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Abstract

In this paper we consider the Evolutionary Spatial Prisoner’s Dilemma (ESPD) in which
players are modelled by the vertices of a cycle representing a spatial or organisational struc-
ture amongst the players. During each round of the ESPD every pair of adjacent players in
the cycle play a classical prisoner’s dilemma against each other, and they update their strate-
gies from one round to the next based on the perceived success achieved by the strategies of
neighbouring players during the previous round. In this way players are able to adapt and
learn from each other’s strategies as the game progresses without being able to rationalise
good strategies. We characterise all steady states of the game as well as the structures of
those initial states that lead to the emergence of persistent substates of cooperation over
time. We finally determine analytically (i.e. without using simulation) the probability that
the game’s states will evolve from a randomly generated initial state towards a steady state
which accommodates some form of persistent cooperation. More specifically, we show that
there exists a range of game parameter values for which the likelihood of the emergence of
persistent cooperation increases to almost certainty as the length of the cycle increases.
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1 Introduction

The Prisoner’s Dilemma (PD) may be attributed to a 1950 lecture by Albert W Tucker [10]
and is the archetypal example of a two-person zero-sum game in classical game theory.
The dilemma is often presented in the form of a parable in which two suspects are arrested
by police. Having insufficient evidence for convicting the prisoners on a major charge, the
police offer both the same deal. Each prisoner is told that if he defects from the other
prisoner by testifying against him, while the latter cooperates with the former by remaining
silent, the betrayer goes free and the silent accomplice receives the full sentence for the
major charge. If the prisoners both cooperate by remaining silent, they are each sentenced
to a short prison term on a minor charge (for which the police do have sufficient evidence
to convict). However, if the prisoners both defect from one another (i.e. betray each other),
then they share the full (long) prison sentence, each receiving a medium term. The PD
is then that each prisoner should decide on a strategy which maximises his own reward
(referred to as a pay-off) by minimising his prison sentence. If the strategy of cooperation
is denoted by C and that of defection by D, then the reward may be modelled by the
pay-off matrix

Ψ =

[ C D

C 1 0
D a b

]
(1)

for one of the prisoners, known as the row player, where a > 1 and 0 < b < 1. This matrix
has been normalised so that the reward of both players for cooperating with each other
(i.e. both remaining silent) is 1, while the reward of a cooperator is 0 if the other prisoner
defects. The parameter a is known as the temptation to defect, while the parameter b
is often referred to as the “punishment” for mutual defection. If a player expects his
opponent to cooperate, then he can gain the largest pay-off a by defecting. On the other
hand, if a player expects his opponent to defect, it is best to settle for the “punishment”
b, again by defecting. If both players follow this rational line of reasoning, they should
both defect, while they could have done better by both cooperating.

In evolutionary game theory, the static games of classical game theory, such as the PD
described above, are repeated and players are afforded the possibility of adapting and
learning good strategies as a result of achieving high pay-off values as the game progresses,
rather than having to decide on a rigid strategy beforehand. The introduction of this
dynamic element to the theory of games has its origins in biology and is inspired by
evolution, as observed in nature [5, 7]. One of the chief differences between classical game
theory and evolutionary game theory is that in the former the focus is on single players
who each aim to determine strategies that maximise their pay-off values, while in the
latter the focus is on collective strategies and whether these strategies are able to persist
over consecutive rounds of the game [14]. Evolutionary game theory has been utilised
in various biological contexts to investigate the evolution of altruism and cooperation
between species [4, 5, 7, 8, 13].

Perhaps one of the simplest games in evolutionary game theory is the so-called Evolution-
ary Spatial Prisoners’ Dilemma (ESPD) [9]. In the ESPD the players are modelled by
the vertices of a so-called underlying graph G which represents some spatial organisational
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structure amongst the players, determining which players play against each other. During
any round of the ESPD each pair of adjacent players in G play a classical PD against
each other according to strategies that are based on the perceived success achieved by
neighbouring players during the previous round of the game, thus allowing the players to
learn by adapting to successful strategies. The pay-off values received by a player from
each of his neighbours according to the pay-off matrix Ψ in (1) are summed together, and
this total pay-off value is normalised by dividing the total by the number of neighbours.
This playing phase of the round is followed by an updating phase during which each player
is afforded the opportunity to select his strategy for the next round which may or may not
be the same as that during the current round (a player plays the same strategy against
all his neighbours during any particular round of the game). The process of updating
strategies occurs according to a dynamic updating rule. Nowak and May [9], for example,
considered the ESPD where the updating rule is that a player selects the strategy of his
neighbouring player who achieved the largest pay-off value during the playing phase of the
current round. The authors used simulation to study the formation and persistence over
time of complex patterns of cooperative behaviour of the ESPD on a grid graph.

The objective in this paper is to establish analytically the likelihood that a randomly
generated initial state will result in the ESPD terminating in a steady state where the
strategy of cooperation is able to persist in some structural form from one round to the
next if the players are arranged cyclically (i.e. the underlying graph is a cycle). We are also
interested in characterising those structural forms in which such persistent cooperation is
able to emerge for the case where the underlying graph is a cycle. In a previous paper [1]
we studied the ESPD in the case where the underlying graph is a path. This paper may
therefore be viewed as an extension of that work.

2 The game dynamics

Suppose the underlying graph of the ESPD has order n. Then a state of the game is
denoted by means of a binary word S = S0S1S2 · · ·Sn−1, where Si ∈ {C,D} denotes
the PD strategy adopted by the player at vertex i during a specific round of the game,
for all i ∈ Zn, where Zn is the set of integer residues modulo n. A cooperation run
(defection run, respectively) is a maximal contiguous substate of a game state containing
only cooperators (defectors, respectively). We denote a cooperation run of length i ≥ 3
by 〈C〉i and a defection run of length i ≥ 3 by 〈D〉i. Consider, as an example, the
labelled graph of order 5 in Figure 1(a) as underlying graph for the ESPD. The game
state CCCDC = 〈C〉3DC is represented graphically in Figure 1(b), where a solid vertex
represents a player choosing to cooperate with all his neighbours (i.e. playing the strategy
C against all his neighbours), while an open vertex represents a player choosing to defect
from all his neighbours (i.e. playing the strategy D against all his neighbours). We shall
use this colour coding throughout the remainder of the paper.

We assume that the strategy updating rule of the ESPD is that each player adopts the
strategy of the player in his closed neighbourhood (i.e. also taking himself into considera-
tion) who achieved the largest pay-off value during the previous round, with the convention
that a player retains his own strategy in the event of a tie. The progression of the states
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Figure 1: (a) An example of an underlying graph for the ESPD. (b) An evolution of states of

the ESPD on the underlying graph in (a) for the parameter values a = 4
3 and b = 1

3 in (1), where

a solid vertex represents a cooperator, while an open vertex represents a defector.

〈C〉3DC → C〈D〉4 → 〈D〉5 of the ESPD on the underlying graph in Figure 1(a) is illus-
trated in Figure 1(b) for the case where the parameters in the pay-off matrix Ψ in (1) are
a = 4

3 and b = 1
3 .

The first stage of this progression is motivated as follows. During the initial round player 0
cooperates with players 1 and 2 who, in turn, both also cooperate with player 0, resulting
in a pay-off of (1 + 1)/2 = 1 for player 0. Similarly, player 1 cooperates with players 0, 3
and 4 who, in turn, respectively cooperate with, defect from and cooperate with player 0,
resulting in a pay-off of (1 + 0 + 1)/3 = 2

3 . These pay-off values, as well as those of the
other three players are shown inside the vertices of the graph corresponding to the initial
state in Figure 1(b). Comparing his pay-off value of 1 with those of players 1 and 2 (2

3 and
1
3 , respectively), player 0 retains the strategy of cooperation during round 1. Similarly,
player 1 compares his pay-off value of 2

3 with those of players 0, 3 and 4 (1, 4
3 and 1

2 ,
respectively), and adopts player 3’s round 0 strategy during round 1, namely defection.
Players 2, 3 and 4 also all defect during round 1.

The next stage of the progression towards the state 〈D〉5 may be motivated similarly.

3 Automorphism classes of game states

Whereas a labelled underlying graph is required in order to encode the state of the game as
a binary word, use of an unlabelled underlying graph is preferable in an asymptotic analysis
of the evolution of the states of the game, where the labels of players are unimportant
and one is rather interested in the emergence of structures or forms of cooperation and
defection as the game evolves. To this end, two game states S1 = S0

1S
1
1S

2
1 · · ·Sn−1

1 and
S2 = S0

2S
1
2S

2
2 · · ·Sn−1

2 during a particular round of the game are automorphic if there
exists a permutation f : Zn 7→ Zn, called an automorphism, with the properties that
(i) the vertices i and j are adjacent in G if and only if the vertices f(i) and f(j) are

adjacent in G, for all i, j ∈ Zn, and (ii) S
f(i)
1 = Si2 for all i ∈ Zn (i.e. f is a relabelling of

the vertices of G which preserves both player adjacency in G as well as player strategies
in the particular round of the ESPD). An automorphism class of game states is a maximal
set of states with the property that any two states in the set are automorphic. The class
leader of an automorphism class is the lexicographically smallest member of the class
(taking C < D).



The evolutionary spatial prisoner’s dilemma on a cycle 5

(a) (b)

Figure 2: Two automorphic states of the ESPD on the underlying graph in Figure 1(a), where

a solid vertex represents a cooperator, while an open vertex represents a defector.

For example, the two game states in Figure 2 of the ESPD with the underlying graph in
Figure 1(a) form an automorphism class of the game, with the function f∗ as automor-
phism from the state represented in Figure 2(a) to the state represented in Figure 2(b),
where f∗(0) = 2, f∗(1) = 3, f∗(2) = 0, f∗(3) = 1 and f∗(4) = 4. The state in Figure
2(a) is the class leader of this automorphism class, since these two states are encoded as
〈C〉3DC and CD〈C〉3, respectively, of which the first is lexicographically smaller.

Class leader Automorphic to
Class

6

6

6

6

6

1

3

2

12

3

1

6

Total: 64 = 26

size

6

Total: 13

Table 1: The thirteen automorphism class leaders of game states (as well as their corresponding

full automorphism classes) for the case where the underlying graph is a 6-cycle. The right-most

cell of each linear array wraps around to form a cycle with the left-most cell. A solid cell represents

a cooperator, while an open cell represents a defector.

The thirteen class leaders of the automorphism classes of game states (as well as the full
automorphism classes themselves) are shown as an example in Table 1 for the case where
the underlying graph is a 6-cycle.

In general there are

Λc(n) =

{ ∑
d|n

φ(d)2n/d

2n + 2
n−1
2 if n is odd∑

d|n
φ(d)2n/d

2n + 2
n
2
−1 + 2

n
2
−2 if n is even

(2)
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automorphism classes of game states of the ESPD on a cycle1 of order n, where φ(·) is the
Euler totient2. These numbers of automorphism classes are shown in Table 2 for small
values of n.

n→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Λc(n) 2 3 4 6 8 13 18 30 46 78 126 224 380 687 1 224
Λp(n) 2 3 6 10 20 36 72 136 272 528 1 056 2 080 4 160 8 256 16 512

Table 2: The number, Λc(n), of automorphism classes of game states if the underlying graph

is a cycle of order n, for small values of n (Sloane’s sequence A000029 [11]). The corresponding

number, Λp(n), of automorphism classes of game states, taken from [1, Table 3.2], for the ESPD

on a path of order n is also shown for purposes of comparison.

4 The state graph of the ESPD

A game state is called a steady state if it remains unchanged as the game progresses from
one round to the next. The two trivial steady states 〈C〉n and 〈D〉n are clearly present
in the ESPD on any connected underlying graph of order n. The game progression in
Figure 1(b) terminates in the all-defector steady state 〈D〉5.

〈C〉5

〈D〉5

Figure 3: The state graph for the ESPD on the underlying graph in Figure 1(a), with a = 4
3

and b = 1
3 .

The progression of the game may be described fully, regardless of the initial game state,
by means of a so-called state graph. The state graph of the game is a vertex labelled
directed pseudograph in which the vertices are the game states and in which there is an
arc (directed edge) from a state S1 to a state S2 if the game progresses from the state S1

to the state S2 within a single round. The state graph therefore captures the dynamics

1The n-th entry of this sequence also represents the number of necklaces which can be formed from a
total of n black or white beads, allowing for turning over the necklaces [3].

2The Euler totient φ(m) counts the natural numbers smaller than m which are relatively prime with
respect to m, adopting the convention that φ(1) = 1. See, for example, [6, p. 80].
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of the game as it progresses from round to round. A game state S1 is said to attract
another state S2 if there is a (directed) path from S2 to S1 in the state graph. The state
graph of the ESPD on the underlying graph in Figure 1(a) is shown in Figure 3. The path
representing the progression of game states in Figure 1(b) is circled by means of a dashed
curve in the state graph of Figure 3; in this progression the all-defector steady state 〈D〉5
attracts both the states 〈C〉3DC and C〈D〉4. In addition to the trivial steady states 〈C〉5
and 〈D〉5, the existence of another interesting steady state, DCDCC, may be noticed in
Figure 3. In this steady state there are is a pocket of persistent cooperation.

5 Steady states of game states

In order to study the asymptotic behaviour of the states of the ESPD on a cycle, we require
the following basic definitions from graph theory. A directed pseudo-graph is a directed
graph in which loops3 are allowed. A directed pseudo-graph is a directed pseudo-tree if
its underlying (undirected) pseudo-graph is connected and contains no cycles of length
at least 2. Finally, a directed pseudo-tree T in which every vertex has out-degree 1 and
in which there exists a vertex r (called a root4 of T ) with the property that there is a
(directed) path of length at least 1 from every vertex to r is called a rooted pseudo-tree.
Note that, in order for a root r of a rooted pseudo-tree to have out-degree 1, there must
be a loop from r to itself (but there cannot be a loop from any other vertex to itself).

Theorem 1 If the underlying graph of the ESPD is a cycle of order n, then each com-
ponent of the state graph is a rooted pseudo-tree in which the root is a steady state of the
game and in which the all-cooperator steady state 〈C〉n forms a component on its own.
Moreover, if a+ b > 2, then the state graph has exactly two components.

The proof of this result is similar to the corresponding result for the ESPD on a path
[1, Theorem 2 and Corollary 1] and is therefore omitted here. The result of Theorem 1
may be corroborated in Figure 4.

Note that the result of the theorem implies that if a + b > 2, then there is only one
nontrivial component in the state graph (i.e. one component other than the component
containing only the steady state 〈C〉n) and that this nontrivial component contains 〈D〉n
as steady state. Therefore all initial states of the game (except for 〈C〉n) are attracted to
the all-defector steady state 〈D〉n, making persistent cooperation impossible in the case
where a+ b > 2, unless all players initially already cooperate. The following result shows
that limn→∞Πc(n) = 0 if a+ b > 2, where Πc(n) denotes the probability of the emergence
of persistent cooperation from a randomly generated initial state.

Theorem 2 If a+ b > 2, then Πc(n) = 2−n.

3A loop is a directed edge from a vertex to itself, also sometimes called a cycle of length 1.
4Every rooted pseudo-tree has a unique root (see, for example, [2, Theorem 3.5]).
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(a) n = 5 (b) n = 6

(c) n = 7 (d) n = 8

Figure 4: The state graph for the ESPD on a cycle of order n ∈ {5, 6, 7, 8} for the case where

a+ b > 2. The rectangular arrays of cells in the figure should be interpreted as wrapping arrays in

the sense that the right-most cells wrap around so as to be adjacent to the left-most cells. A solid

cell denotes a player who cooperates while an open cell denotes a player who defects.

We therefore restrict our attention in the remainder of this paper to the more interesting
region in the parameter space where

a+ b ≤ 2. (3)

In this case there are other steady states in addition to the all-cooperator steady state
〈C〉n and the all-defector steady state 〈D〉n, as made more precise in the following result.

Theorem 3 If (3) holds for the ESPD on a cycle, then
(a) no cooperation run of length 1 can persist to the next round of the game,
(b) no cooperation run of length 2 can persist intact to the next round of the game,
(c) a cooperation run of length at least 3 persists intact to the next round of the game if
and only if it is flanked by two defection runs, each of length at least 2.
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The proof of Theorem 3 is again similar to and, in fact, simpler than the proof of the
corresponding result for the ESPD on a path in [1, Lemma 2] because of the absence of
exceptions at the endpoints of the paths when dealing with cycles. Using the result of
Theorem 3, it is possible to enumerate the components in the state graph of the ESPD on
a cycle as follows.

Theorem 4 If (3) holds, then there are

Ξc(n) = 2 +

bn
5
c∑

i=1

1

2i

(n−3i−1
2i−1

)
+
∑
j∈S

((n−3i)gcd(i,j)/i−1
2gcd(i,j)−1

)
+ i

bn−5i
2
c∑

k=0

(n− 5i− 2k + 1)
(
k+i−2
i−2

)
components in the state graph of the ESPD on a cycle of order n, where S is the set
{x ∈ N | i divides n · gcd(i, x) and x < i}. Each of these components contains a single
steady state, and these steady states are 〈C〉n, 〈D〉n and all those states in which each
cooperation run has length at least 3 and each defection run has length at least 2.

Proof: Let Qi denote the number of states, up to automorphism, comprising i defection
runs, starting in a run of cooperators and ending in a run of defectors, that is, steady
states containing the partial state

CCC · · ·︸ ︷︷ ︸
run 1

DD · · ·︸ ︷︷ ︸
run 2

CCC · · ·︸ ︷︷ ︸
run 3

DD · · ·︸ ︷︷ ︸
run 4

CCC · · ·︸ ︷︷ ︸
run 5

DD · · ·︸ ︷︷ ︸
run 6

· · · CCC · · ·︸ ︷︷ ︸
run 2i−1

DD · · ·︸ ︷︷ ︸
run 2i

, (4)

where each run has been populated above with the smallest number of cooperators and
defectors, respectively, in order to ensure the persistence of cooperators according to The-
orem 3(c).

The partial state (4) contains 5i symbols, leaving a total of n − 5i indistinguishable5

symbols to be distributed amongst the 2i distinguishable runs. Since the underlying
graph is a cycle, the endpoints in the representation in (4) have been chosen arbitrarily.
Therefore, all steady states or their mirror images can be represented in the form (4),
except for the all-defector and all-cooperator steady states, and so the total number of
steady states is given by

2 +

bn
5
c∑

i=1

Qi.

Let X be the set of all states of the form (4), let ι be the identity permutation on the
sequence of runs of a state s ∈ X , let ρj be the permutation which modular-shifts each
run in (4) 2j positions to the right, and let δ be the operation which reverses the order
of the runs in (4) such that the first run remains in its original position, followed by runs
2i, 2i− 1, and so on. Then the set {ι, ρ1, ρ2, . . . , ρi−1, δ, δρ1, δρ2, . . . , δρi−1} forms a group
G of order 2i under the binary operation of permutation composition. It therefore follows

5The symbols C and D merely serve the role of place holders in (4). Therefore these symbols may be
considered indistinguishable from a combinatorial point of view.
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by the well-known Cauchy-Frobenius Lemma6 that the number of equivalence classes into
which X is partitioned by G is

Qi =
1

|G|
∑
g∈G
|Fg|, (5)

where |Fg| is the number of states in X that remain invariant under g.

The identity operator ι leaves all elements of X invariant. Therefore |Fι| = |X |, which is
the number of ways of distributing the remaining n−5i indistinguishable symbols amongst
the 2i distinguishable runs in (4), that is7

|Fι| =
(
n− 3i− 1

2i− 1

)
. (6)

If the shift ρj is applied to a state s, fixing at most the first j pairs of runs would
determine all the remaining runs. The operation may be seen as modular-shifting the
pairs of cooperator-defector runs in blocks of length j. If j divides i, then the first j pairs
of runs determine the remaining 2(i− j) runs exactly. Otherwise the number of runs that
need to be fixed is determined by d = gcd(i, j). Fixing the first d pairs of runs determines
the remaining runs. Therefore (n − 5i)2d/2i symbols need to be distributed among the

first 2d runs, which can be done in
((n−5i)d/i+2d−1

2d−1

)
=
((n−3i)d/i−1

2d−1

)
different ways if nd/i is

an integer. However, if nd/i is not an integer, then there are not enough symbols available
to complete the pattern of runs into a state that is invariant under ρj . Therefore,

|Fρj | =
{ ((n−3i)gcd(i,j)/i−1

2gcd(i,j)−1

)
if i | n · gcd(i, j)

0 otherwise.
(7)

It holds for the permutation δρj , which reverses the order of the runs and then modular-
shifts the runs j positions to the left, that runs j + 1 and i+ j + 1 map onto themselves,
while runs j+2 through i+j are mapped to runs i+j+1 through j. Therefore, distributing
k symbols among the runs that do not map to themselves in fact determines the placement
of 2k symbols, leaving n−5i−k symbols to be distributed among runs j+ 1 and i+ j+ 1.
Hence there are

|Fδρj | = i

bn−5i
2
c∑

k=0

(n− 5i− 2k + 1)

(
k + i− 2

i− 2

)
(8)

states that remain invariant under δρj . Substituting (6)–(8) into (5) yields the required
number of steady states. There is exactly one steady state in each component of the state
graph of the ESPD on a cycle as a result of Theorem 1, thereby completing the proof. �

The result of Theorem 4 is tabulated for 1 ≤ n ≤ 15 in Table 3 and may be verified for
n ∈ {5, 6, 7, 8} in Figure 5.

6Also sometimes erroneously called Burnside’s Lemma (see, for example, [6, p. 92]).
7There are

(
x+y−1
y−1

)
distinct ways of distributing x indistinguishable objects amongst y distinguishable

containers (see, for example, [6, p. 36]).



The evolutionary spatial prisoner’s dilemma on a cycle 11

(a) n = 5 (b) n = 6

(c) n = 7

(d) n = 8

Figure 5: The state graph for the ESPD on a cycle of order n ∈ {5, 6, 7, 8} for the case where

a+ b ≤ 2.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ξc(n) 2 2 2 2 3 4 5 6 7 9 11 15 19 26 34
Ξp(n) 2 2 2 3 4 6 9 13 19 28 42 63 95 143 216

Table 3: The number, Ξc(n), of components in the state graph of the ESPD on a cycle of order

n, for small values of n, if (3) holds. The corresponding number, Ξp(n), of components, taken from

[1, Table 4.2], for the ESPD on a path of order n is also shown for purposes of comparison.

6 The probability of persistent cooperation

We open this section with a theorem characterising those initial game states which lead
to some form of persistent cooperation.

Theorem 5 If (3) holds, then any state of the ESPD on a cycle containing at least one of
the substates 〈C〉5, DD〈C〉3DD or DD〈C〉4D is not in the component of the state graph
which contains the all-defector steady state 〈D〉n.

The proof of the theorem is similar to the corresponding result for the ESPD on a path
[1, Theorem 4] (in fact, both the statement of the result and its proof are simpler in the
case of a cycle as underlying graph, because of the absence of exceptions at the endpoints
of a game state which are necessary in the case of a path as underlying graph). The result
of Theorem 5 may be be verified for 5 ≤ n ≤ 8 in Figure 5.

In the remainder of this section we determine the probability, Πc(n), that some substate
of persistent cooperation will emerge from a randomly generated initial state of the ESPD
on a cycle of order n. Let bn be the total number of binary words of length n containing
none of the forbidden substrings 〈C〉5, DD〈C〉3DD, DD〈C〉4D or D〈C〉4DD mentioned
in Theorem 5. The value of bn may be determined by means of the well-known transfer
matrix method8.

A binary string containing the letters C and D is said to be permissable if it contains
none of the four substrings above. Let D6 be the digraph of order 64 in which each vertex
represents one of the sixty four binary strings of length six containing the letters C and
D. A vertex representing the string s1s2s3s4s5s6 is adjacent to a vertex representing
the string s2s3s4s5s6s7 in D6 if and only if s1s2s3s4s5s6s7 is a permissable string. The
graph D6 is shown in Figure 6. Determining the value of bn for n ≥ 7 is equivalent to
counting9 the number of closed directed walks of length n in D6, since every permissable
string of length n ≥ 7 has a corresponding closed directed walk in D6. Consider, as
an example, the closed walk DDC〈D〉3 → DC〈D〉3C → C〈D〉3CD → 〈D〉3CDD →
DDC〈D〉3 → DC〈D〉3C → C〈D〉3CD → 〈D〉3CDD → DDC〈D〉3 associated with the

8A similar approach as the one used in [1] to derive the probability, Πp(n), that some substate of
persistent cooperation will emerge from a randomly generated initial state of the ESPD on a path of
order n was attempted, but yielded an unwieldy large set of interdependent variables. The transfer matrix
method, however, proved to be a much simpler and a more direct approach when the underlying graph is
a cycle.

9If A is the adjacency matrix of a digraph D, then the entry in row i and column j of An contains the
number of (directed) walks of length n from vertex vi to vertex vj in D (see, for example, [12, Theorem
4.7.1]).
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Figure 6: The digraph D6 used to compute the number of binary words of length 6 containing

the letters C and D which do not contain any of the substrings mentioned in Theorem 5.
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string DC〈D〉3CDD in Figure 6. Let A be the adjacency matrix of the digraph D6. Then

det(I − xA) = 1− x− x2 − x3 − x4 + x6 − x7,

and so it follows by [12, Theorem 4.7.3] that

∞∑
n=1

bnx
n = −x(1− 2x− 3x2 − 4x3 + 6x5 − 7x6)

1− x− x2 − x3 − x4 + x6 − x7
(9)

is the generating function for the sequence (bn)∞n=1. It therefore follows by [12, Theorem
4.4.1] that bn may be computed recursively from the recurrence relation

bn = bn−1 + bn−2 + bn−3 + bn−4 − bn−6 + bn−7, n ≥ 8. (10)

The seed values for (10) are the coefficients of the first seven terms in the McClaurin
expansion

x+ 3x2 + 7x3 + 15x4 + 26x5 + 45x6 + 99x7 +O(x8)

of the generating function in (9), as listed in Table 4.

n 1 2 3 4 5 6 7

bn 1 3 7 15 26 45 99

Table 4: Seed values for the recurrence relation (10).

We therefore have the following result.

Theorem 6 If (3) holds, then the probability that a randomly generated initial state of
the ESPD on a cycle of order n ≥ 8 will lead to persistent cooperation is given by Πc(n) =
1− bn/2n, where bn satisfies the recurrence relation (10) with seed values as in Table 4.

A plot of the values of Πc(n) against n may be found in Figure 7 for 1 ≤ n ≤ 22. The
figure also contains the corresponding probabilities for the ESPD on a path, as determined
in [1, Theorem 5]. It is interesting that Πc(n) ≤ Πp(n) for all n ∈ N, but that both these
values are increasing functions of n ≥ 7. The limiting behaviour of these functions is
captured in the following result, the proof of which is similar to the corresponding proof
in [1, Theorem 6] for the case of a path as underlying graph, since the recurrence relations
for a path or cycle as underlying graphs are the same (although the seed values differ).

Theorem 7 If a+ b ≤ 2, then limn→∞Πc(n) = 1.

7 Conclusion

In this paper we presented an asymptotic analysis of the ESPD on a cycle. We showed that
interesting structures of persistent cooperation are possible if the sum of the temptation-
to-defect parameter and the punishment parameter, a+b, in (1) is not too large. Moreover,
we showed that this sum determines the asymptotic behaviour of the game in the sense
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Figure 7: The probability that a randomly generated initial state of the ESPD on a path or

cycle of order 1 ≤ n ≤ 22 leads to persistent cooperation.

that there is a bifurcation point at a + b = 2; below this bifurcation point interesting
patterns of persistent cooperation are able to emerge, but not above the bifurcation point,
as illustrated in Figure 8. We characterised the steady states of the game as the trivial
all-cooperation and all-defection states only for the case where a + b > 2, or essentially
all states containing cooperation runs of length at least 3 and defection runs of length
at least 2 for the case where a + b ≤ 2. We also characterised those initial states of
the game that lead to steady states containing some form of persistent cooperation when
a + b ≤ 2. Finally, we computed the probability that persistent cooperation will emerge
from a randomly generated initial state, showing that the likelihood of such persistent
cooperation increases towards certainty as the order of the cycle grows in the case where
a+ b ≤ 2.

b

2

2

1

10 a

Persistent
cooperation

Interesting

game behaviour

possible

states except 〈C〉n are
game behaviour; all game
No interesting asymptotic

attracted by 〈D〉n
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Persistent cooperation
not possible

asymptotic

Figure 8: The parameter space of the ESPD on a cycle.
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