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Introduction
African swine fever (ASF) is a World Organisation 
for Animal Health-listed, highly fatal, and 
socioeconomically devastating viral disease of domestic 
and feral swine that currently has neither an approved 
vaccine nor treatment. It is endemic in some parts of the 
world (e.g., sub-Saharan Africa) and there are ongoing 
outbreaks in both Asian and European countries 
(Normile, 2019). After ASF virus (ASFV)-specific 
prevention measures fail, the incursion of ASFV causes 
disease outbreaks that can be far-reaching and long-
lasting. Strategies to rapidly control outbreaks include 
testing and removal (with mixed results; Swine Health 
Information Center, 2021) as well as culling affected 

farms; although, in some cases culling just the affected 
farms results in only partial control and hence entire 
regions have to be depopulated (e.g., see Council of the 
European Union, 2002; United States Department of 
Agriculture (USDA), 2021). Such measures negatively 
impact the swine industry and more generally food 
security and the livelihoods of farmers and those in 
the allied industries (Mason-D’Croz et al., 2020; OIE, 
2020).
To improve outbreak management strategies, proactive 
risk assessments that include simulation modeling 
of disease transmission dynamics under varying 
circumstances can be used to guide policy for effective 
surveillance of infected farms, deployment of critical 
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Abstract
Background: African swine fever (ASF) is one of the most important foreign animal diseases to the U.S. swine 
industry. Stakeholders in the swine production sector are on high alert as they witness the devastation of ongoing 
outbreaks in some of its most important trade partner countries. Efforts to improve preparedness for ASF outbreak 
management are proceeding in earnest and mathematical modeling is an integral part of these efforts.
Aim: This study aimed to assess the impact on within-herd transmission dynamics of ASF when the models used to 
simulate transmission assume there is homogeneous mixing of animals within a barn. 
Methods: Barn-level heterogeneity was explicitly captured using a stochastic, individual pig-based, heterogeneous 
transmission model that considers three types of infection transmission, (1) within-pen via nose-to-nose contact; 
(2) between-pen via nose-to-nose contact with pigs in adjacent pens; and (3) both between- and within-pen via 
distance-independent mechanisms (e.g., via fomites). Predictions were compared between the heterogeneous and the 
homogeneous Gillespie models. 
Results: Results showed that the predicted mean number of infectious pigs at specific time points differed greatly 
between the homogeneous and heterogeneous models for scenarios with low levels of between-pen contacts via 
distance-independent pathways and the differences between the two model predictions were more pronounced for the 
slow contact rate scenario. The heterogeneous transmission model results also showed that it may take significantly 
longer to detect ASF, particularly in large barns when transmission predominantly occurs via nose-to-nose contact 
between pigs in adjacent pens. 
Conclusion: The findings emphasize the need for completing preliminary explorations when working with 
homogeneous mixing models to ascertain their suitability to predict disease outcomes.
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activities to prevent further outbreak spread, and 
continuity of business for farms that are not known to 
be infected within a region (see Hayes et al., 2021 for 
ASF modeling review). When focusing on modeling 
ASFV transmission within a single swine barn, it is 
important to include several pathways and mechanisms 
that can facilitate its spread. These may include direct 
(e.g., nose-to-nose) or indirect (e.g., fomite-mediated) 
contact between pigs (Depner et al., 2016; Schulz et 
al., 2019; Lee et al., 2020). Additional factors that 
may influence the speed of ASFV spread include those 
related to virus-host interactions, farm management, 
and environmental conditions (Schulz et al., 2019). 
Ideally, in order to improve the accuracy of the model 
outcomes, all details of the influential disease spread 
mechanisms would need to be explicitly captured 
in the disease transmission model. Such details 
are better captured in heterogeneous models rather 
than homogeneous models which assume uniform 
mixing between all animals in the population. 
Although it is recognized that using a homogenous 
model with a uniform mixing assumption may 
result in oversimplification and underestimation, the 
heterogeneous models are not often deployed due to 
their computational intensity and the necessitation 
of more refined data to parameterize (Keeling and 
Rohani, 2008). The rapid results generated from the 
homogeneous models can also provide quick insights 
into disease spread dynamics and are therefore useful 
under time-sensitive circumstances. For highly 
transmissible and fast-spreading swine diseases like 
foot and mouth disease, homogeneous mixing within 
the barn can be a reasonable simplifying assumption 
(Kinsley et al., 2018). Detailed descriptions of how 
these approaches may differ have been reported 
elsewhere (Hethcote, 1996; Bansal et al., 2007; Burr 
and Chowell, 2008; Keeling and Rohani, 2008; Kong 
et al., 2016; Andraud and Rose, 2020).
A variety of approaches have been used in the literature 
to model within barn ASFV transmission. For example, 
Guinat et al. (2016) and Faverjon et al. (2021) model 
transmission heterogeneously, and both assume that 
transmission occurs due to direct contacts within-pen 
and between-pen. A similar approach is used by Nielsen 
et al. (2017) who assume ASFV can be transmitted to 
non-adjacent pens according to a distance-dependent 
scaling factor. On the other hand, Barongo et al. (2016) 
and Malladi et al. (2022) assume homogeneous mixing 
of the pigs in the population.
In this article, we explain a novel heterogeneous 
approach that was developed and assumes that ASFV 
transmission occurs due to direct within- and between-
pen contacts as well as via distance-independent 
pathways. We explore the effect of heterogeneity on 
simulated output through comparison to the output 
from a homogeneous mixing Gillespie algorithm, that 
is, a continuous-time transmission model used for fast 
simulation of stochastic processes (Gillespie, 1977; 

Vestergaard and Génois, 2015). The developed model 
captures the clustering of infected pens with jumps 
between pens via distance-independent pathways based 
on ASF outbreak observations.
We evaluated simulated output from the heterogeneous 
model for a variety of scenarios. These scenarios 
included variations in (a) the number of infectious pigs 
over time post-virus exposure for slow and fast contact 
rates; (b) contact patterns as informed by barn layout and 
pen structure, for example, that varied by the relative 
importance of within-pen and between-pen spread and 
distance-independent transmission; and (c) the time 
to detection based on elevated mortality for different 
population sizes and the amount of transmission due 
to distance-independent pathways. Since heterogeneity 
in infection rates can influence epidemic spread (Cai 
et al., 2013), our endeavors included the imperative 
step of measuring the impact of the underlying model 
assumptions in our efforts to improve interpretation 
and model selection.

Materials and Methods
We used a stochastic individual-based heterogeneous 
transmission model to simulate ASFV spread within one 
growing pig production premises. The heterogeneous 
transmission model incorporates different transmission 
rates within and between pig subpopulations such as 
pens and rooms. The model simulates the number 
of pigs in susceptible (S), latent (E), infectious (I), 
recovered (R), and dead (D) states in 0.01-day time 
steps (Δt) and a schematic model for the transmission 
dynamics is presented in Figure 1. The number of 
pigs with mild clinical signs, severe clinical signs, 
and detectable viremia was also reported to support 
surveillance evaluation; however, these states do not 
impact the transmission dynamics in the current model. 
An infectious pig may transition to the dead state with 
a probability Pmort or transition to the recovered state 
otherwise. The disease state durations were all modeled 
to be Gamma distributed. In what follows, we provide 
the equations for various within- and between-pen 
transmission mechanisms. Wherever used, Is and Ns 
are, respectively, the number of infectious and the total 
number of pigs in a pen s. The presented formulations 
for the transmission terms follow derivations described 
previously (Becker, 1989; Ssematimba et al., 2018).

Fig. 1. A schematic diagram capturing the transmission 
dynamics of the ASFV within a herd. Infected pigs can be 
either subclinical or clinical and this was modeled as an 
attribute to support further analysis.
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Transmission term expression for contacts that 
exclusively occur within a pen
We assume that transmission via contacts that 
exclusively occur within a pen is frequency-dependent 
(e.g., direct contact with pen mates). The number of 
contacts each susceptible pig has with other pigs in 
the same pen per unit time is assumed to be Poisson 
distributed with mean Bd per unit time. The probability 
Pd that a susceptible pig in a pen k has contact with at 
least one infectious pig within the same pen in time step 
∆t is given by

Pd = 1– exp (–Bd

Ik
∆t)Nk

� (1)

Between-pen transmission via nose-to-nose contact 
with adjacent pens
Here, we consider a pen k with two adjacent pens k−1 
and k+1 separated by railings where nose-to-nose 
contact between pigs may occur. Let η be the mean 
number of contacts per unit time with pigs in adjacent 
pens (e.g., nose-to-nose) per pig per railing and βns be 
the total number of contacts with pigs in adjacent pens 
per unit time. Because there are two adjacent pens, the 
mean number of contacts with pigs in adjacent pens per 
time step would be 2η∆t or equivalently Bns∆t. Assuming 
that the number of contacts is Poisson distributed, then 
the probability Pns that a susceptible pig has a nose-to-
nose contact with at least one infectious pig in one of 
the two adjacent pens in time step ∆t is given by,

Pns = 1– exp (–Bns

Ik-1+ Ik+1
∆t)Nk-1+ Nk+1

� (2)

We now consider an edge pen k with only one adjacent 
pen k+1. In this case, the expected number of contacts 
between pigs in pens k and k+1 in a time step is η∆t or 
equivalently 0.5 × Bns∆t. Note that if the adjacent pen 
contact rate was not adjusted to 1/2βns for an edge pen, 
there would be a discrepancy in the number of contacts 
between the source and recipient pens.
Between- and within-pen transmission via distance-
independent mechanisms
We consider that contacts for distance-independent 
transmission mechanisms, for example, via fomites, 
people, etc., may occur at a similar frequency 
throughout the barn regardless of whether the pigs 
are within the same pen. Assuming that the number of 
contacts per unit time for these mechanisms is Poisson 
distributed with mean βp, the probability that at least one 
of the contacts via distance-independent transmission 
mechanisms in time step ∆t is with an infectious pig is 
given by:

Pp = 1– exp (–Bp

∑i+ Ii
∆t)∑i+ Ni

� (3)

The overall probability that a susceptible pig in pen k 
at time t becomes infected by t+∆t is given by Po in 
Equations (4) and (5) for a pig in non-edge and edge 
pens, respectively

Po = 1– 
exp

– 
Bp

∑i+ Ii + Bd

Ik + Bns

Ik-1+ Ik+1

∑i+ Ni Nk Nk-1+ Nk+1

∆t

�	
					                     (4)

Po = 1– 
exp – 

Bp

∑i+ Ii

+ Bd

Ik

+
Bns Ik+1

∑i+ Ni Nk 2 Nk+1

∆t

�	

					                     (5)

Reparametrizing to evaluate the relative importance 
of spread pathways and facilitate translation of 
transmission rates from published literature
Experimental contact rate estimates for ASF and 
other diseases from the literature are often provided 
separately for contacts that occur exclusively within or 
between pens. In what follows, we derive equations to 
calibrate the contact rates βd, βp, βns in our formulation 
according to published contact rates βw and βb by 
equating the force of infection (infection hazard for 
a susceptible pig) terms for within- and between-pen 
transmission components. Let θ be the mean proportion 
of the between-pen contacts associated with distance-
independent pathways. Then equating the force of 
infection for a pig in pen k via nose-to-nose contact 
with pigs in adjacent pens gives

Bb * (1– θ)
Ik-1 + Ik+1 = Bns

Ik-1 + Ik+1

Nk-1 + Nk+1 Nk-1 + Nk+1
� (6)

Bns = Bb * (1– θ) � (7)

The force of infection term for a pig in pen k for 
between-pen contacts via distance-independent 
mechanisms is given by Equation (8). The right-hand 
side (RHS) of Equation (8). is the product of the contact 
rate for distance-independent pathways, multiplied by 
the probability that the contact is with a pig in another 
pen and the probability that the contact is with an 
infectious pig given that it is in another pen.

Bb θ
∑i≠k Ii = Bp

∑i≠k Ni

∑i≠k Ni ∑i Ni

∑i≠k Ii

∑i≠k Ni
� (8)

Bp = Bp θ
∑iNi

∑i≠k Ni
� (9)

Similarly, the force of infection for direct within-pen 
transmission under the two formulations would be 
as given in Equation (10). The second term on the 
RHS of Equation (10) is the contact rate for distance-
independent mechanisms multiplied by the probability 
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that the contact occurs within the same pen and the 
probability that the contact is with an infectious pig if it 
occurs within the same pen.

Bw

Ik = Bd

Ik + BPNk Nk

Nk Ik

∑iNi* Nk
� (10)

Bd = Bw– Bp

Nk

∑i Ni
� (11)

Equations (7), (9), and (11) can be used to calibrate the 
model parameters for the alternative formulations in the 
literature that are estimated exclusively for within- and 
between-pen contact rates. The parameter θ can be used 
to control the proportion of between-pen transmission 
occurring via nose-to-nose contact with pigs in adjacent 
pens or through distance-independent mechanisms.
Comparison with Gillespie's direct approach
We performed a simulation evaluation to help identify 
conditions where the heterogeneous model output 
differs from the homogeneous Gillespie algorithm. 
The heterogeneous and homogeneous models were 
parameterized according to the Genotype II highly 
virulent Georgia 2007/1 ASFV strain and compared 
by the mean number of infectious pigs over time post-
virus exposure from 10,000 simulation iterations. 
The heterogeneous model simulations were based on 
a 1,200 growing pig barn with two rows of 15 pens 
each separated by a central alleyway and 40 pigs per 
pen. The heterogeneous model was compared to the 
homogeneous Gillespie algorithm implementation 
(Gillespie, 1977) with four disease states (susceptible, 
latent, infectious, and dead) where the pen structure 
within the barn was not considered, and all pigs were 
assumed to die following infection (c.f. 40% in Table 
1 for moderately virulent strain). The mean latent 
and infectious periods were set to 4.0 and 4.5 days, 
respectively, based on a literature review by Hayes et al. 
(2021). In the heterogeneous model, the relative values 
of βd, βp, and βns were varied while equating their sum 

to the daily adequate contact rate in the homogeneous 
model to enable comparison. We evaluated two 
contact rate scenarios based on the literature. The βw 
and βb values in the fast contact rate scenario were, 
respectively, 2.62 and 0.99 per day based on (Hu et al., 
2017). In the slow contact rate scenario, βw of 0.6 per 
day and βb of 0.3 per day were applied based on Guinat 
et al. (2016).
Let φ be the fraction of transmission from an infected pig 
that occurs within a pen, that is, . Then φ was calculated 
to be 0.73 and 0.67 based on the adequate contact 
rate estimates from Hu et al. (2017) and Guinat et al. 
(2016), respectively. In the first set of comparisons, we 
evaluated φ values of 0.5, 0.7, and 0.9 while assuming 
purely distance-independent between-pen transmission 
(θ = 1) to evaluate the impact of the relative magnitudes 
of within- and between-pen transmission. 
In the next set of comparisons, we compared the 
Gillespie model with the heterogeneous model for θ 
values of 0.05, 0.5, and 1 to help infer the impact of the 
relative contribution of distance-independent between-
pen spread versus spread to adjacent pens via nose-to-
nose contact. The fraction of within-pen transmission φ 
was assumed to be 0.7 for these simulations based on 
Hu et al. (2017) and Guinat et al. (2016).
Impact of heterogeneous within-herd transmission 
on the predicted time to ASF detection via increased 
mortality
In this section, we evaluate the predicted time to 
ASF detection under various transmission scenarios 
to understand how heterogeneous transmission, 
transmission in clusters due to adjacent pen spread, 
and barn size impact the time to detection via daily 
mortality trigger thresholds. We previously estimated 
the transmission parameters for moderately virulent 
ASFV strains using data presented by (de Carvalho 
Ferreira et al., 2013) in previous work (Malladi et 
al., 2022). Analysis of mortality data from five flows 
and 248 finisher herds indicated that a daily mortality 
trigger threshold of 5 per 1,000 finisher pigs results in 
a low frequency of false triggers (Malladi et al., 2022). 

Table 1. Disease state duration and transmission parameters used for simulating the time to detect moderately virulent ASFV. 

Parameter Distribution details Value
Latently infected period (days) Gamma (shape = 13.299, scale = 0.3384482) 4.501 (95% P.I., 2.417, 7.223)
Infectious period for pigs that 
recover (days) Gamma (shape = 55.42012, scale = 0.7950162) 44.06 (95% P.I., 33.23, 56.394)

Infectious period for pigs that die 
due to ASF (days) Gamma (shape = 9.632, scale = 0.862) 8.306 (95% P.I., 3.918, 14.314)

Fraction of infected pigs dying 
due to ASF Point estimate 0.4

Within-pen adequate contact rate 
βw per day

BetaPERT (min = 1.00, most likely = 1.64, max = 
2.74) 1.72 (95% C.I., 1.2–2.4)

Between-pen adequate contact 
rate βb per day BetaPERT (min = 0.1, most likely = 0.3, max = 0.5) 0.3 (95% C.I., 0.16–0.44)
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The time to detection was then calculated as the earliest 
day when the simulated daily mortality exceeded a 
specified fraction of the herd (i.e., daily mortality 
trigger threshold). The disease state duration and other 
transmission parameters for moderately virulent ASFV 
strains applied in the time-to-detection analysis section 
are summarized in Table 1 and based on Malladi et al. 
(2022). Two barn configurations and population sizes 
were evaluated, specifically: (1) a growing pig barn with 
two rows of pens separated by a central alleyway with 
each row having 15 pens, each holding 40 pigs with a 
total population of 1,200 pigs and (2) a hypothetical 
growing pig barn with two rows of 60 pens each, again 
separated by a central hallway and each pen holding 40 
pigs, but with a larger total population of 4,800 pigs. 
Although the larger quad barns with 4,800 pigs are 
typically organized into multiple rooms, we considered 
a conceptual 4,800-pig barn with a single airspace 
in this analysis to understand how barn size impacts 
the relative difference between the homogenous and 
heterogenous spread. The results were estimated from 
10,000 simulation iterations.

Results
The results on the number of infectious pigs on various 
days post-exposure in a 1,200-growing pig barn for the 
Gillespie algorithm and the heterogeneous transmission 
model with various fractions of within-pen transmission 
(φ) are shown and compared in Figure 2. The predicted 
number of infectious pigs per the heterogeneous model 
was similar to the homogeneous Gillespie model when 

φ was 0.5. There was a more gradual increase in the 
predicted number of infectious pigs from outputs of the 
heterogeneous model when the fraction of within-pen 
spread (φ) was increased to 0.7 and 0.9. The differences 
between the heterogeneous and homogeneous results 
were more pronounced in the slow contact rate scenario.
The predicted number of infectious pigs on various 
days post-exposure in a barn with 1,200 pigs per the 
Gillespie algorithm and the heterogeneous transmission 
model with various fractions of distance-independent 
between-pen transmission (θ) and φ set to 0.7 are 
shown and compared in Figure 3. There was a greater 
difference between the heterogeneous model and the 
homogeneous Gillespie model at low θ values. Once 
again, the differences between the heterogeneous and 
homogeneous model results were more remarkable 
in the slow contact rate scenario. For example, and 
to summarize, the heterogeneous model predicted far 
fewer than 100 infectious pigs at 40 days post-exposure 
for slow contact rate scenarios and with either a high φ 
or low θ; whereas the homogeneous model predicted 
well over 100 infectious pigs at the same time point 
post-exposure.
The predicted time to detect ASF based on a daily 
mortality trigger threshold of 5 per 1,000 pigs is shown 
in Table 2. We observe that it may take significantly 
longer to detect ASF with the heterogeneous 
transmission model particularly in large populations 
in the same premises, for example, barns with a total 
population of 4,800 pigs or more, especially when the 
transmission predominantly occurs via nose-to-nose 

Fig. 2. Comparison of the number of infectious pigs in a 1,200-growing pig barn based on the homogeneous Gillespie 
algorithm and the heterogeneous transmission model with various fractions of within-pen transmission (φ) and distance-
independent between-pen transmission (θ = 1).
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contact between pigs in adjacent pens. This effect is 
most noticeable when between-pen spread mainly 
occurs via nose-to-nose contacts (i.e., low θ of 0.05) 
and where transmission is clustered.

Discussion
Improved preparedness for and response to ASF 
outbreaks is vitally important given the socioeconomic 
impact associated with the ongoing epidemics globally. 
Mathematical models provide a platform to evaluate 
control strategies like control area surveillance 
protocols and can thus inform disease management 

policies and proactive risk assessments. Several 
approaches to disease dynamics modeling exist and 
one of the broad classifications is heterogeneous versus 
homogeneous transmission. These two approaches 
can have discrepancies in predicted outcomes and the 
choice of which to use is often informed by factors 
like the objective of the analysis, data availability, 
suspected or identified transmission pathways, and 
computational effort, among others. Comparing and 
contrasting these approaches can help harmonize 
and build confidence in their applications, ultimately 

Fig. 3. Comparison of the number of infectious pigs in a 1,200-growing pig barn based on the homogeneous Gillespie 
algorithm and the heterogeneous transmission model with various fractions of distance-independent between-pen transmission 
(θ) among the total between-pen transmission.

Table 2. Predicted time to detect ASF based on a daily mortality trigger threshold of 5 per 1,000 pigs under various 
heterogeneous and homogeneous within barn transmission scenarios. The homogeneous model results are in italics for emphasis 
and comparison.

Within-Barn 
transmission Model type 

Barn layout (total 
population)

Fraction of distance-
independent, between-pen 

transmission (θ)

Mean predicted days to detection 
post-exposure (95% prediction 

interval)
Heterogeneous 120 pens (4,800 pigs) 0.05 42 (31–65)
Heterogeneous 120 pens (4,800 pigs) 0.5 33 (27–41)
Homogeneous 120 pens (4,800 pigs) NA 27 (23–32)
Heterogeneous 30 pens (1,200 pigs) 0.05 25 (12–35)
Heterogeneous 30 pens (1,200 pigs) 0.5 25 (9–32)
Homogeneous 30 pens (1,200 pigs) NA 22 (7–27)
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providing more informative analyses of outbreak 
response and prevention.
From the model results displayed in Figure 2, we 
observe that the predicted mean number of infectious 
pigs was similar across the two approaches when the 
fraction of within-pen transmission φ was 0.5. The 
predicted numbers from the two models diverge as φ 
increases. In particular, the predicted mean number 
of infectious pigs was lower in the heterogeneous 
model at φ of 0.7 and 0.9 during the early stages of 
herd infection. The differences were more apparent in 
the slow contact rate scenario. This is likely due to the 
greater chance of generating higher φ values that occurs 
when the infectious pig makes contact with another 
infected pig in the same pen and thus does not result 
in disease transmission to a susceptible pig, which is 
a type of contact that subsequently results in slower 
between-pen transmission. 
The results in Figure 3 and Table 2 show that there is a 
greater difference between the heterogeneous model and 
the homogeneous Gillespie model when the proportion 
between-pen contacts due to distance-independent 
pathways θ was low. Note that the parameter θ could be 
used to capture disease spread patterns observed in field 
ASF outbreaks that have been described as involving 
clusters of infected pens with jumps between pens via 
distance-independent pathways (Yaros, 2019; Nga et al., 
2020). We hypothesize that the observed discrepancy is 
possibly due to the fact that between-pen spread would 
predominantly occur via nose-to-nose contact with pigs 
in adjacent pens due to the lower θ, and consequently, 
a substantial number of contacts may occur with pens 
that are already infected leading to slower disease 
transmission overall. Relatedly, Kong et al. (2016) 
compared heterogeneous and homogeneous mixing 
models and found that when the disease reproductive 
number is larger than one, in other words, when disease 
transmission is occurring at any rate, even low levels 
of heterogeneity resulted in dynamics similar to those 
predicted by the homogeneous mixing model. Although 
the results of time to detection analysis (Table 2) are 
for moderately virulent strains, the model disease state 
durations were implemented in a flexible framework to 
simulate both highly virulent and moderately virulent 
strains.
From Table 2 results, we observe that detecting ASF 
may take significantly longer when predicted with 
the heterogeneous transmission model, particularly in 
large barns, that is, those with 4,800 pigs, and when 
the transmission predominantly occurs via nose-to-
nose contact between pigs in adjacent pens. A potential 
explanation for the longer time to detection in larger 
barns is that it would take higher daily mortality (24 pigs 
out of a 4,800-pig barn) to exceed the 0.005 mortality 
trigger threshold, by which time of likely occurrence, 
the infection has probably spread to multiple pens.

This analysis showed that homogeneous and 
heterogeneous model outcomes can match, but only 
under specific parameter-related conditions. That this 
matching can indeed occur provides evidence that 
the discrete individual-based approach can be used to 
approximate the continuous-time Gillespie approach 
with adequately small time steps. While the Gillespie 
approach is well understood and traditionally used in 
modeling the epidemiology of many diseases (Golightly 
and Gillespie, 2013; Vestergaard and Génois, 2015; 
Barongo et al., 2016; Hayes et al., 2021), we present 
here rationale and results supporting the use of the 
heterogeneous modeling approach which has the added 
benefits of being overall more malleable, approximate 
homogeneous spread, and has greater flexibility in the 
choice of disease state duration distributions based on 
experimental data. 
The heterogeneous approach developed here can 
approximate the approaches used by Guinat et al. 
(2016) and Faverjon et al. (2021) by setting θ to zero, 
thereby forcing all between-pen transmission to occur 
due to direct contact. When their scaling factor is 
between zero and one, between-pen transmission is 
distance-dependent in Nielsen et al. (2017) approach, 
which assumes that there are more and/or higher 
risk transmission pathways closer to the source pen. 
We explicitly divide between-pen transmission into 
direct and distance-independent pathways, whereas 
in Nielsen et al. (2017), the pathways are expressed 
only in terms of distance. In both approaches, the pigs 
directly adjacent to the source pen face the highest 
infection pressure. However, in our approach, the non-
adjacent pens have the same transmission risk, whereas 
in the Nielsen et al. (2017) approach, the transmission 
risk can modulate, decreasing as the distance from 
the source pen increases. The Nielsen et al. (2017) 
approach may be more appropriate for transmission 
risk from pathways like aerosols, which have been 
shown by Olesen et al. (2017) to spread ASFV over 
short distances within a farm. 
In our evaluation of the heterogeneous model, we 
have seen that the simulated outcomes are sensitive to 
changes in the fraction of within-pen transmission (φ) 
and the mean proportion of the between-pen contacts 
associated with distance-independent pathways (θ). 
This underlines the importance of parameterizing 
the model using high-quality, detailed experimental, 
or outbreak data, or in the absence of such data, 
performing a sensitivity analysis for those parameters 
with substantial uncertainty.
The results of this analysis suggest that homogeneous 
mixing is a reasonable assumption for outbreaks 
with a high contact rate and when a large proportion 
of the disease spread is due to distance-independent 
pathways. If, however, the adequate contact rate is low 
and the disease spread is dependent on whether or not 
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the pigs are in direct contact with each other within the 
same or in adjacent pens, then the homogeneous model 
may overestimate how quickly the virus moves through 
the population. If the results are overestimated, this can 
have serious consequences for decision-making based 
on the model output. For example, as observed in Table 
2, the time to detection of ASFV by mortality triggers 
was lower under the homogeneous mixing assumption, 
especially in large barns. 
Much as we focused on nose-to-nose contact, 
transmission to adjacent pens might also occur via 
contact through feces, urine depending on drain design, 
and fluid flow. Although the current formulation can 
be parametrized to capture the transmission via these 
mechanisms to some extent, detailed modeling of pen 
design and fluid flow needs to be addressed in future 
research. Note that we assumed that all pens were fully 
stocked and that the population was closed (i.e., with no 
pig introduction into or removal from the pen) during 
the simulated period. Also, factors such as housing 
structure, stocking density, and production type may all 
influence model predictions.

Conclusion
Overall, this study aimed to compare predictions 
from heterogeneous and homogeneous-based ASF 
transmission dynamics models in order to identify 
transmission scenarios and conditions where it may be 
very important and inevitable to use a heterogeneous 
model for accurate predictions. Given the potential 
differences in predicted outcomes, homogeneous and 
heterogeneous models should be selectively used 
depending on the objective of the analysis and the 
limitations at hand. When intervention strategies 
and disease surveillance options are developed using 
the most informative models, there is a potential 
opportunity to have a realized impact on disease 
control. The discrepancies observed in some of the 
scenarios assessed in this study emphasize the need to 
perform preliminary explorations on the suitability of 
the relatively simple disease transmission models that 
assume homogeneous mixing among individuals.
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