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Abstract: Plant physiological processes required for crop productivity are dependent on the availability of water 

to crops. Water availability to crops therefore requires real time monitoring for timeous rescue or intervention 

measures. Such monitoring over vast areas is only possible through remotely sensed techniques such as 

spectroscopy with its numerous fine wavelengths and is non-destructive to the crops as opposed to other 

traditional ground-based methods. The management of spectral reflectance data to extract information of 

importance for plant water status has been motivated by knowledge of the availability of specific bands in the 

electromagnetic spectrum responsible for water absorption. The purpose of this study was to investigate the 

potential of using selected spectral bands to develop water indices that could monitor the water status at leaf level 

on maize (Zea mays) plants grown under field conditions. Leaf spectral reflectance of maize plants was collected 

under three different water conditions being healthy (H), intermediary water stressed (IWS) and water stressed 

(WS) using a leaf-clip of a handheld spectroradiometer. The spectral reflectance indicated an increased reflectance 

in portions of the visible, near-infrared and short infrared regions of the electromagnetic spectrum for the water 

stressed maize plants. The random forest (RF) algorithm was utilised to extract wavelengths of importance from 

which water indices were developed among which were the normalised difference water index (NDWI860-1240) 

and the water band index (WBI950-970). The indices were used in a combined algorithm of RF and partial least 

square (PLS) for its predictive ability to classify the maize leaf water status into the three categories (H, IWS and 

WS). The results showed an overall accuracy of 70±1.2 %. Therefore, confirming the potential of assessing leaf 

water content using in-situ spectroscopy. The three most important indices were NDWI860-1240, NDWI1700-1530 and 

NDWI1530-1360. An in-depth study would be required to quantify and measure actual water content in maize leaves 

and possibly upscale to canopy level which would directly support irrigation management plans. 
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INTRODUCTION 
A. Background on plant water availability 

Water is a key determinant in field crop productivity globally though its availability is highly variable. 

Challenging climate scenarios of unprecedented spatio-temporal temperature and rainfall patterns does translate 

into changes in availability of water to crops (IPCC, 2007). Accurate water content estimation is required to make 

decisions on management schemes and also crop yield estimation in agricultural studies (Peñuelas et al., 1993). 

The water content/status of a plant can be measured from root, stem and leaf material or the whole canopy. Leaf 

analyses are however, the most important for evaluating the nutrient and water status of plants in comparison to 

other tissue types (Suo et al., 2010).  

Leaf water content has been considered as an indirect estimate of the changes in the water status in the leaves 

and could be measured through the reactions of altered plant cell structures (Canny & Huang, 2006). The leaf is 

also mostly responsible for photosynthesis, an essential physiological process in plants. The health and nutrient 

status with water status inclusive of the plants can be evaluated from the leaves where its decrease would serve 

as an important indicator of stress or a limiting factor (de Jong et al., 2012). Therefore, leaf water content can be 

used for the determination of the water status of the plants. Initially, plant water stress has been measured through 

destructive approaches that are limited in spatial extent as a result of being labour intensive (Graeff & Claupein, 

2007). 

The basis of detecting water stress with remote sensing relates to the difference in reflectance properties of 

plants under different water stress levels at certain wavelengths in the NIR portion of the electromagnetic 

spectrum (Genc et al., 2013). The interpretation of these hyperspectral data is complicated by the inter-

relationships between wavelength variables which require extensive statistical techniques to analyse the data for 

meaningful information to be derived. While some studies made use of the leaf spectral reflectance directly to 

assess leaf water content (Gaussman, 1977; Tucker, 1980; Hunt & Rock, 1989; Marraci et al., 1991), others have 

perform data transformations and developed water indices (Ceccato et al., 2002; Sims & Gamon, 2003; Govender 

et al., 2009) to aid in the generation of information about the water status in plants. 

B. Leaf water content and water indices 

Water indices have been developed to evaluate plant water content at both leaf and canopy levels over the years 

the most frequently used ones include the water band index (WBI) (Peñuelas et al., 1993), normalized difference 

water index (NDWI) (Gao, 1995; Serrano et al., 2000) and recently the shortwave infrared water stress index 

(SIWSI) (Fensholt & Sandholt, 2003). These indices were developed from the combinations of bands or 

wavelengths from the NIR (WBI and NDWI) and the SWIR (SIWSI). However, more recently there have been 
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attempts on using the blue, green, red wavelengths or bands (VIS region) and the NIR wavelengths in developing 

indices to estimate vegetation water content (Genc et al., 2013).  

The bands identified as suitable for water status assessment would not be exactly the same for all crops but 

serve as a guide to band centres for water absorption (Danson et al., 1992; Penuelas et al., 1993; Sims & Gamon, 

2003; Clevers et al., 2008 & 2010; Elsayed et al., 2011; Genc et al., 2013). The minor water-absorption bands 

which are situated around 970 and 1200 nm have proven ability to provide and or even quantify leaf water status 

in plants more than the major bands of the 1400 and 1900 nm region of the electromagnetic spectrum (Clevers et 

al., 2010). The spectral indices developed from the minor water absorption band centres have also proven feasible 

(correlation of 0.70 on the right slope of 970 nm) in determining foliar water status (de Jong et al., 2014). 

The water band index (WBI) is derived from the ratio of reflectance measured at 950 and 970 nm (Peñuelaset 

al., 1993); and 900 - 970 nm (Peñuelaset al., 1997). This spectral index has been correlated with ground-based 

measurements of plant water content at both the leaf and canopy scales. It is, however, more sensitive to leaf 

water content than the water content of the whole plant. This is advantageous in agricultural applications where 

leaf water content changes more noticeably in response to drought conditions than the water content of the entire 

plant foliage (Champagne et al., 2003).  

The normalised difference water index (NDWI) has been another widely used index for monitoring water status 

of vegetation both through multispectral (Jackson et al., 2004) and hyperspectral (Eitel et al., 2006; Elsayed et 

al., 2011; Winterhalter et al., 2011) remote sensing. It is measured by a ratio of difference between the reflectance 

value at 860 and 1240 nm wavelengths (Gao, 1996). The index is measured of wavelengths both from the NIR 

region of the electromagnetic spectrum and its application in detecting water content has been widely used 

(Govender et al., 2009). However, other wavelengths have been used to develop ratios which have also illustrated 

important as a result of crop types or management conditions in monitoring water status (Winterhalter et al., 

2011).  

The SWIR (1400-2500) has also proven important in leaf water content measurement with the identification of 

the 1550 and 1750 nm wavelengths (Tucker, 1980); and in recent studies the VIS region was also identified as 

important in water status assessment (Graeff & Claupein, 2007; Genc et al., 2013). The detection of leaf water 

content in the VIS/NIR regions linking it to chlorophyll and nitrogen status was recently assessed with successful 

outcomes (Zhang et al., 2012) whereas others previously realized only the NIR and SWIR regions to be important 

in leaf water content assessment (Ceccato et al., 2001).  

Hyperspectral remote sensing therefore, is able to provide information on rapidly occurring water status changes 

in plants driven by dynamism in immediate environmental conditions. Maize (Zea mays) being an important field 
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crop that relies on water availability for enhanced productivity has been tested in monitoring with this technology 

(Elsayed et al., 2011; Winterhalter et al., 2011; Genc et al., 2013). It is clear that water status assessment varies 

across crop types and geographical locations as a result of varying water budgets. What is clearly more important 

is that water stress affects crop productivity and thus requires monitoring. 

This study then seeks to utilise known spectral indices such as NDWI860/1240 and WBI950/970 together with others 

developed from selected wavelengths in detecting water status to distinguish different water status in maize leaves 

under field conditions. Firstly, the spectral data is resampled to 10 nm and a feature selection is performed to 

extract wavelengths of importance that contribute to the detection of water status in the maize leaves using in-situ 

spectral measurements. Secondly, the selected wavelengths were used to develop spectral indices. Lastly, the 

indices are all used as independent variables for the classification of the various water status of the maize leaves 

while ranking them according to importance based on the error size obtained when running the permutations 

without each index. 

MATERIALS AND METHODS 
C. Study area 

The fields used for this study were located at the Glen Agricultural College fields in Bloemfontein 

(Free State province of South Africa) with geographical coordinates as 28°56'45.86" S, 

26°19'35.93" E (maize field) and 28°56'53.34" S, 26°19'41.49" E (adjacent field). The fields were 

located about 20 km north of Bloemfontein (Figure 2). The area has mean annual precipitation of 

about 600 mm and mean annual maximum and minimum temperatures of 25° C and 8° C respectively 

(Botha et al., 2007). Summers are hot and dry with scarce episodes of rainfall while the winters are 

frosty and cold. The growing of crops such as maize is only done once in a summer farming season 

that commences in December and runs through to July. As a result of its sparse rainfall, the growth 

of crops is through irrigation schemes. 

D. Field design 

The field used for this study was grown under the same conditions with the same maize cultivar 

(PAN 6616) on the 15th of January 2014. It was grown under irrigation scheme but the amount of 

water applied could not be measured since it was the flooding system. This flooding system meant 

the whole field does not receive water equally, thereby creating variable water availabilities to the 

plants across the field. The area located close to the water source gets saturated with water before it 

flows to the other parts of the field. Hence, the areas furthest from the water source stay water stressed 
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and in between the two areas is an intermediary scenario with limited amounts of water available to 

the plants (Figure 1). 

 

Figure 1: Maize leaves showing the different categories of water status on the day of spectral 

measurements: a is healthy or unstressed leaves; b is intermediary water stressed leaves; and c is 

water stressed leaves 

a b c
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Figure 2: Study area showing the maize field in Glen, Bloemfontein. (Insert image from GoogleEarth 

4/10/2014) 

http://dx.doi.org/10.4314/rj.v1i2S.1D


http://dx.doi.org/10.4314/rj.v1i2S.1D  

 
 

 

Rwanda Journal, Series D, Volume 1, 2016, Life and Natural Sciences: Special issue II 

 

E. Spectral measurement and pre-processing 

The spectra were collected on the 11th of April 2014 (11-12 weeks after planting) by selecting the 

top-most completely opened leaf. The measurements were taken in the morning period between 

10 am and 12 noon to avoid the interference from the process of evapotranspiration and the difference 

in water potential between the plants are at their greatest (Cleary & Zaerr, 1984).The spectral 

measurements were done on the adaxial surface of each leaf using the leaf-clip device of the hand-

held portable PSR-3500 spectroradiometer (©2012 Spectral Evolution, Inc, USA), with the average 

scan time set at 10 ms (averaged to reduce scanner noise). The leaf-clip was used in this case as a 

result of its direct-contact probe which limits ambient light.  

The spectroradiometer system operates in the range of 340-2500 nm. The complete system collects 

and stores data which is calibrated to units of spectral radiance (W/m2/nm/sr) as output (PSR, 2012). 

The non-destructive measurements in the field were obtained on both sides of the midrib but avoiding 

the midrib region. The radiance measurements were calibrated using a white spectralon reference 

panel before scanning the leaves and converted to relative reflectance (%). 

The spectra were measured at a total of 1024 wavelengths with a spectral range of 0 to 4 nm. In 

order to reduce the number of wavelengths, the spectral measurements were resampled using a 

Gaussian model (full-width half-maximum) in the Environment for Visualizing Images (ENVI) 

software (v.4.5, ITT Visual Information Systems) that resulted in 217 wavelengths with a 10 nm 

spectral range. 

Data analysis 
F. Wavelength selection and development of indices 

Data analysis was performed in RStudio using the random forest (RF) algorithm. RF is an ensemble 

approach that is capable of performing a divide-and-conquer rule that improves performance of data 

management (Brieman, 2001). This is done through recursive partitioning of the data into subsets 

(trees) known as ntree drawing random subsets of variables known as mtry (ibid). The RF is a machine 

learning algorithm that has the potential of handling huge data sets of large predictor variable numbers 

(wavelengths) as oppose to the small sample size. In order to assess the impact of a predictor variable, 

the RF permutation of importance measured is biased due to the preferential selection of correlated 
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wavelengths (Stroblet al., 2007). The bias is adjusted in the conditional random forest (cforest) 

proposed by Strobl et al. (2008). 

Every tree is constructed using a different bootstrap sample from the original data that gets 

partitioned into smaller subsets or trees that are combined with the notion of an ensemble at the nodes. 

The RF algorithm uses two thirds (2/3 or 70%; 13 samples) of the data (training data set) in every 

bootstrap sample while a third (1/3 or 30%; 7 samples) being the test data set is left out of the 

construction and used for validation where an error estimate is generated for every predictive variable. 

The error estimate is known as the out-of-bag (OOB) error and measures the variable of importance 

in the algorithm. For cforest the ntree were tested by 50s up to 500 and the mtry as √𝑛 where n is the 

217 wavelengths. Hence the mtry was 15. 

The top 10 wavelengths in the entire spectrum as ranked by the OOB errors were selected and used 

to develop the spectral vegetation indices relating to the NDWI (Equation 1). These wavelengths were 

considered as those of most informative to water status in maize leaves under field conditions. 

𝑵𝑫𝑾𝑰 =  
𝝀𝑵𝑰𝑹−𝝀𝑺𝑾𝑰𝑹

𝝀𝑵𝑰𝑹+𝝀𝑺𝑾𝑰𝑹
    (2) 

 

G. Assessment of maize foliar water status with spectral indices 

The combined RF and partial least square (PLS) were used for the predictive classification of the 

water status of the maize leaves. The RF+PLS algorithm was introduced by Boulesteix et al. (2008) 

and has the pre-validation idea that is based on cross-validation to avoid over-fitting embedded within 

the data set. It is fast and flexible in performing analysis of such huge data sets. The PLS has been 

found to produce satisfactory predictions (Zhang et al., 2012). 

The bootstrap option of the RF+PLS used splits the data set of the indices developed. A total of 23 

indices developed from the selected wavelengths (independent variables) and a sample size of 20*3 

water classes or status (total of 60 samples) were utilized for this algorithm. The training data set is 

used to construct and predict with the algorithm while the test is used to confirm predicted values into 

the various classes. The Overall accuracy and individual producer’s as well as user’s accuracies are 

later summarized for the 100 iterations performed per ntree. For data sets having n≤30, the minsplit 

parameter which controls the minimal size of nodes to be split within the bootstrap of the algorithm 

was defined as 4 (Boulesteix et al., 2008). 
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The OOB is used to get a running adjusted unbiased estimate of the classification error as trees are 

added to the forest. This was applied in the RF+PLS algorithm to get estimates of index importance 

in the classification of the water status of maize leaves. In other words the OOB is obtained by 

comparing how much the error estimate increases when a variable is permuted while all other 

variables are left unchanged (Archer & Kimes, 2008). For the RF+PLS, the ntree were tested at 50s 

up to 500 with an mtry of 5. 

Results and discussion 
The reflectance spectra of water stressed plants absorb less light in the visible and NIR regions of 

the spectrum than plants not experiencing water stress (Figure 3). The use of the leaf clip minimised 

atmospheric interferences, hence minimal cleaning of noise. The sample number for each category of 

water status measured had to be equalised at 20 which was the minimal number of samples per 

category, thereby establishing the total number of samples for this study as 60. 

 

Figure 3: Leaf spectra for 3 categories of water status in maize leaves (H is healthy or unstressed, 

IWS is intermediary stressed and WS is water stressed) 

The spectra for the water stressed and unstressed maize leaves showed a distinctive difference on 

the visible, NIR and SWIR regions of the spectrum (Figure 4). The water stressed spectra recorded 

more reflectance in the visible region than unstressed ones because of the reduced chlorophyll content 

resulting from water deficiency that accounts for most of the absorption in this region. The alteration 
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in the leaf structure also accounts for the visualised difference around the NIR region. This is as a 

result of the deficiency in liquid water within the plant tissues as explained by Canny and Huang 

(2006). 

The combined algorithm of RF+PLS for the water indices produced an overall accuracy of 

70±1.2 % in distinguishing the different water stress levels for maize leaves under field conditions. 

The individual water stress categories obtained good producer’s and user’s accuracies (PA and UA) 

as follows: healthy, intermediary water stressed and water stressed of 63 %, 94 % and 65 % for PA, 

and 73 %, 76 % and 71 % for UA respectively. 

 

Figure 4: Wavelength selection for maize leaf water status and regions of the electromagnetic 

spectrum 

Previous studies realized only the NIR and SWIR regions to be important in leaf water content 

assessment (Ceccato et al., 2001; Ceccato et al., 2002). In some recent studies the VIS region was 

also identified as important in water status assessment (Graeff & Claupein, 2007; Genc et al., 2013). 

The detection of leaf water content in the VIS/NIR regions linking it to chlorophyll and nitrogen 

status was recently assessed and approved (Zhang et al., 2012). In another more recent study to 

establish wavelengths for the differentiation of various water levels in maize plants, the reflectance 

in the red region decreased and there was an increase in the NIR region. It established therefore that 

water stress could be detected by looking at the difference between the higher reflectance values 

obtained at the red region in comparison to the lower values at the NIR when the plant is not water 
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stressed (Genc et al., 2013). The study reaffirmed the importance of the VIS region in water status 

detection in plants. Therefore, water stress in crops has the potential of disturbing the proper 

functioning of the process of photosynthesis. 

The red edge region has also proven important in the detection of plant water content using spectral 

reflectance. For instance Liu et al. (2004) realized that the relationship between some of the known 

indices (WBI950/970 and NDWI860/1240) and the leaf water content for wheat was actually less 

significant but highly significant when the red edge position (680 – 740 nm) was compared with it. 

Graeff and Claupein (2007) discovered wavelength ratios of 510/780 nm and 540/780 nm as suitable 

in detecting water content in wheat grown under controlled conditions. Winterhalter et al. (2011) also 

identified the spectral indices from the VIS region (R440/R685; R525/R685; R600/R680 and R630/R680) as 

highly significant in assessing relative water content in maize at pot levels and while at canopy level 

the significant index was the NDWI840/1650. 

The variable of importance ranked the water-based indices according to their contribution in 

distinguishing maize water leaf status through a measure of their OOB error. The results obtained 

indicated the NDWI860-1240 as an important index for the monitoring of water stress in maize plants 

under field conditions (Figure 5). Other indices of importance included (1700-1530; 1530-1360). The 

WBI950-970 did not perform well in the monitoring of water stress levels in maize leaves under field 

conditions as proven by the variable importance results. 

 

Figure 5: Selected indices for water stress level detection in maize 
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Conclusion 
The wavelengths of importance extracted as relevant in the assessment of maize leaf water status 

were actually located across the entire electromagnetic spectrum with a majority of them around the 

NIR and SWIR transition area (1300 and 1700 nm). The red edge region did not show strong 

importance in the assessment of leaf water content of maize plants under field conditions. The few 

wavelengths in the VIS could be accounted for by the influence plant water status has on the 

chlorophyll concentration. While the minor and major water absorption regions around the NIR and 

SWIR showed stronger importance.  

The developed ratios from the selected wavelengths in combination to the known water indices 

(WBI950-970 and NDWI860-1240) showed a successful prediction and classification of the leaf water 

status in the maize leaves under field conditions. The RF+PLS algorithm resulted in an OA of 

70±1.2 %. The water-based ratios of importance extracted included the NDWI(860-1240; 1700-1530; 1530-

1360). Therefore, spectroscopy could be used to assess the leaf water status of maize plants grown 

under field conditions. 

Further research is required to be able to predict specific quantities of water in the leaf through well 

structured experiments. These experiments would control water applications to the plants and aid with 

the calculation of relative water content in the maize leaves through laboratory measurements that are 

required as ground-truth data. 
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