restricted master problem as in the DBP approach.

Step 5. If no new variable enters the restricted master problem, then stop. Else k ← k+1
and go back to step 1.

We present the logic of the RCBP algorithm in the form of a flowchart in Figure 7.

4.3 Numerical results

We solved IFPM with different planning horizon models using each option in Step 3.
Option 2 takes fewer iterations and less time to solve the fishery model than does Option
1. Results are reported in Table 3.
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Calculate reduced cost for
variables in P1(θ)

Solve P2(θ)

P1(θ) : wi.rc > 0,

for i /∈ Ik?
P2(θ) : wi ≥ 0,

for i /∈ Ik?

Fix integer variales,

wi = wi∗ .
Solve LP master.

Stop

yes

Dual price θ
no

Figure 7: Flowchart of the RCBP procedure.

Planning Description of Number of Solution RCBP optimal Duality
Horizon entering variables iterations time (sec.) value gap

5 Option 1 5 39 $522 764 0%

Option 2 3 5 $522 764 0%

10 Option 1 10 142 $1 065 538 0.02%

Option 2 5 15 $1 065 538 0.02%

15 Option 1 11 113 $1 582 006 0%

Option 2 5 53 $1 582 008 0%

20 Option 1 7 109 $1 877 275 0.15%

Option 2 4 71 $1 879 928 0.01%

25 Option 1 6 74 $2 107 736 0.66%

Option 2 8 111 $2 121 887 0%

30 Option 1 8 262 $2 284 545 0.71%

Option 2 10 901 $2 299 648 0.05%

Table 3: Total profit, number of iterations, and solution times for the RCBP procedure.

5 Comparison of DBP, DBONP and RCBP solutions

In this section we compare the solutions obtained as well as the number of iterations and
solution times required by the DBP, DBONP and RCBP methods in Figures 8–10. The
RCBP algorithm is the best among the methods we developed. It requires the smallest
solution time to solve, requires fewer iterations and yields better solutions. We further
investigated these methods using three different problem instances under many different
catch rate scenarios. The numerical results reported here are consistent with those otained
for the other problem instances.
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Figure 8: % solution gap of DBP, DBONP, and RCBP. 
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Figure 9: Number of iterations to solve DBP, DBONP, and RCBP. 
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Figure 9: Number of iterations required to solve DBP, DBONP, and RCBP.

6 Conclusion

In this paper we developed two different column generation algorithms for faster solution
of an IFPM. The first is the DBONP method and the second is the RCBP method —
both these approaches are based on O’Neill pricing.

In the RCBP method, we solved only easy LP subproblems and avoided the need to solve
IP subproblems. Instead of solving the IP trawler scheduling subproblem, we calculated
the reduced cost for each variable, choosing variables with positive reduced cost to bring
into the restricted master problem.

Compared to the DBP method alone, we found that the DBONP algorithm took slightly
longer, but tended to produce better solutions. However, the RCBP method is both faster
and gives better solutions than the DBP approach, and in some cases than the DBONP
method.

Note that we never employed a specialized branch-and-bound technique, except for that
native to CPlex in the restricted master problem and subproblems. It therefore appears
that the combination of DBP and O’Neill pricing approaches may facilitate the develop-
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Figure 10: Solution times to solve DBP, DBONP, and RCBP. 
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ment of a range of new column generation algorithms that may prove effective for integer
programs.
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