PROMOTING ACCESS TO AFRICAN RESEARCH

Quaestiones Mathematicae

Log in or Register to get access to full text downloads.

Remember me or Register



DOWNLOAD FULL TEXT Open Access  DOWNLOAD FULL TEXT Subscription or Fee Access

Game domination numbers of a disjoint union of paths and cycles

Watcharintorn Ruksasakchai, Kritkhajohn Onphaeng, Chalermpong Worawannotai

Abstract


The domination game is played on a graph G by two players, Dominator and Staller, who alternately chooses a vertex of G in such a way that at least one new vertex is dominated. The game ends when all vertices are dominated. Dominator aims to finish the game in as few moves as possible while Staller aims to finish the game in as many moves as possible. The game domination number γg(G) (respectively γ ′ g(G)) is the total number of moves both players use in a game which Dominator (respectively Staller) starts and both players use optimal strategies. In this paper we determine the game domination numbers of a disjoint union of paths and cycles.

Key words: Domination game, game domination number, disjoint union of paths and cycles.




AJOL African Journals Online