Joint discrete universality for periodic zeta-functions. II

  • Antanas Laurinčikas
Keywords: approximation of analytic functions, periodic Hurwitz zeta-function, periodic zeta-function, universality, Voronin theorem

Abstract

In the paper, for certain classes of operators F in the space of analytic functions, we prove the discrete universality for compositions F (ζ(s, α 𝔞𝔟 )), where ζ(s, α 𝔞 𝔟 ) is a collection consisting from periodic and periodic Hurwitz zeta-functions, i. e., the approximation of analytic functions by discrete shifts F (ζ(s + ikh, α 𝔞 𝔟 )) with h > 0 and k = 0, 1, . . . . For this, a theorem of [12] is applied.

Mathematics Subject Classification (2010): Primary: 11M41; Secondary: 41A30.

Published
2021-02-01
Section
Articles

Journal Identifiers


eISSN: 1727-933X
print ISSN: 1607-3606