An order-theoretic perspective on categorial closure operators

  • Abdurahman Masoud Abdalla
  • Zurab Janelidze
Keywords: Closure operator, factorization system, modular law, torsion theory

Abstract

This paper deals with an order-theoretic analysis of certain structures studied in category theory. A categorical closure operator (cco in short) is a structure on a category, which mimics the structure on the category of topological spaces formed by closing subspaces of topological spaces. Such structures play a significant role not only in categorical topology, but also in topos theory and categorical algebra. In the case when the category is a poset, as a particular instance of the notion of a cco, one obtains what we call in this paper a binary closure operator (bco in short). We show in this paper that bco's allow one to see more easily the connections between standard conditions on general cco's, and furthermore, we show that these connections for cco's can be even deduced from the corresponding ones for bco's, when considering cco's relative to a well-behaved class of monorphisms as in the literature. The main advantage of the approach to such cco's via bco's is that the notion of a bco is self-dual (relative to the usual posetal duality), and by applying this duality to cco's, independent results on cco's are brought together. In particular, we can unify basic facts about hereditary closure operators with similar facts about minimal closure operators. Bco's also reveal some new links between categorical closure operators, the usual unary closure and interior operators, modularity law in order and lattice theory, the theory of factorization systems and torsion theory.

Keywords: Closure operator, factorization system, modular law, torsion theory

Published
2018-07-17
Section
Articles

Journal Identifiers


eISSN: 1727-933X
print ISSN: 1607-3606