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Abstract

Common singular spectrum analysis is a technique which can be used to forecast a pri-
mary time series by using the information from a secondary series. Not all secondary series,
however, provide useful information. A first contribution in this paper is to point out the
properties which a secondary series should have in order to improve the forecast accuracy
of the primary series. The second contribution is a proposal which can be used to select a
secondary series from several candidate series. Empirical studies suggest that the proposal
performs well.
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1 Introduction

Common singular spectrum analysis (CSSA) was introduced by Viljoen & Nel (2010).
It is a multiple time series analysis procedure, combining singular value decomposition
of an unfolding matrix with the concept of common principal components introduced by
Flury (1988). A modification of CSSA is proposed by Viljoen & Steel (2012). It entails
replacing the original maximum likelihood approach by a stepwise procedure which was
introduced by Trendafilov (2010). Another popular procedure for multiple time series
analysis is multi-channel singular spectrum analysis (MSSA), an extension of singular
spectrum analysis (Golyandina et al. 2001, Golyandina & Stepanov 2005). The primary
focus in this paper is on (stepwise) CSSA, but MSSA and SSA are also considered for
comparison purposes in the simulation study discussed in §3.

Although CSSA caters for an arbitrary number of time series we restrict our discussion to
the case of two series. In such a context it frequently makes sense to distinguish between
a primary and a secondary series. The main interest is in forecasting the primary series
and to improve the forecast accuracy by using the information provided by the secondary
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series. An important question that arises, concerns the properties required for a secondary
series to provide useful information for improving forecasting accuracy. This question is
addressed in §3. A simulation study is described in which the improvement in forecast
accuracy achieved by different secondary series was investigated for CSSA and MSSA.
In practical applications one often has multiple candidate secondary series and a next
important question is whether a strategy can be proposed for identifying a good secondary
series. In §4 an answer is provided to this question. The proposed strategy is based on the
residuals obtained by combining the primary series with every candidate secondary series
in a pairwise CSSA. In §5 the proposal is illustrated with a practical example. Section 6
contains concluding remarks and ideas for further research.

In the next section background information on MSSA as well as stepwise CSSA is given.

2 MSSA and stepwise CSSA

Consider two time series of equal length N , y1t and y2t, where t = 1, . . . , N . A signal-
plus-noise structure is assumed for both series, i.e.

yjt = fjt + εjt j = 1, 2, and t = 1, . . . , N. (1)

Here, fj is the systematic (signal) component for series j, j = 1, 2, and εj is the random
(noise) component. Later it is assumed that ε1 and ε2 are Gaussian random variables.
Our primary interest is in forecasting f1 and we intend using information supplied by the
second time series to improve the accuracy of our forecasts.

Both MSSA and stepwise CSSA consider these time series in terms of trajectory matrices.
Let L, called the window length or embedding dimension, be an integer satisfying 1 <
L < N/2. We form the following L×K trajectory matrices

Y j =


yj1 yj2 . . . yjK
yj2 yj3 . . . yj,K+1
...

...
. . .

...
yjL yj,L+1 . . . yjN

 , j = 1, 2,

for the two series. Here, K = N −L+ 1. Note that Y 1 and Y 2 are Hankel matrices. The
trajectory matrix for the multivariate time series is Y = [Y 1 Y 2].

MSSA is based on the singular value decomposition of Y T . Let Y T = UAV T denote
this decomposition. In this expression, U is a 2K × L matrix, the columns of which span
the column space of Y T , V is an L×L matrix, the columns of which span the row space
of Y T , and A is an L × L diagonal matrix of singular values a1 ≥ a2 ≥ · · · ≥ aL ≥ 0.
Also, UTU = V TV = IL. The matrix Y can be expressed in terms of the singular values
and the columns of U and V , viz. Y =

∑L
i=1 aivju

T
i , and with d denoting the number

of positive singular values, this becomes Y =
∑d

i=1 Y
(i), where Y (i) = aivju

T
i , for i =

1, . . . , L. The matrices Y (1), . . . ,Y (d) are bi-orthogonal and of rank 1. MSSA proceeds by
splitting the matrices Y (1), . . . ,Y (d) into two groups, Y (1), . . . ,Y (r) and Y (r+1), . . . ,Y (d),
with the first group corresponding to estimated signal and the second group to noise or
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residual. The parameter r has a strong effect on the results of MSSA as will be seen in
the simulation results later.

With r given, let F = [F̂ 1 F̂ 2] =
∑r

i=1 Y
(i). This matrix may be seen as a smoothed

version of Y , with F̂ 1 corresponding to Y 1 and F̂ 2 to Y 2. The matrices F̂ 1 and F̂ 2

will typically not have a Hankel structure, and we therefore require a further step, reverse
diagonal averaging, to obtain estimates of the signals corresponding to the two time series
(Golyandina et al. 2001, pp. 17). Applying this to each of the matrices F̂ 1 and F̂ 2, we
obtain estimates f̂1t and f̂2t for t = 1, . . . , N of the signal series corresponding to the two
observed time series.

Turning our attention to forecasting, the following approach was proposed by Venter (2000)
and is equivalent to the approach proposed by Golyandina et al. (2001). We consider

forecasting f1 using the matrix F̂
(1)

= [f̂
(1)

1 , . . . , f̂
(1)

K ]. A one-step-ahead forecast can be

obtained by appending another column f̂
(1)

K+1 to this matrix. This column has components

f̂
(1)
K+1, f̂

(1)
K+2, . . . , f̂

(1)
N , f̂

(1)
N+1, where f̂

(1)

N+1 is the forecast value which has to be determined.

The forecast value f̂
(1)
N+1 is found to minimize the distance between f̂

(1)

N+1 and the subspace
spanned by the eigenvectors v1, . . . ,vr. Details in this regard are given for example by

Golyandina et al. (2001, pp. 95–96). Once f̂
(1)
N+1 has been computed, the process can be

iterated to obtain recurrent forecasts for longer horizons.

In CSSA we consider k multivariate populations with L × L symmetric, positive-definite
covariance matrices Σ1, . . . ,Σk. The notion of common principal components (CPCs),
introduced by Flury (1988), implies that these matrices share principal components, i.e.
there exists an orthogonal matrix Ψ such that ΨTΣiΨ = Λ2

i for i = 1, . . . , k. In this ex-
pression Λ2

1, . . . ,Λ
2
k are diagonal matrices containing the positive eigenvalues of Σ1, . . . ,Σk

respectively.

In practice, data have to be used to estimate Σ1, . . . ,Σk. Let S1, . . . ,Sk denote the usual
sample covariance matrices. Estimating the CPCs entails finding an L × L orthogonal
matrix Q (an estimate of the matrix Ψ) and diagonal matrices D2

1, . . . ,D
2
k (containing

the sample eigenvalues) such that QTSiQ ' D2
i holds simultaneously for i = 1, . . . , k as

closely as possible in some sense. Flury (1988) derived a maximum likelihood approach
for estimating the CPCs, while Trendafilov (2010) introduced a stepwise algorithm for this
purpose — the interested reader is referred to Trendafilov (2010) for more details.

The stepwise approach to CPCs can easily be used in a singular spectrum analysis frame-
work. This entails centering the trajectory matrices Y 1 and Y 2 by subtracting the col-

umn averages, thereby obtaining Ỹ 1 and Ỹ 2. The symmetric matrices S1 = Ỹ 1Ỹ
T

1 and

S2 = Ỹ 2Ỹ
T

2 are formed and can now be provided as input to the stepwise CPC algorithm.
The remainder of the analysis proceeds as described in MSSA.

3 Secondary series properties

In this section the properties which render a secondary series useful for inclusion in a
multiple time series forecasting scheme, such as CSSA and MSSA are determined. For



158 H Viljoen & SJ Steel

this purpose, stepwise CSSA, MSSA and SSA were applied in several simulation scenarios
in order to determine when and to what extent the first two procedures improved upon
SSA.

Consider two time series y1t and y2t for t = 1, . . . , N . The signal-plus-noise structure given
in (1) is assumed, with ε1 and ε2 distributed as follows[

ε1
ε2

]
∼ N

([
0
0

]
,

[
σ21 ρσ1σ2

ρσ1σ2 σ22

])
.

Five covariance matrices were considered in Table 1 for the noise by varying the noise
variance of the secondary series and the correlation between the two noise variables.

Covariance matrix σ2
1 σ2

2 ρ

1 1 1 0
2 1 0.5 0
3 1 4 0
4 1 1 0.5
5 1 1 −0.5

Table 1: Covariance matrix scenarios for the noise in the simulation scenarios.

The primary signal series is assumed to be

f1(t) = 2t+ 5 cos

(
2πt

12

)
+ 5 sin

(
2πt

12

)
t = 1, . . . , N (2)

whereas the secondary signal is assumed to be

f2(t) = a+ b cos

(
2πt

c

)
+ b sin

(
2πt

c

)
t = 1, . . . , N. (3)

The trend in the secondary signal is determined by a, the amplitude of the signal by b
and the period by c. Using different values for a, b and c, different secondary signals are
created and then used in MSSA and stepwise CSSA to forecast the primary signal. The
noise structures in Table 1 are used with each pair of primary and secondary series. This
leads to the following thirty cases of secondary series as shown in Table 2.

Covariance matrix Trend (a) Amplitude (b) Period (c)

1–5 2t 5 12
6–10 0 5 12
11–15 2t 5 6
16–20 2t 5 18
21–25 2t 3 12
26–30 2t 10 12

Table 2: The thirty case scenarios of secondary series.

For Cases 1–5 the secondary series signal is identical to that of the primary series. In
Cases 6–10 the secondary signal is stationary with amplitude and period equal to that of
the primary series. In Cases 11–15 and 16–20 the signals of the primary and secondary
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series differ with respect to period, while in Cases 21–25 and 26–30 the difference is with
respect to amplitude.

In the simulation study the time series length N was set at 100 and the number of simu-
lation repetitions was taken as 500. The six step ahead root mean squared error (RMSE)

RMSE =

√√√√1

6

N+6∑
t=N+1

(ft − f̂t)2. (4)

was calculated as a measure of forecast accuracy. Note that RMSE is calculated as the
square root of the average (over the six steps ahead forecast period) squared difference
between the forecast values (f̂t which is the same as ŷt) and the true signal values (ft).
This can be done since the values of ft are known in a simulation study. The forecast
errors were calculated for L = 12, L = 24 and L = 48. The results for L = 12 are omitted
since there was no improvement. However, taking L = 24 or L = 48 leads to considerable
improvement in the performance of all three techniques. For L = 24 and L = 48, we
investigated r = 2, 3, . . . , 16 and r = 2, 3 . . . , 25 respectively. Table 3 contains the smallest
six step ahead forecast RMS errors and corresponding values of r for each of the three
techniques and the thirty cases for L = 24.

What conclusions can be drawn from Table 3? Overall, it is clear that CSSA is best in all
cases. There are several cases where SSA outperforms MSSA, namely when the secondary
series period differs from that of the primary series. MSSA is particularly bad when the
secondary series period is larger than that of the primary series (see Cases 16–20). Recall
that successive groups of five cases in Table 2 correspond to specific assumptions regarding
the signals. For example, in Cases 1–5 the two signals are identical, in Cases 6–10 the
two signals differ with respect to trend, etc. The five cases within each of these groups
correspond to the noise covariance structures in Table 1, respectively. If we first consider
the different groups, we see that the smallest forecast errors for CSSA are for Cases 1–5
and 26–30. These correspond to the scenarios where the two signals are identical (Cases
1–5) and where the amplitude of the secondary series is larger than that of the primary
series (Cases 26–30). Looking in Table 3 within each of the groups, the most favourable
cases for CSSA are typically the second, fourth and fifth. These correspond to a smaller
secondary noise variance, a positive correlation between the two noise variables and a
negative correlation between the two noise variables, respectively. It would seem that
CSSA benefits especially from the information provided by the secondary series if the
secondary series has the same signal structure as the primary one and/or the secondary
noise variable is correlated with the primary noise variable and/or has a smaller variance.
The best r values for CSSA are equal to 3 except for Cases 11–20, where r = 5 is best.
For MSSA the optimal r value is 4 in all cases except for Cases 11–20 where r = 6. The
best r-value for SSA is r = 4.

The L = 48 results show that the forecast errors for CSSA are largely the same whereas
those of MSSA and SSA are slightly smaller. Overall, CSSA is still best in all cases. The
performance of MSSA in Cases 16–20 is significantly better than with L = 24 and is more
or less the same as that of SSA. The best scenarios for CSSA are once again Cases 1–5
and 26–30. Finally, within each group of five cases it is again the second, fourth and fifth
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Stepwise CSSA MSSA Stepwise SSA
Case r-value RMSE r-value RMSE r-value RMSE

1 3 0.413 4 0.564 4 0.647
2 3 0.359 4 0.628 4 0.700
3 3 0.460 4 0.651 4 0.639
4 3 0.385 4 0.604 4 0.633
5 3 0.376 4 0.527 4 0.638
6 3 0.430 4 0.609 4 0.624
7 3 0.423 4 0.633 4 0.661
8 3 0.569 4 0.590 4 0.627
9 3 0.429 4 0.612 4 0.620
10 3 0.400 4 0.594 4 0.635
11 5 0.532 6 0.719 4 0.687
12 5 0.511 6 0.692 4 0.665
13 5 0.553 6 0.743 4 0.691
14 5 0.506 6 0.703 4 0.655
15 5 0.501 6 0.662 4 0.669
16 5 0.595 6 1.117 4 0.635
17 5 0.581 6 1.073 4 0.658
18 5 0.656 6 1.193 4 0.666
19 5 0.605 6 1.140 4 0.623
20 5 0.585 6 1.080 4 0.648
21 3 0.392 4 0.621 4 0.666
22 5 0.493 4 0.638 4 0.671
23 3 0.478 4 0.660 4 0.632
24 3 0.480 4 0.630 4 0.650
25 3 0.382 4 0.603 4 0.699
26 3 0.403 4 0.614 4 0.707
27 3 0.389 4 0.578 4 0.680
28 3 0.430 4 0.593 4 0.622
29 3 0.407 4 0.597 4 0.660
30 3 0.342 4 0.494 4 0.602

Table 3: Optimal r-values and forecast errors for L = 24.

that perform best. The r-values are the same as for L = 24. Since the conclusions for
L = 48 are essentially the same as for L = 24, we do not include the table for L = 48.

4 Procedures for selecting a secondary series

Consider a practical situation of forecasting a primary time series. Incorporating the
information provided by a secondary series may improve the forecast accuracy of the
primary series. If several secondary series are available the question arises as to which and
how many of these should be included in the analysis. In this study an attempt to provide
a partial answer is presented. The attention is restricted to the possibility of including
a single secondary series and since CSSA was found best in the first simulation study,
only this technique is used in the second simulation study. More specifically, a primary
time series together with nine secondary series which are candidates for inclusion in the
analysis are simulated. Based on the results of the first simulation study four procedures
for selecting a secondary series is considered. For explanatory purposes the primary series
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is referred to as Series 1 and to the nine secondary series as Series 2 up to Series 10. The
first step is to perform CSSA with Series 1 and each of Series 2 up to Series 10. This gives
nine sets of pairs of residuals (residuals for Series 1 paired with each of the Series 2–10).
Selecting a secondary series makes use of these residuals. In Procedure 1 three (out of nine)
secondary series with smallest residual variances is identified. Procedure 1 then selects,
from these three, the one with residuals having the largest negative correlation with the
primary residuals. Procedure 2 selects, from among the nine available, the secondary
series with smallest residual variance. Similarly Procedure 3 selects the secondary series
with residuals having the largest negative correlation with the primary residuals. Finally,
Procedure 4 randomly selects a secondary series from the nine options. This procedure is
included to see whether using a criterion to select the secondary series does better than
simply randomly adding one. SSA is also included in order to verify the value of using a
secondary series.

Seven cases were investigated in the simulation study. In all of these the primary series
signal is given by equation (2). The secondary series signal is given by equation (3).
Table 4 summarizes the choices for a, b and c.

Cases a b c

1 −2t 5 12
2 0 5 12
3 −2t 5 12
4 −2t 5 6
5 −2t 5 18
6 −2t 3 12
7 −2t 10 12

Table 4: Choices for a, b and c in the second simulation study.

In each of these cases observations of the primary and nine candidate secondary series was
simulated by adding Gaussian noise to the signal values. The noise values were simulated
from a ten variable Gaussian distribution with mean zero and covariance matrix

Σ =



1 0 0 0 0.35 0.247 1 −0.35 −0.247 −1
0 1 0 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0

0.35 0 0 0 1 0 0 0 0 0
0.247 0 0 0 0 0.5 0 0 0 0

1 0 0 0 0 0 4 0 0 0
−0.35 0 0 0 0 0 0 1 0 0
−0.247 0 0 0 0 0 0 0 0.5 0
−1 0 0 0 0 0 0 0 0 4


.

Regarding the variances of the noise of the candidate series, we look at cases having
the same noise variance as the primary series, having smaller noise variance and having
larger noise variance. As far as the correlation between the primary noise series and the
secondary noise series is concerned, we have three uncorrelated cases, three cases with
positive correlation and three cases with negative correlation. The specific numerical
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values in the matrix were used to ensure that the covariance matrix remains positive
definite. The results discussed below are for L = 24, N = 100 and using 800 simulation
repetitions. Root mean square errors (RMSE) are given for the four procedures and seven
cases in Table 5.

Value of r
2 3 4 5 6 7 8 9 10

Proc 1 3.105 0.363 0.419 0.497 0.558 0.614 0.675 0.749 0.809
Proc 2 3.112 0.372 0.419 0.505 0.562 0.620 0.679 0.738 0.795
Proc 3 3.112 0.373 0.421 0.511 0.571 0.632 0.686 0.746 0.811
Proc 4 3.138 0.409 0.446 0.524 0.570 0.642 0.698 0.767 0.825C

a
se

1

SSA 10.882 6.741 0.664 0.723 0.794 0.873 0.956 1.028 1.084

Proc 1 33.732 0.415 0.467 0.547 0.605 0.664 0.727 0.789 0.844
Proc 2 36.820 0.486 0.526 0.600 0.657 0.712 0.767 0.805 0.869
Proc 3 34.601 0.456 0.496 0.569 0.612 0.673 0.736 0.790 0.845
Proc 4 18.348 0.473 0.509 0.593 0.639 0.709 0.758 0.805 0.864C

a
se

2

SSA 10.85 6.715 0.646 0.697 0.779 0.849 0.919 1.001 1.066

Proc 1 3.025 0.385 0.438 0.516 0.568 0.637 0.691 0.749 0.810
Proc 2 3.032 0.424 0.471 0.547 0.600 0.670 0.727 0.790 0.860
Proc 3 3.037 0.404 0.458 0.542 0.601 0.664 0.715 0.775 0.831
Proc 4 3.049 0.405 0.446 0.532 0.586 0.653 0.714 0.786 0.856C

a
se

3

SSA 10.802 6.657 0.670 0.744 0.817 0.886 0.960 1.043 1.116

Proc 1 5.193 4.315 2.839 0.493 0.535 0.607 0.658 0.727 0.782
Proc 2 5.052 3.834 2.652 0.512 0.551 0.620 0.670 0.732 0.794
Proc 3 5.165 4.207 2.834 0.512 0.551 0.620 0.671 0.735 0.785
Proc 4 4.680 3.909 2.314 0.521 0.557 0.616 0.674 0.749 0.809C

a
se

4

SSA 10.815 6.686 0.638 0.701 0.770 0.842 0.910 0.978 1.042

Proc 1 6.659 6.518 3.090 0.572 0.608 0.688 0.733 0.798 0.850
Proc 2 6.658 6.497 3.086 0.583 0.612 0.684 0.738 0.797 0.858
Proc 3 6.652 6.506 3.090 0.593 0.623 0.691 0.744 0.813 0.872
Proc 4 6.662 6.513 3.098 0.604 0.639 0.708 0.747 0.825 0.891C

a
se

5

SSA 10.846 6.716 0.664 0.724 0.811 0.879 0.943 1.011 1.089

Proc 1 3.102 0.371 0.416 0.500 0.56 0.625 0.678 0.744 0.797
Proc 2 3.126 0.401 0.449 0.520 0.569 0.634 0.687 0.768 0.823
Proc 3 3.124 0.396 0.437 0.511 0.571 0.645 0.697 0.757 0.812
Proc 4 3.119 0.430 0.467 0.539 0.591 0.658 0.713 0.779 0.828C

a
se

6

SSA 10.820 6.695 0.649 0.701 0.787 0.854 0.932 1.006 1.071

Proc 1 3.112 0.363 0.417 0.499 0.566 0.630 0.694 0.764 0.820
Proc 2 3.116 0.375 0.430 0.508 0.571 0.632 0.695 0.758 0.815
Proc 3 3.099 0.381 0.431 0.506 0.558 0.633 0.696 0.769 0.842
Proc 4 3.142 0.397 0.442 0.524 0.579 0.660 0.708 0.783 0.829C

a
se

7

SSA 10.835 6.701 0.681 0.739 0.814 0.887 0.968 1.042 1.116

Table 5: Forecast RMSE for different values of r.

Figures 1 and 2 illustrate the series that were selected by the different procedures in the
seven different cases. Given the best r-value, Procedure 1 almost always selects Series 8.
This is not unexpected since Procedure 1 is designed to select the secondary series simul-
taneously having small residual variance and with residuals having negative correlation
with the primary series residuals. Series 8 is simulated to have both these properties. As
expected the residuals from the pairwise CSSA analyses to a large extent reflect the co-
variance structure used in generating the residuals of the series (provided that the correct
value of r is chosen). Similar remarks can be made for Procedures 2 and 3: Procedure
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2 chooses either series 2, 5 or 8 (corresponding to medium residual variances equal to
1) while Procedure 3 chooses series 9 (the series with residuals having the largest neg-
ative correlation with the primary series residuals) with high probability. As expected,
Procedure 4 almost uniformly selects any of the series.

In Figure 3 the choice of secondary series for Procedure 1 and Case 4 is shown for different
values of r. We see that initially there is no clear pattern. From r = 4 onwards there is a
very strong preference for Series 8. Note that r = 5 is the best choice of r for this case.
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Figure 1: Choice of secondary series for Cases 1, 2 & 3.
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Figure 2: Choice of secondary series for Cases 4, 5, 6 & 7.
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Figure 3: Choice of secondary series for different values of r.

5 An example

In this section an application of the procedures to a practical dataset is described. The
data are from Franses & Van Dijk (2013). The data consist of eight daily indices of
stock markets in Amsterdam (EOE), Frankfurt (DAX), Hong Kong (Hang Seng), London
(FTSE100), New York (S&P 500), Paris (CAC40), Singapore (Singapore All Shares) and
Tokyo (Nikkei) for the period 6 January 1986, until 31 December 1997. The data from
1 January 1988 until 28 December 1997 are considered, giving a total of 2 606 observations.
The study entailed 26 repetitions. In each repetition 100 consecutive observations were
analysed using each of the five procedures and six step ahead forecasts were computed. The
eight indices differ substantially in terms of their magnitudes, varying from approximately
200 up to approximately 22 000. Equation (4) was therefore modified to give a mean
absolute relative percentage error measure,

1

6

N+6∑
t=N+1

∣∣∣∣ft − ŷtft

∣∣∣∣× 100.

In Tables 6 and 7 the results are summarized for L = 24 and L = 48, respectively.

The results in these tables were obtained by using the Amsterdam index as primary
series with the other seven indices acting as candidate series. We see that all procedures
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Value of r
L = 24 2 3 4 5 6 7 8 9 10

Proc 1 1.841 1.754 1.556 1.39 1.681 1.851 2.053 1.904 1.984
Proc 2 1.743 1.668 1.501 1.411 1.676 1.884 1.794 1.650 1.606
Proc 3 1.945 1.576 1.575 1.363 1.687 1.762 1.943 1.840 2.015
Proc 4 1.700 1.606 1.890 1.555 1.691 1.736 1.556 1.557 1.825
SSA 2.304 1.731 1.768 1.513 1.650 1.561 1.759 1.560 1.647

Table 6: Mean absolute relative percentage errors for L = 24.

Value of r
L = 24 2 3 4 5 6 7 8 9 10

Proc 1 2.422 2.673 2.279 1.895 1.478 1.863 2.119 2.056 2.236
Proc 2 2.284 2.306 2.145 1.913 1.56 1.833 2.211 2.371 2.144
Proc 3 2.462 2.845 2.275 2.047 1.581 2.011 2.225 2.037 2.103
Proc 4 2.063 1.928 2.09 1.867 1.954 2.046 1.939 1.882 3.001
SSA 3.338 2.277 2.431 2.899 2.732 2.960 2.927 2.881 3.030

Table 7: Mean absolute relative percentage errors for L = 48.

performed better for L = 24 than for L = 48. The best results were obtained for r = 5 with
Procedure 3 giving the lowest error, closely followed by Procedure 1. We also found that
the Singapore All Shares and Tokyo Nikkei indices were by far selected most frequently
by Procedures 1 to 3. All in all it seems that some useful information could be provided
by these indices when trying to predict the Amsterdam index.

6 Conclusions and questions for further research

In this paper the possibility of selecting a secondary time series from a set of available
candidates for use in stepwise CSSA was investigated. Four procedures were studied re-
flecting different strategies to select the secondary series. These procedures were compared
to using SSA where no secondary series is involved. It was found that selecting a secondary
series with residuals negatively correlated to that of the primary series gave the best re-
sults, outperforming SSA in all cases. A question which deserves further investigation is
how to select a value of r from the data.
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