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Abstract
Forty five years ago, an academic and practitioner from the north of England published a
method of tackling the vehicle routing problem (VRP) in an American journal. Little could
they have realised how the method they devised would still be a significant part of the research
agenda nearly half a century later. Adaptations of their method are significant components
in the analysis of the many different extensions to the problem that have been investigated.
This paper provides the historical background to the development of the savings method
and subsequent proposed variations to the basic savings formula and other improvements,
and then charts the role the savings method has played in the investigation of VRPs with
additional constraints. Some interesting examples of practical applications of the savings
method are reported. Finally, comments are made on the use of the savings method in
commercial routing packages.
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1 Introduction

The vehicle routing problem (VRP) can be stated very simply: a set of customers with
known location and demand are to be supplied from a depot by delivery vehicles of known
capacity subject to all customer demand being met, vehicle capacity not being exceeded
and total trip length not exceeding some specified level. If times of delivery at customers’
locations are also specified then it is often described as the “vehicle scheduling” problem.
The routes begin and end at the depot. A customer’s demand is satisfied by a single
vehicle in a single delivery. The constraints arise because (i) it is assumed all demand
must be met that day, although this is not always the case, (ii) there is a limit on how
much product the vehicle can carry, but it is very difficult to define this precisely, and (iii)
there may be a legal restriction on the length of the trip in hours. The VRP has been
shown to be NP-hard (Lenstra and Rinnooy Kan, 1981) and therefore it is unlikely that
a polynomial-time algorithm will be found for this problem. An amusing, but salutary,
story of why this may not be a sufficient description of the VRP, in the context of applying
the savings method, is provided by Woolsey (1991).
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The vehicle routing problem was first described by Dantzig and Ramser (1959), who
provided a solution method based, not surprisingly, since one of the authors became known
as the “father of linear programming” (Gass, 2003), on linear programming. Clarke and
Wright (1964) developed a heuristic solution method which became known as the savings
method and was the first algorithm that became widely used. It is also called the Clarke-
Wright algorithm, after the authors, but in the early years it was also described as the
Wright-Fletcher-Clarke algorithm (Unwin, 1968) or the Fletcher-Clarke-Wright algorithm
(Knight and Hofer, 1968; Yellow, 1970). Fletcher and Clarke had given a paper at the 1963
conference of the Operational Research Society held in Nottingham (Fletcher and Clarke,
1963). Surprisingly, their heuristic obtained a better result than Dantzig and Ramser
for the illustrative example that they had used (Clarke and Wright, 1964). Dantzig and
Ramser’s approach had been to consider linking pairs of customers into a route that
were close together, just considering the distance between them, but Clarke and Wright
extended this, as shall be seen, to take into account the reduction in distance obtained by
linking two customers into a route, rather than serving them on separate routes.

Clarke was employed by the Cooperative Wholesale Society in Manchester, England (as
was Fletcher), though by the time the paper was published he had moved to work at
ICI in Hyde. Wright was at the University of Manchester, then the Manchester College
of Science and Technology. It was he who had pointed out the paper by Dantzig and
Ramser (1959) to Clarke and Fletcher. Fletcher and Clarke (1963) give credit to Wright
for developing “almost the same method as the one described in this paper.” The original
implementations were in FORTRAN for an IBM 7090 and in AUTOMATH for a Honeywell
800 (Fletcher and Clarke, 1963). The specific example given in the paper by Clarke and
Wright (1964) involved 30 customers being served from a depot in Newton Heath, a suburb
of Manchester. For a single instance, the current practice resulted in 10 routes with a total
mileage of 1 766, which the savings method improved to 8 routes and 1 427 miles.

The Clarke-Wright paper concludes with the tantalising comment that “details of some
of these restrictions together with computational methods for a digital computer will be
found in a Case Study which will be published shortly.” There is no evidence of such a
paper being published.

2 The savings method

The savings method first calculates “savings” for every pair of customers. If there are
two customers i and j, respectively at a distance ci0 and c0j from the depot, and distant
cij from each other, then if the deliveries are made separately the total distance is, when
distances are symmetric, 2ci0 + 2c0j , but if the deliveries are combined into a route, then
the total distance is ci0+c0j +cij ; hence there is a “saving” in mileage of sij = ci0+c0j−cij .
The savings thus calculated are then ranked and customers are placed on routes into which
they can be linked (otherwise a new route is started) until a constraint (maximum route
length, vehicle capacity) is reached.

Consider the following example. Ten customers are to be served from a depot at location
(150, 250) by vehicles each with a capacity of 3.5 tonnes. The customer details are given
in Table 1.
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Customer Location Demand Customer Location Demand

1 (151, 264) 1.1 6 (146, 246) 0.4
2 (159, 261) 0.7 7 (161, 242) 0.8
3 (130, 254) 0.8 8 (142, 239) 0.1
4 (128, 252) 0.4 9 (163, 236) 0.5
5 (163, 247) 2.1 10 (148, 232) 0.6

Table 1: Customer details for illustrative example.

For convenience, the distances between the depot and customers, and between customers,
are calculated using Pythagoras’ Theorem and given in Table 2. The savings are then
calculated as indicated previously, and presented in Table 3. The assumption of the
method is that the higher the savings, the better it is to link those two customers on a
route. For instance, customers 3 and 4 are far from the depot and close together. It makes
sense to link those customers into one route. The savings are ranked and a decision is made
at each point as to whether the link can be placed into a route. Links can only be made
where no constraint is broken by the route created by making that link. Furthermore,
links can only be made if proper routes are formed, so when amending routes already
created, new links can only be added to the start or end of routes.

Locations 1 2 3 4 5 6 7 8 9 10

2 8.54
3 23.26 29.83
4 25.94 32.28 2.83
5 20.81 14.56 33.73 35.36
6 18.68 19.85 17.89 18.97 17.03
7 24.17 19.10 33.24 34.48 5.39 15.52
8 26.57 27.80 19.21 19.10 22.47 8.06 19.24
9 30.46 25.32 37.59 38.48 11.00 19.72 6.32 21.21
10 32.14 31.02 28.43 28.28 21.21 14.14 16.4 9.22 15.52

Depot 14.04 14.21 20.40 22.09 13.34 5.66 13.60 13.60 19.10 18.11

Table 2: Distance matrix for illustrative example.

Locations 1 2 3 4 5 6 7 8 9

2 19.70
3 11.18 4.77
4 10.19 4.02 39.66
5 6.57 12.99 0.01 0.08
6 1.02 0.02 8.17 8.77 1.97
7 3.48 8.71 0.76 1.21 21.56 3.74
8 1.07 0.01 14.79 16.59 4.47 11.20 7.97
9 2.68 8.00 1.92 2.71 21.45 5.04 26.38 11.49
10 0.01 1.30 10.09 11.92 10.24 9.63 15.31 22.49 21.69

Table 3: Savings matrix for illustrative example.

The approach adopted here is a “parallel” one. When a link cannot be made into an ex-
isting route a new route is immediately created with that link. In this illustrative example
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the only constraint being considered is the capacity of the vehicles. The application of the
method is presented in Table 4.

Saving Customers Decision

39.66 3 4 Total demand 2.2 — OK
26.38 7 9 Total demand 1.3 — OK
22.49 8 10 Total demand 0.7 — OK
21.69 9 10 Combines the routes with total demand 2.0 — OK
21.56 5 7 Breaks constraint
21.45 5 9 Breaks constraint
19.70 1 2 Total demand 1.8 — OK
16.59 4 8 Breaks constraint
15.31 7 10 Already in route
14.79 3 8 Breaks constraint
12.99 2 5 Breaks constraint
11.92 4 10 Breaks constraint
11.49 8 9 Already linked
11.20 6 8 Link customer 6 into second route, total demand 2.4 — OK

Table 4: Steps in the application of the savings method for the illustrative example.

The method would continue to proceed through all the savings, but here we can see
that customer 5 has to be on a separate route, because the demand would break the
capacity constraint on all the routes already established. The result is given in Table 5
and illustrated in Figure 1.

Route Load Distance

Depot – 4 – 3 – Depot 2.2 45.32
Depot – 7 – 9 – 10 – 8 – 6 – Depot 2.4 58.38
Depot – 1 – 2 – Depot 1.8 36.79
Depot – 5 – Depot 2.1 26.68

8.5 167.17

Table 5: The result from the application of the savings method for the illustrative example.

An alternative to the “parallel” approach is a “sequential” one, in which one route at a
time is developed. Results (Laporte and Semet, 2002) indicate that the parallel version
is clearly better than the sequential approach. However, as this is a heuristic there is no
guarantee that optimal, or even near optimal, results will be obtained. In this example,
for instance, it can be seen, by inspection, that the three routes given in Table 6 are better
as one fewer vehicle is required and the travel distance is reduced.

Route Load Distance

Depot – 3 – 4 – 8 – 10 – 6 – Depot 3.3 71.35
Depot – 5 – 7 – 9 – Depot 3.4 44.15
Depot – 1 – 2 – Depot 1.8 36.79

8.5 152.29

Table 6: Better results for the illustrative example.

This effect arises from a myopic feature of the algorithm: once a link is selected it cannot
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Figure 1: The four routes determined by the savings methods for the illustrative example.

be deselected. Holmes and Parker (1976) developed an algorithm designed to overcome
this weakness by allowing the temporary prohibition of links that yield high savings, but
which affect subsequent links. Whilst this gave encouraging results on their test problems,
it would appear that the approach was not attractive to subsequent researchers, perhaps
because of the computational implications.

It has been argued (Cordeau et al., 2002b) that four attributes of good VRP heuristics
are accuracy, speed, simplicity and flexibility. The savings method scores highly on speed
and simplicity, as it contains no parameters and is easy to code. Extensive testing of
algorithms show that it is not the most accurate, measured as a percentage of the optimal
value, and the authors assess it as being average on this attribute. Their assessment of its
flexibility, the ability to incorporate side constraints encountered in real-life applications,
is that it is the worst feature. Additional constraints can be incorporated, but a significant
deterioration in accuracy results.

3 Modifications to the savings method

Several authors proposed developments of the algorithm. These developments may be
categorised as adaptations to the savings formula, methods to speed up computation time
and improvements to the route merging process.

Gaskell (1967) was concerned about the tendency of the savings method to produce pe-
ripheral routes, particularly when the capacity constraint is important. He proposed that
the between-customer distance should be adjusted by a route shape parameter λ when
calculating savings, so that the savings formula becomes sij = ci0 + c0j − λcij . As the
parameter λ increases from zero, more emphasis is placed on the distance between the
customers rather than their distances to the depot. However, the question arises as to
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what value of λ should be used in a practical study. McDonald (1972) showed that with
any fixed λ, results which are far from optimum may be obtained, and that there was no
value of λ which was significantly better than any other value.

Paessens (1988) proposed a savings function of the form sij = ci0 + c0j −λcij +µ|c0i− cj0|
with the parameters λ and µ being in the ranges 0 < λ ≤ 3 and 0 ≤ µ ≤ 1, respectively. No
motivation is provided for this modification. Altinel and Öncan (2005) observed that the
merging of routes with equal or nearly equal savings occurs frequently, particularly towards
the end of the process. They therefore proposed a variation which takes into account the
customer demands when calculating savings. Their saving criterion becomes sij = ci0 +
c0j−λcij +µ|c0i−cj0|+ν(di +dj)/d where di is the demand of customer i, d is the average
customer demand, and ν is a new parameter. This requires determining the best values of
three parameters, and therefore, in their computational experiments, they evaluated nearly
9 000 different parameter vectors and obtained a considerable improvement compared to
the original savings method. Subsequently, Battara et al. (2008) developed a genetic
algorithm to determine the best sets of parameters, which gave results of similar quality
with much shorter computing times.

Yellow’s (1970) focus was on speeding up computation time, and he argued that the need
to determine a savings matrix, and then rank the savings, could be removed by searching
a list of the customers ordered by polar coordinates. Golden et al. (1977) were concerned
about the need to store distances when varying the route shape parameter, and proposed
that only certain linkages should be selected, rather than all the links between pairs of
customers. They also proposed a sorting procedure using a heap data structure.

Nelson et al. (1985) contributed to speeding up the algorithm by using special data struc-
tures to make the determination of the maximum saving value computationally more ef-
ficient. Six methods for implementing the savings method were presented and compared:
(1) a standard method using a shellsort; (2) using a heapsort; (3) and (4) alternative ways
of explicitly storing pointers to eliminate arcs that are associated with nodes that can no
longer be considered; (5) assuming a complete graph and storing and solving the same
problems as (3) and (4) with less storage and computational time; and (6) using a number
of sequentially created heaps to store the savings. In (6) savings above a threshold value
are stored in a heap and processed to completion using the data structures of (4). Subse-
quent heaps are created only for nodes that have not become interior to emerging routes.
The authors concluded that use of heap structures reduces computational time, as does
the use of pointers in methods (3) and (4). Method (5) realised a substantial reduction in
storage, without loss of computational efficiency, and (6) produced the shortest run times
in all cases and smallest storage requirements in most cases. However, they recommended
caution in applying (6) in practice because of the artificiality of the test problems.

Paessens (1988) proposed methods for storing distances in a 1-dimensional array and
determination of the maximum saving value. Three sorting strategies were considered,
but the results on a number of test problems indicate that it is difficult to recommend a
particular approach.

Other authors have sought to optimise the route merging process. Altinkemer and Gavish
(1991) replaced the merging procedure of the savings method by a matching procedure
which merges partial solutions at each step. At each iteration of the algorithm, multiple
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clusters of nodes are merged, the number of clusters being determined by solving a match-
ing problem, which maximises the savings obtained. Their algorithm is polynomial, with
a time complexity of O(n3), where n denotes the number of customers. Wark and Holt
(1994) proposed a method in which routes were also formed by growing clusters of cus-
tomers, but which considers two different ways of merging pairs of clusters. The process
starts with each customer in its own cluster, before new cluster sets are formed by one of
two matching rules, based on either the “cost” of the cluster, which is either a function of
the route associated with the cluster alone, or a function of load and timespan.

A recent development has been the application of Ant Systems to the VRP, using mod-
ifications of the savings method (Reimann et al., 2004). In such systems, a population
of artificial agents repeatedly constructs solutions to the problem using a joint popula-
tion memory and some heuristic information. After each member of the population has
constructed its next solution, the memory is updated with a bias towards better solutions
found. Gradually, the memory will build up, thus giving stronger influence to the solutions
built by the artificial agents, and the solutions will evolve towards the global optimum.
Reimann et al. (2004) modified the savings method to create a savings-based ant system
that not only improves “the efficiency, but also improves the effectiveness of the algorithm
leading to a fast and powerful problem solving tool for real world sized Vehicle Routing
Problems.”

4 The savings method applied to variations of the VRP

Many variations of the VRP have been addressed over the years. An obvious variation,
if indeed it is such, is one in which it is acknowledged that the road network is not
symmetric: the Asymmetric Vehicle Routing Problem. This applies particularly to urban
areas, where distances may be affected by one-way systems. Vigo (1996) addresses this
problem, together with the standard constraint of vehicle capacity, and acknowledges that
“the extension of the Clarke-Wright algorithm to asymmetric instances poses no difficulty.”
As the distance matrix is asymmetric, so also will be the savings matrix. Therefore, a link
(i, j) can be considered for joining two routes only if customer i (or j) is the last customer
of a developed route and vertex j (or i) is the first of the other, thus halving the joining
possibilities when compared to the symmetric situation.

Another obvious extension to the basic formulation of the VRP is to consider more than
one depot. This problem was investigated originally by Tillman and Cain (1972), following
an earlier paper (Tillman, 1969), and by Wren and Holliday (1972). The application of the
savings method in this situation is not straightforward. Consider determining the savings
achieved when linking two demand points which are close to one depot, so naturally
falling within that depot’s “area,” and some distance from a second depot. The savings
when calculated from the second depot will be greater than the savings from the first,
more obvious, depot from which to serve these customers. Wren and Holliday developed
an algorithm that did not depend on the savings method, because of concerns about
computer time required, but Tillman and Cain adapted the savings formula, by reducing
the savings when calculated from the further depot by the amount that the actual distance
exceeds the distance to the nearer depot. To achieve this, when there are m depots, a
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modified distance is calculated from each depot, k, to each customer, i, by the expression
cmod
ik = minm{cim} − (cik −minm{cim}) before the savings from each depot is determined

by the usual formula using the modified distances. The branch-and-bound algorithm
proposed by Tillman and Cain uses an upper bound based on the maximum saving.

An interesting variation of the VRP is presented by Basnet et al. (1999), who consider the
VRP with tree-like road networks that occur, for example, in rural road systems where
customers are located on rural roads leading off from a few highways which form the
“trunks” of a tree-like network. Of the heuristics developed, the one that provided the
best solutions was a modification of the savings method.

However, there are several well-established variations of the VRP, and it is these that will
be examined in the following sections, with a view to understanding how effectively the
savings method contributes to the search for good solutions.

4.1 With time windows

When the delivery at some, or all, customers must be within a pre-specified time window,
the VRP becomes the VRP with Time Windows (VRPTW). Soft time windows can be
broken, but at a cost, while hard time windows do not allow a vehicle to arrive outside
the window. Most published work has investigated the problem with hard time windows.
Surveys of this problem are provided by Desrochers et al. (1988), Cordeau et al. (2002a)
and Bräysy and Gendreau (2005a, 2005b). Solomon (1987) observes that the early work
on the VRPTW was grounded in practical studies.

The savings method has proved a useful building block in the construction of algorithms
for this problem. Two issues arise. It is necessary to take into account the timing of
a proposed link, and the route direction, which is not relevant in a symmetric distance
VRP without time window constraints. Two partial routes with end customers i and j,
respectively, have compatible orientations if i is either the first or last customer and j is
either the last or first customer, so that the links are from the last customer on one route
to the first customer on the other. In addition to taking into account capacity constraints,
the time window constraints must be checked at each step in the process. It may appear
to be advantageous, when determining savings, to join two customers close in distance but
far apart in time, giving a long period of waiting time, which is potentially costly as the
vehicle could be serving other customers rather than waiting.

Solomon’s (1987) initial approach to solving the VRPTW was to extend the savings
method, using the parallel savings method with the list processing and heapsort struc-
tures proposed by Golden et al. (1977). To overcome the waiting time problem, Solomon
suggests introducing a constraint to limit the waiting time. Homberger and Gehring (1999)
developed two “evolutionary” strategies for the VRPTW. Both methods require a starting
solution, which is generated by a stochastic approach based on the savings method.

A bicriteria heuristic based on the savings method, in which the original savings measure in
terms of travel time is combined with “loss of flexibility,” was developed by van Landeghem
(1988). Although deliveries outside the time window are not allowed, a vehicle can arrive
before the opening time and wait. After the delivery has been completed, it must leave
immediately for its next destination. Thus waiting at a customer site occurs only before
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the opening time of the next time window. An upper limit can be put on this waiting
time, as well as on the total waiting time over the complete route. The larger this upper
limit, the more flexibility will be present in the route building process, resulting in shorter
routes, but possibly taking more elapsed time.

Balakrishnan (1993) described three heuristics for the problem with soft time windows, in
which the time window constraints may be broken, but at a cost. One heuristic was based
on the savings method. By allowing limited time window violations for some customers, it
may be possible to obtain significant reductions in the number of vehicles required and/or
the total distance or time of all routes.

Atkinson (1994, 1998) published two papers on the VRPTW, motivated by some pre-
vious work concerning the delivery of school meals (Atkinson, 1990). The first (1994)
described a greedy heuristic for a class of combinatorial optimisation problems, which
was demonstrated by application to the VRPTW. A key component of the method was a
look-ahead capability, which gave a performance improvement that was at least as great
as, and in addition to, that which had been obtained through use of the savings method.
In the second paper (1998), a greedy randomised heuristic, based on the 1994 heuristic
and incorporating a version of the savings method, was developed.

Bräysy (2002) describes several local search heuristics for the VRPTW. One of the heuris-
tics, a so-called merge heuristic, draws its basic concepts from the savings method, in
which the original measure of savings is modified to allow for changes in waiting times.
Moreover, the customers in the combined route are reordered before evaluating the savings
incurred by uniting the two routes.

4.2 With backhauls

When the route of the vehicle contains deliveries (linehauls) and then collections (back-
hauls) the VRP becomes the VRP with Backhauls (VRPB). Surveys of this problem are
provided by Casco et al. (1988) and Toth and Vigo (2002). The VRPB has become increas-
ingly important because integrating backhauls with linehauls utilises the vehicle capacity
and reduces cost.

The first approaches to this problem extended the savings method. Deif and Bodin (1984)
first introduced a constraint to ensure that all deliveries are made before any collection.
Then, in a second extension, they delayed backhaul customers from early inclusion in
routes by introducing a penalty factor in the basic savings formula. They experimentally
demonstrated that the best results are obtained when the formation of mixed routes is
delayed. So the saving definition was amended to penalize the arcs connecting service
points of the two types of customers, thus delaying the union of linehaul and backhaul
routes. The backhaul saving is defined as Sij = sij − pM where i ∈ L; j ∈ B (L and B
are respectively the linehaul and backhaul customer subsets) or vice-versa, where M is an
estimate of the maximum saving sij , and p is a real penalty multiplier between 0 and 1, or
otherwise it is sij . The drawback of these two approaches was that the number of routes
could not be controlled in the final solution. Hence, for a given instance the solution found
may require more vehicles than the maximum available to serve all the customers.

Other extensions of the savings method for this problem have been presented by Golden
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et al. (1985) and Casco et al. (1988); the former treats the case in which the precedence
constraints between linehaul and backhaul vertices are not present.

Wassan (2007) presented an algorithm in which the initial solution is generated using two
construction schemes that had been developed by Osman and Wassan (2002), based on
savings, insertion and assignment approaches, using the savings concept, with some mod-
ifications to generate the required number of vehicle routes. The first of these schemes
was called the saving-insertion heuristic (SIH), which starts by building routes contain-
ing only customers receiving a delivery, before the backhauls are then inserted into the
generated routes according to a best-cost insertion criterion subject to the customer and
vehicle capacity constraints. The second scheme, called the saving-assignment heuristic
(SAH) starts by generating feasible vehicle routes for both sets of delivery and backhaul
customers separately, by using the SIH procedure, followed by an improvement process,
before both routes are then merged.

4.3 With pickups

The VRPB requires that the delivery (linehaul) and pickup (backhaul) customers are
different, but demands for packaging and used product returns from customer locations
have increased substantially due to environmental and government regulations, so that a
customer may have both delivery and pickup demands. This gives rise to vehicle rout-
ing problems with simultaneous pickups and deliveries (VRPPD). An assumption here is
that a customer would prefer to have a single stop rather than multiple stops of a vehicle
for convenience, and that is likely to be desirable from the perspective of the transport
company, even though relaxing the constraint might improve the solution to the problem.
A survey of the VRPPD was conducted by Desaulniers et al. (2002). If people are be-
ing transported rather than goods, then this is the so-called dial-a-ride problem, which
motivated the early work on VRPPD.

Gronalt et al. (2003) address a version of this problem, using heuristics based on the
savings method. In their problem, customers place orders requiring shipments between
two locations with the transportation company. The transportation company serves these
orders from a number of distribution centres. So goods are shipped between the pickup
location of an order and the closest distribution centre, between distribution centres,
and between a distribution centre and the delivery location of an order. Loads between
distribution centres and pickup or delivery locations are generally less-than-truckload,
but movements between different distribution centres are concerned with full truckloads,
because of load consolidation. Furthermore, within the planning horizon each vehicle can
be assigned more than one tour.

The authors present four algorithms. The first is a straightforward adaptation of the
savings method, which cannot be used in its basic form because there are multiple depot
pickups and deliveries. So an algorithm is developed, in which savings are calculated
between orders, rather than between locations, because two locations are associated with
each order. The second algorithm is called the opportunity savings algorithm, which,
together with the third algorithm, takes into account some measure of opportunity costs
associated with the choice of an order combination. It is argued that the attractiveness
of joining two orders may depend on the alternative options these orders have as well as
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the savings value associated with these two orders. So, after the calculation of all the
savings, the best and the second best choice for each order is found, and the difference
in the savings is interpreted as opportunity costs of not choosing the best option. A new
measure is determined by adding some fraction of these opportunity costs to the savings
value associated with the best choice. The third algorithm, called the simultaneous-savings
algorithm, looks at the structure of the savings matrix in each iteration and anticipates
that this structure will change from iteration to iteration. The final algorithm combines
this simultaneous approach with the opportunity cost approach.

The authors’ results showed that these heuristics find very good solutions quickly. In
particular, they found that using a measure for opportunity costs significantly improves
the solution quality, while a simultaneous approach does not have a favourable effect.

4.4 With stochastic demands

In the VRP with stochastic demands (VRPSD), the customers’ demands are stochastic
variables, for which only the probability distribution for each customer is assumed known
at the time of planning, so that it is the expected total travel cost which is subject to
minimization. The total actual demand on a route may exceed the vehicle capacity, in
which case a failure is said to occur. A strategy is required for updating the routes when
this happens, and the action resulting from this strategy is called a recourse action. As
the strategy adopted affects the expected cost of a given route, it must be known at the
time of planning. Reviews of work on the VRPSD are provided by Dror and Trudeau
(1986), Dror et al. (1989) and Gendreau et al. (1996).

The first to address the VRPSD was Tillman (1969) who based his solution approach
on a modification of the savings method in the context of a multi-depot variant of the
VRP with Poisson distributed demands. The model considered a cost trade-off between
exceeding the vehicle capacity and completing the route with excess capacity.

Stewart and Golden (1983) presented three models for the VRPSD, and considered several
demand distributions. They compared two heuristics, one of which is based on the savings
method. They stated that the savings method is easily adapted to this problem and runs
very quickly. The VRP capacity constraints are replaced with other constraints to decide
whether two current tours may be feasibly joined. If the probability of route failure is
too high, this combination is disallowed. They also adapted the savings method to handle
penalty function models. When a fixed penalty for route failure is modelled the savings
function becomes sij = c0i +c0j−cij +λPi +λPj−λPij where sij is the savings realised by
joining customers i and j on the same route, Pi is the probability that the route including
customer i fails, Pij is the probability that the combined route with both i and j fails, and λ
is the penalty incurred when a route fails. When a cost is incurred for each unit of demand
left unsatisfied, the savings function is defined as sij = c0i + c0j − cij + λ`i + λ`j − λ`ij
where `i and `ij are the expected number of units short on the routes including customer
i and the route i and j will be on, respectively, and λ is the penalty per unit short. Both
Pij and `ij may be calculated knowing the probability distributions of demand. These
quantities must be updated every time two customers are joined. In both variants of the
penalty function model, customers are linked strictly according to savings; the capacity
constraints are ignored.
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4.5 With stochastic travel times

Laporte et al. (1992) introduced the VRP with stochastic travel and service times. Lambert
et al. (1993) adapted the savings method for this problem, in the context of optimizing
money collection routes through bank branches in a network with stochastic travel times.
These branches were located in Belgium, with headquarters at Namur. In addition to the
standard VRP, there was an unusual cost aspect: money received at a branch between the
vehicle’s departure and closing time loses a day’s interest as it is not collected until the
next day. Thus visits to branches producing a large amount of cash should be made as late
in the day as possible. The objective function takes into account penalties associated with
lost interest. The savings method was extended by considering more general objective
functions that do not simply minimize routing costs, but include other terms as well (such
as penalties for lost interest). Consider two vehicle routes l1 and l2 including arcs (i, 0)
and (0, j) respectively, and the costs z(l1) and z(l2) of these routes. Merging l1 and l2, by
introducing (i, j) and deleting (i, 0) and (0, j) yields a route l of cost z(l). If l is feasible
and the saving sij = z(l1)+z(l2)−z(l) is positive, the merge is implemented. The authors
present results for networks with 28 and 44 nodes. An aspect of this work that aroused the
interest of the bank’s management was that major branches tended to be located towards
the end of the routes, as the objective function contains a term for lost interest. Such
solutions do not arise naturally if standard VRP algorithms are used.

5 The savings method and the fleet mix problem

The composition of a vehicle fleet is an important cost investment decision, as once a
vehicle, or fleet of vehicles, is purchased, it will be kept for some time, even if it proves
to have been an unwise decision. A logistics manager may need to determine the best
composition of the fleet in order to respond to customer orders at minimal cost. The
appropriate fleet need not be homogeneous and a good vehicle fleet mix is likely to yield
better results. Researchers have sought to bring some insight to this problem and develop
an efficient heuristic, which incorporates both routing and vehicle fixed costs, to produce
a number of good feasible fleet mixes.

Golden et al. (1984) were the first to address this problem. They developed several al-
gorithms, some of which are based on the savings method. They extended the concept
of savings to include fixed vehicle costs. The total cost of a subtour is the sum of its
routing costs and the cost of the vehicle used. When a larger subtour is created from
two subtours, the total cost of this larger subtour can be derived in the same way. To
choose the two subtours which should be merged, the subtours which generate the greatest
total savings when merged need to be determined. The combined savings when joining
customers i and j (i and j are one of the endpoints of subtours I and J respectively) is
Sij = ci0 +c0j−cij +F (zi)+F (zj)−F (zi +zj) where F (z) is the fixed cost of the smallest
vehicle that can service a demand of size z. The total demands on the two subtours are
zi and zj . These savings must be calculated at every step. This method (denoted as
Combined Savings (CS)) is the basis for the remaining savings algorithms developed by
the authors.

The fact that Sij represents only the immediate savings gained by joining customers i and j
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means that the procedure is somewhat imprecise. Therefore the authors developed variants
of the method, called opportunity savings algorithms, which include opportunity savings
in the calculation of total savings. The opportunity savings are a function of the unused
capacity of the vehicle serving the merged subtours. In the first of these variants, called
Optimistic Opportunity Savings (OOS), the opportunity savings are defined to be the cost
of the smallest vehicle that can serve all the unused capacity of the new vehicle. A second
variant, called Realistic Opportunity Savings (ROS), results from two considerations. First,
opportunity savings should not be included in the savings formula unless the merging of two
subtours requires the use of a larger vehicle as the purpose of opportunity savings should
be to encourage the use of larger vehicles when it seems profitable to do so. Therefore the
authors introduce a vehicle threshold, which is crossed if the vehicle which would service
the merged subtours is larger than each of the vehicles presently used. In the second
variant, opportunity savings are only included if the threshold is crossed. The second
consideration arises from their computational experiments, in which the total demand
of a subtour tended to be close to a vehicle capacity. Therefore, they argued that it is
probably best to use the largest suitable vehicle, which is the vehicle just smaller than
that given by the OOS variant, except when the unused capacity equals a vehicle capacity,
in which case both algorithms use the same vehicle.

Computational results showed that none of the above methods are powerful enough that
a single application will consistently generate good solutions. It is therefore necessary
to vary these algorithms so that they produce a number of different solutions for each
problem, with the least costly of these being selected as a final solution. A method used
which introduces variety into the ROS algorithm is referred to as ROS -γ, where γ is the
route shape parameter, λ, of Gaskell (1967). ROS-γ yielded the best results among all the
savings algorithms that were tested.

Desrochers and Verhoog (1991) developed a matching-based savings algorithm for this
problem. The savings method is adapted: a new form of saving is proposed and the way
the best combination of the subtours are merged is different. Their basic saving, denoted
by DVS, is given by DVSij = TSP(Ni) + TSP(Nj) − TSP(NiUNj), where Ni denotes
the set of customers in the i-th route and TSP(Ni) the cost of the optimal travelling
salesman tour in that route. For the choice of the best feasible combination of subtours
to be merged, the maximum weighted matching problem, with the weights equal to the
savings obtained above, is solved and the combination with the largest saving is chosen.
This provides a less myopic criterion than the usual savings method.

Salhi and Rand (1993) investigated this problem, using a routing procedure based on the
savings method (Salhi and Rand, 1987). This generates good routes for a given vehicle
capacity and then several modules are introduced in turn to derive, whenever possible,
more economical vehicle fleet mixes (those with a cheaper total cost) without violating
constraints such as time restriction and capacity.

Liu and Shen (1999) and Dullaert et al. (2002) addressed an extended version of the
problem, by considering time window constraints. Liu and Shen (1999) developed several
insertion-based parallel savings heuristics capable of generating feasible solutions. Instead
of merging individual routes, the insertion of each route, in its original or reversed order,
is evaluated in all possible insertion places in all other routes for different parameter
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settings. They modified Golden et al.’s (1984) savings criteria to take possible savings in
vehicle acquisition costs into account. Their parallel savings heuristics are motivated by
Solomon’s (1987) sequential insertion heuristics. Instead of merging routes, one route is
inserted into another. Dullaert et al. (2002) extended Solomon’s (1987) sequential insertion
heuristic I1 with vehicle insertion savings, based on Golden et al. (1984), and obtained
significantly better solutions. Golden et al.’s (1984) savings formulations were adapted
by considering the load of a vehicle and its maximum capacity. The authors define the
Adapted Combined Savings (ACS) as the difference between the fixed costs of the vehicle
capable of transporting the load of the route after and before inserting a customer. Their
Adapted Optimistic Opportunity Savings extends the ACS by subtracting the fixed cost of
the smallest vehicle that can serve the unused capacity. Finally, their Adapted Realistic
Opportunity Savings takes the fixed cost of the largest vehicle smaller than or equal to the
unused capacity into account as opportunity saving. It only does so if a larger vehicle is
required to serve the current tour after a new customer has been inserted.

6 Application of the savings method and its variations

The motivation for the original paper was to improve the distribution of deliveries of
Cooperative Wholesale Society vehicles in the English Midlands: 400 customers were
served from Manchester (Fletcher and Clarke, 1963). Since then, many applications of
the savings method to real problems have been reported. The following descriptions draw
attention to a selection of the more interesting of them.

McDonald (1972) describes the application of Gaskell’s modified savings method (Gaskell,
1967) to the problem of collecting medical specimens. To overcome the method’s weakness,
that once a link is made it is never removed, the 3-optimal method (Lin, 1965) was
used to determine whether any improvement could be made to the best results obtained
by Gaskell’s method. An immediate result of the study was that the specification of
a maximum time of 90 minutes for which a specimen should remain in the vehicle was
critically reviewed, as the study demonstrated that there were considerable benefits from
relaxing it.

Beltrami and Bodin (1974) addressed routing issues associated with waste collection. They
comment that, in practice, the savings method is robust, despite the possibility to “lock
onto locally optimal solutions” which can easily be seen to be inferior to solutions obtained
by more naive methods. The practical issues addressed were the routing of hoist-compactor
trucks (implemented in New York City) and the assignment of days to such routes, and
the routing and dispatching of barges and tugboats in order to dispose of 10 000 tons of
refuse each day at a landfill on Staten Island, a problem complicated by the tidal system
and because a “customer” can be visited on more than one trip each day. The latter
problem was tackled using the savings method in combination with a randomised search
procedure in which the amount to be collected is randomly determined.

Atkinson (1990) reported an application carried out for the Inner London Education Au-
thority (ILEA) to assist the scheduling of vehicles which deliver meals from kitchens to
schools, using a heuristic based in part on the savings method and also incorporating a
novel approach to the problem of ‘time window’ constraints on the collection and delivery
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of meals. The problem addressed was large: there were 800 ILEA schools with their own
kitchen, 190 of which supplied meals to schools without a kitchen. It is obvious that this is
a time-critical application. The schedules produced for the first area to be studied showed
a considerable improvement over the existing schedules, but this was not repeated when
other areas were investigated. As a result, and also because of staff turnover, the life of
the scheduling system proved to be rather short, and in any case ceased after the abolition
of the ILEA in 1990, and the devolution of the school meals provision to thirteen local
education authorities.

The logistic problems of ACSA, a company devoted to the production and distribution
of frozen vegetables, based in Navarra (Spain), were addressed by Faulin (2003), using a
so-called mixed algorithm (MIXALG). MIXALG uses both heuristic and exact subroutines
to optimize the costs. As far as the routing aspect is concerned, a variant of the savings
method (ALGACEA) is used, with impressive results, giving starting solutions that are
improved by linear programming tools. The ALGACEA procedure chooses the customers
whose saving has been selected by a Monte Carlo procedure. Once this heuristic part of the
MIXALG method has been concluded, the routes found are improved by the application
of a linear program to every Travelling Salesman Problem (TSP) in each route. These
TSPs may be solved by exact methods because of the moderate size of the problem.

Pearn et al. (2004) investigated the wafer probing scheduling problem (WPSP), a varia-
tion of the parallel-machine scheduling problem, to sequence families of jobs on identical
parallel machines with due date restrictions, by transforming it into a VRPTW (Pearn et
al., 2002). Wafer probing is one of four main stages in the manufacture of integrated cir-
cuits. In their problem, the machine set-up time is sequentially dependent on the product
types of the jobs processed on the machine, and the objective is to minimize the total ma-
chine workload without violating the machine capacity and job due date restrictions. The
authors developed three modifications of existing savings algorithms, called the modified
sequential, the compound matching based, and the modified compound matching-based sav-
ings algorithms, to solve the WPSP, which performed well according to the computational
results.

Collect-and-place machines are one of the commonest types of placement machines in auto-
mated printed circuit board (PCB) assembly. Grunow et al. (2004) presented a three-stage
heuristic solution approach to schedule the operations of this type of machinery, in which
the second stage is modelled using adaptations of the savings method. In this stage, based
on the assignment of component feeders to magazine positions determined in the first
stage, the component placement sequence is determined. The component staging capacity
of the revolver-type placement head creates a major constraint. As the total number of
components to be placed on a board usually greatly exceeds the capacity of the revolver,
several tours of the placement head have to be established, but the number of placement
operations within a tour is restricted by the number of nozzles on the revolver. The
placement-sequencing problem consists of three interrelated sub-problems, two of which,
assigning components (placement operations) to the various tours and ordering the place-
ment operations within each tour, can be considered as a VRP in micro-dimensions. The
components required are collected from the warehouse (the magazine) and distributed to
different customers (placement locations on the PCB). So VRP algorithms, specifically the



140 GK Rand

savings method, were adapted. In the third stage, local search principles were applied in
order to improve the feeder assignment and the component placement sequence obtained.
There is no indication given that these results were applied to assembling PCBs, rather
numerical experiments were performed in order to compare the performance of the various
savings-based heuristics under different experimental settings.

A decision-support system (DSS) was created for FRILAC Company (Navarra, Spain),
to optimize its routes for delivering frozen food products on a network with 50 nodes
(Faulin et al., 2005). Using the savings method, the DSS produces routes that minimize
distances travelled, displays the final results on screen, creates reports for vehicle drivers,
and estimates route costs. The choice of the savings method as the basis of the routing
algorithm was not straightforward. After testing several algorithms the authors recom-
mended the use of Fisher and Jaikumar’s algorithm (1981) to the logistics manager. He,
however, favoured the use of the savings method on the basis of its simplicity, its intuitive
nature, its low computation costs and the quality of its solutions. His arguments won the
day. FRILAC successfully implemented the results, achieving an average cost saving of 10
percent.

An application of vehicle routing for Coca-Cola Enterprises (CCE), using ORTEC’s soft-
ware that incorporates the savings method (Poot et al., 2002), was a recent Edelman
competition finalist (Kant et al., 2008). CCE is the world’s largest marketer, producer,
and distributor of Coca-Cola Company products (not only the well-known soft drinks,
but also still and sparkling waters, juices, isotonics, teas, and energy, milk-based, and
coffee-based drinks). In 2005, CCE distributed two billion cases (containing 42 billion
bottles and cans), 20% of the Coca-Cola Company’s worldwide volume. Coca-Cola has
outsourced its production and distribution to its bottling and distribution companies, of
which CCE is the largest. CCE distributes syrup from the Coca-Cola plants to 64 bot-
tling plants; it distributes bottled and canned beverages from the bottling plants to the
distribution centres, and from the distribution centres to the final retail outlets. The OR
study planned the distribution from over 430 distribution centres to 2.4 million outlets.
The CCE fleet is the second largest in the United States after that of the US Postal Ser-
vice: over 300 CCE dispatchers use this software daily to plan the routes of approximately
10 000 trucks. CCE realised an annual cost saving of $45 million and major improvements
in customer service. This approach has been so successful that Coca-Cola has extended it
beyond CCE to other Coca-Cola bottling companies and beer distributors.

7 Software for the savings method

It has long been widely assumed that the savings method is incorporated in most com-
mercial software. As long ago as 1972 McDonald expressed surprise that the algorithms
in 10 out of 12 commercially available vehicle scheduling packages evaluated in a 1969
survey (produced by the National Computer Centre in Manchester, UK) were based on
the savings method (McDonald, 1972). In the same year, Wren and Holliday (1972) com-
mented that “the method of Clarke and Wright and variations on it are commonly used
in computer programs marketed for the problem.” Christofides et al. (1979) state that
the savings method is “without doubt the most widely known heuristic and has formed
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the basis of many programs including the IBM-VSPX package.” Baker (2002) reported
that Truckstops R©, the software available from Microanalytics, “uses a method based on
the generalised assignment heuristic of Fisher and Jaikumar (1981) to seed routes and
completes the route structure with a variant of the savings method.”

An email enquiry by the author to the sixteen vendors of vehicle routing software listed
in the most recent Vehicle Routing Software Survey published by ORMS Today (Hall and
Partyka, 2008) elicited eight responses. All but one specifically indicated that the savings
method was incorporated into their algorithms to a greater or lesser extent.

By far the fullest account in the literature of the algorithmic component of commercial
software is that concerning SHORTREC Distriplanner R© (SDP), a commercial vehicle
routing system, which ORTEC Consultants BV, a Dutch consultancy firm specialising in
applied operations research, has sold since the mid-1980s to about 300 clients, mostly in
Europe, Asia and the USA (Poot et al., 2002). Their experience was that real problems
often “involve several non-standard constraints, some of which are never mentioned in
the literature, while others are only analysed in isolation, i.e. not in combination with
other non-standard constraints.” Adaptations of the savings method to incorporate such
constraints have been implemented in SDP. Besides the traditional quality measures such
as total distance travelled and total workload, the routing plans produced by the savings
algorithm were compared with those produced by a sequential insertion algorithm, using
real-life data, according to non-standard quality measures that help to evaluate the ‘visual
attractiveness’ of the plan. Computational results show that, in general, the savings-based
algorithm not only performs better with respect to these non-standard quality measures,
but also with respect to the traditional measures. Currently, the savings method is not
used by default, but only when dealing with few restrictions in a standard distribution
environment. When there are many restrictions then an “insertion based” optimizer is
used.

The main idea behind their savings-based algorithm is still to merge two trips with the
highest saving, but adjustments are necessary to be able to cope with the various con-
straints. For a fixed and heterogeneous vehicle fleet, each time two trips are merged, the
most appropriate vehicle has to be selected. At each iteration of the algorithm, the best
possible combination of two trips is selected, but with a heterogeneous fleet it is frequently
too time consuming to check the feasibility of each combination exactly, because this de-
pends on the vehicle to which the merged route is assigned. Therefore, quick tests are
carried out early in each iteration to eliminate combinations from further consideration.
Only at a later stage are more elaborate feasibility tests carried out for relatively few
combinations.

Customers in an area are allocated a region number. The second adjustment consists of
a pre-processing step that has been added to reduce the size of the problem instance (the
initial number of trips). So the customers are divided into groups and in each group as
many customers as possible are joined together. Two customers are placed in the same
group if, and only if, their postal codes match, their service intervals overlap, their region
numbers match, and their feasible vehicle types match.

Since the customers have service intervals, unnecessary waiting time has been eliminated.
Waiting time will normally not decrease in the next iteration of the algorithm (most
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customers will keep the same predecessor and successor). Therefore, as a third adjustment,
a maximum waiting time constraint is included. Only combinations of trips for which the
total waiting time of the combined trip is less than a given value are permitted. Fourth,
unnecessary waiting time in the combined trip is reduced as much as possible by applying
a local search improvement method.

As a last adjustment, since some drivers are familiar with a particular region, it is prefer-
able that these drivers’ vehicles serve the customers in that region. This is achieved by
also assigning vehicles a region number. A region factor and a group bonus is included
in the function that calculates the savings, ensuring that the algorithm is more likely to
assign customers with a specific region number to a vehicle with the same region number
and customers in the same group are more likely to be scheduled after one another.

8 Conclusions

This paper has sought to give insight into the origins of the savings method for the vehicle
routing problem forty five years ago. Since then, several variations to the basic savings
formula have been proposed and other improvements, mainly to improve the speed of com-
putation, suggested. Furthermore, many extensions of the basic vehicle routing problem,
which allows for constraints such as length of routes and capacity of vehicles, have been
investigated using adaptations of the savings method, alongside many other approaches.
In addition to the vast amount of research using the savings method, many practical prob-
lems have utilised the method, and it is a key component of the majority of the commercial
routing packages. It is certainly true that the savings method has had a long and rich life,
and it is apparent that this assessment is of an unfinished history, with the savings method
continuing to make contributions to vehicle routing, and indeed other applications, as it
approaches and passes its half century.
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