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Abstract 

Hydrological models are essential in water resources management. However modeling in poorly gauged 

catchments is a big challenge. Recent studies have shown that satellite based hydrological and meteorological 

data has the potential of being part of the solution towards overcoming this challenge. In this study, we modify 

the conceptual lumped rainfall-runoff model by Meier et al. (2011) to simulate the runoff of the Mara River 

basin. The model is developed based on the relationships found between satellite observed soil moisture and 

rainfall and the measured runoff. It uses the satellite observed rainfall as the prime forcing, and the soil 

moisture to separate the fast surface runoff and slow base flow contributions. The soil moisture and rainfall 

products used in this research are the Advanced Scatterometer Soil Water Index (ASCAT SWI) and Tropical 

Rainfall Measurement Mission (TRMM) 3B42 v7 respectively. The performance of the model is evaluated 

for three sub-catchments defined by the Mara mines, Nyangores and Amala gauging stations along the Mara 

River. The Pearson correlation (r) for Mara mines Nyangores and Amala during calibration and (validation) 

were 0.54 (0.77), 0.67 (0.74), 0.125 (0.48) respectively. The model showed great potential for simulating dry 

season runoff, but needs further improvement to be able to reliably simulate wet season runoff. Nevertheless, 

this study demonstrates the potential role operational satellite based soil moisture and rainfall products can 

play in quantifying the available water resources particularly in the many un-gauged river basins across Africa.   
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1. INTRODUCTION 

Recent studies on the use of satellite observed soil moisture for hydrological modeling have shown that 

these products have great potential in contributing to the management of the water resources in poorly gauged 

catchments (Scipal et al., 2008; Brocca et al., 2010; Draper et al., 2011; Matgen et al., 2012;). In particular, 

Scipal et al. (2005) used regression equation of best fit relationship between runoff and soil moisture observed 

with European Remote Sensing (ERS) Scatterometer in modeling runoff of the Zambezi river basin. Khan et 

al. (2012) found a Pearson correlation coefficient of 0.9 between measured runoff of Okavango river basin 

(South Africa) and Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) 

observed soil moisture. Meier et al. (2011) further developed the concept by introducing rainfall as a forcing 

data in modeling runoff of the Zambezi River basin. The authors built the model on the basis of the relationship 

found between ERS Scatterometer observed soil moisture, Famine Early Warning System Network (FEWS 

NET) rainfall product and in-situ measured runoff.  

While Meier et al. (2011) did their runoff simulations on a ten day time-step, in this study we do the 

simulations on a daily time step using different rainfall and soil moisture satellite products. The study area is 

the Mara River basin. The basin is a sub-catchment of the Lake Victoria basin that is in turn part of the larger 

Nile River Basin. It covers an area of 13,750 km2 in South Western Kenya and North Western Tanzania (see 

figure 1). In the upper parts of the basin is the Mau Forest where the Mara River originates from at an attitude 

of about 3,000 m above sea level (m.a.s.l.). The forest is the key water tower and source region for also other 

rivers including Sondu, Njoro and Ewaso Ng’iro rivers. Mara River flows to the southwest over a stretch of 

395 km before draining into Lake Victoria at Musoma in Tanzania at an attitude of about 1,000 m.a.s.l. The 

river has two main perennial tributaries in the upstream part, namely the Nyangores and Amala Rivers. In the 

middle parts of the basin is the tropical savannah vegetation which supports the unique Mara-Serengeti 

ecosystem, famous for the scenic large scale seasonal wildebeest migration. In the south-western parts is the 
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Mara Wetlands ecosystem. According to Dessu and Mellesse (2012), a third of available arable land in Mara 

River basin is under small scale farming.  

Previous studies have shown that the flow regime of the Mara River has been changing. A study on the 

impacts of land use/cover on the hydrology of the river by Mati et al. (2008) using Geospatial Stream Flow 

Model (GeoSFM) showed out that the peak flows have increased by 7% for the period between 1973 and 

2000. Using Landsat images, they also highlighted changes in land cover/use over the same period. Notably, 

the extents of agricultural and wetland areas have increased by 203% and 387% while the savannah vegetation 

and forest areas have reduced by 79% and 32% respectively. A study by Mango et al. (2011) showed that 

conversion of forest areas to agriculture and grasslands in the upstream of the basin was most likely reducing 

dry season flows, while increasing quick peak flows. Human activity in the basin is affecting both the flow 

regime and the water quality of the Mara River (Gereta et al., 2009). A study by Juston et al. (2013) using 44 

years of historical data detected a reduction in the lowest base flow. 

2. MATERIALS AND METHODS 

2.1. In-situ measurements 

Runoff data was utilized for validation and calibration of the soil moisture-runoff model. The data was 

obtained for Mara River at Mara mines, Nyangores at Bomet and Amala at Mulot river gauging stations (see 

table 1 and figure 1). Analysis of historical data over the period of 1970 to 1996 from the Mara mines, 

Nyangores and Amala at Mulot by Dessu & Mellesse (2012) shows a mean discharge of 33.9 m3s-1, 8.4 m3s-1 

and 9.9 m3s-1 with standard deviations of 60 m3s-1, 7.1 m3s-1 and 19.9 m3s-1 respectively. The three stations 

were rehabilitated and installed with automatic recording systems in 2012 (Mtamba et al., 2013). 

The in-situ measured rainfall was used to investigate the reliability of the satellite rainfall product. Out of 

the forty-four stations, within and around the basin only six (see figure 1 and table 1) had sufficient data falling 

within the time span of the selected satellite rainfall data used in this study. The basin has bi-modal annual 
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rainfall distribution with the long rainy season from March till June and the short season in November and 

December. The mean annual rainfall varies from 1,000 mm to 1,750 mm, 900 mm to 1,000 mm and 300 mm 

to 800 mm in the upper, middle and lower parts of the basin respectively (Dessu et al., 2014; Dessu & Mellesse, 

2012). 

 

Figure 1: Map of the Mara River Basin processed from Shuttle Radar Topographic Mission Digital 

Elevation Model. The map shows the location of both river and rain fall gauging stations used in this 

research 

 

TABLE 1: RIVER AND RAINFALL GAUGING STATIONS USED IN THIS STUDY  

 Station 

code 

Longitude 

(0E) 

Latitude 

(0S) 

Start 

Year 
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River Gauge Station     

Nyangores 1LA03 35.35 -0.79 1963 

Amala 1LB02 35.43 -0.89 1955 

Lalgorian bridge ILA04 35.04 -1.23 1970 

Mara Mine 5H2 34.55 -1.55 1969 

Kirumi ferry 

Rainfall Gauge Station 

5H3 33.86 -1.51 1969 

    

Tenwek Mission – Sotik 09035079 35.37 -0.75 1959 

Olenguruone D.O's Office – Molo 

09035085 35.68 -0.58 1959 

   

Bomet Water Supply 09035265 35.35 -0.78 1966 

Oltome Green Lodge – Narok 09135004 35.52 -1.07 2001 

Ilkerin Integral Development  

Project 

09135025 35.70 -1.78 1973 

   

Governor's Camp 09135026 35.03 -1.28 1973 

 

2.2. Satellite data 

The satellite soil moisture product used in this study is the Soil Water Index (SWI) developed at the Vienna 

University of Technology. The product is calculated from Advanced Scatterometer (ASCAT) sensor generated 

surface soil moisture (SSM) data following the concept of a two-layer force-restore model described in 

Wagner et al. (1999b). The SWI is available on a temporal and spatial resolution of 1 day 12.5 km respectively. 

The satellite rainfall product used in this research is the Topographic Rainfall Measurement Mission 

(TRMM) 3B42 version 7. The product is used as the prime forcing for the model. TRMM is a joint mission 

of National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency 
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(JAXA) for measuring tropical and subtropical rainfall. The mission employs various instruments including 

the TRMM Microwave Imager (TMI), Cloud and Earth Radiant Energy Sensor (CERES), Precipitation Radar 

(PR) and Lightning Imaging Sensor (Liu et al., 2012; NASA, 2011). The product is available with a 0.25° x 

0.25° resolution for latitudes between 50° N and 50° S (NASA, 2011). 

2.3. Runoff Model 

Scipal et al. (2005) formulated the Basin Water Index (BWI) as spatially averaged SWI. Its values range 

from 0 - 1 with 0 signifying a completely dry basin with all the rainfall infiltrating, and 1, a completely 

saturated basin with constant infiltration. Building upon this research Meier et al. (2011) proposed a lumped 

process based runoff model that can be solely driven with data products derived from Earth Observations and 

uses the BWI as measure for the soil water storage and rainfall as the prime forcing. In this study we apply a 

modified version of the Meier et al. (2011) model. The model structure includes two linear storage reservoirs, 

namely surface and subsurface storage layer. The model has been modified by reducing the model parameters 

and replacing the delay factor with a low pass filter approach. The low pass filter attenuates the storage 

components as a function of time before they are routed as runoff. In this new approach, the contribution of 

previous rainfall events is factored. The reasoning is that contribution of a particular rainfall event to runoff is 

not instantaneous but rather increases exponentially over a given time before reaching a peak value. The 

concept of the model is that BWI separates rainfall into surface and groundwater runoff production pathways 

expressed as follows: 

𝐼𝐺𝑊 = 𝑘 𝑅(𝑡)(1 − 𝐵𝑊𝐼(𝑡))                                               (1)   

Where, IGW is infiltration to the subsurface storage (m.d-1), R is rainfall (mm.d-1), k is a model parameter (d-1) 

accounting for losses (for instance, interception and evapotranspiration) and t is the model time step (d) (Meier 

et al., 2011). k of 1 indicates a situation with zero losses, a case where rainfall is equal to runoff and k of 0 

indicates a case where all the rainfall is lost hence no runoff. As the soil becomes more saturated, more rainfall 
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is routed through surface storage. Similarly as the soil becomes less saturated, less rainfall is routed through 

subsurface storage. 

The surface and groundwater storage change is calculated across a time step as follows, 

∆𝑆𝑠(𝑡)

∆𝑡
= 𝑘𝑅(𝑡)𝐵𝑊𝐼(𝑡) − 𝐼𝐺𝑊 − 𝑆𝑠(𝑡 − 1)                (2)                           

∆𝑆𝐺𝑊(𝑡)

∆𝑡
= 𝑚𝑎𝑥 (𝐼𝐺𝑊; 0) − 𝑆𝐺𝑊(𝑡 − 1)                   (3)                                   

Where, SS and SGW are the surface and subsurface storage components, respectively (m.d-1), ∆SS and ∆SGW are 

the change in surface storage and subsurface storage components, respectively (m.d-1). These surface and 

groundwater storage change equations are linked to their respective water budget as follows,  

𝑆𝑠(𝑡) =
∆𝑆𝑠(𝑡)

∆𝑡
+ 𝑆𝑠(𝑡 − 1)                                            (4)      

𝑆𝐺𝑊(𝑡) =
∆𝑆𝐺𝑊(𝑡)

∆𝑡
+  𝑆𝐺𝑊(𝑡 − 1)                             (5)                  

The runoff components are subsequently computed from the storage components as follows,  

𝑄𝑠(𝑡)  =  
∑ 𝑆𝑠

𝑛
𝑖=(𝑡−1) 𝑒−(𝑡−𝑖) 𝜏⁄

∑ 𝑒−(𝑡−𝑖) 𝜏⁄𝑛
𝑖=(𝑡−1)

                                               (6)                                                   

𝑄𝐺𝑊(𝑡) =   
∑ 𝑆𝐺𝑊

𝑛
𝑖=(𝑡−1) 𝑒−(𝑡−𝑖) 𝜏𝐺𝑊⁄

∑ 𝑒−(𝑡−𝑖) 𝜏𝐺𝑊⁄𝑛
𝑖=(𝑡−1)

                               (7)                                                        

𝑄(𝑡) = 𝑄𝑠(𝑡) + 𝑄𝐺𝑊(𝑡)                                         (8)                                    

Where: Qs and QGW are the surface and groundwater runoff components respectively; and τ and τGW are the 

characteristic catchment response times (d) related to the surface and groundwater runoff respectively. This 

set of equations is schematically represented in Figure 2.  
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Figure 2: The input in this set up is rainfall. The level of BWI determines the distribution of rainfall 

between the surface and subsurface storage compartment. As the BWI increases, infiltration reduces and 

more rainfall is routed to the surface storage 

 

3. RESULTS 

3.1. Relationships between rainfall, runoff and BWI 

The relationship of rainfall, runoff and BWI was investigated quantitatively using coefficient of 

determination (R2). The investigation period was from January 2007 to July 2013. The best fitting trend line 

for BWI plotted against TRMM was found to be logarithmic. The results of the analysis including the R2 for 

the three sub-catchments namely Mara mines, Nyangores and Amala are illustrated in figure 3. In the analysis, 

monthly averages of BWI and TRMM rainfall were used.  

Figure 4 illustrates the relationship of runoff-BWI including the R2 for the three sub-catchments using 

monthly averages. The best fitting trend line for this relationship was found to be exponential. 
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Figure 3: BWI versus TRMM scatter plots for Mara mines, Nyangores and Amala sub-catchments. The data 

is monthly means. 

 

 

Figure 4: Runoff versus BWI scatter plots for Mara mines, Nyangores and Amala sub catchments. The data 

is monthly means. 

 

3.2. Calibration 

Calibration of the k parameter was done separately for Mara mines, Nyangores and Amala sub-catchments. 

The catchment response time τs and (τGW) for Mara mines, Nyangores and Amala were fixed at: 3 days (200 

days); 1days (100 days) and; 1 day (100 days) respectively. These values are assumed taking into consideration 

the size of the given sub-catchment and field observations. For each of the three sub-catchments, different 

calibration periods and durations had to be used due to the large data gaps. The periods were selected to include 

at least one wet season. The results of the calibration process are shown in table 2. 
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3.3. Validation 

Validation was performed by running the model with the respective optimised k parameter and the τs and 

(τGW) for Mara mines, Nyangores and Amala sub-catchments. Different validation periods and durations had 

to be selected for each sub-catchment due to large data gaps. The validation periods were selected to capture 

at least a wet season. The results of the validation process are shown in table 2. 

TABLE 2: CALIBRATION AND VALIDATION RESULTS FOR MARA MINES, NYANGORES AND 

AMALA 

 

 

3.4. 

Long term runoff simulations 

 units Mara mines Nyangores Amala 

Calibration     

k parameter d-1 0.074 0.157 0.179 

τS d 3 1 1 

τGW d 200 100 100 

RMSE m 0.00034 0.00025 0.00081 

MAE m 0.0002 0.00018 0.00058 

Bias m 0.00052 0.01184 0.027 

r - 0.54 0.67 0.125 

Validation     

RMSE m 0.00094 0.00132 0.00176 

MAE m 0.00051 0.00121 0.00079 

Bias m 0.048 0.186 0.062 

r - 0.77 0.74 0.48 
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Long term runoff simulations were done for the period from January 2007 to July 2013 on a daily time step 

for each of the three sub catchments. Over the period, there was no notable change in the flow regime. Figure 

5 shows the measured and simulated total runoff for the three sub catchments. Figure 6 shows monthly 

cumulated surface and groundwater runoff simulations. Quantitative analysis of the simulations showed that 

Nyangores, Amala and Mara mines sub-catchments generate 54%, 32% and 14% respectively of the total 

runoff generated in the Mara River basin. 

Figure 5: Long term runoff simulations on a daily model time step for Mara mines, Nyangores and Amala 

sub catchments. The simulation period is from January 2007 up to July 2013 
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Figure 6: Comparison monthly summations of simulated surface and groundwater runoff components for 

Mara mines, Nyangores and Amala sub catchments. The simulation period is from January 2007 up to July 

2013.  

 

 

 

4. DISCUSSION 

From the analysis of the relationship between BWI and rainfall, it can be seen that as BWI and rainfall 

increases the scatter of the data points increases also (figure 3). This is because as the rainfall increases, soil 

moisture continues increasing until the soil is completely saturated (BWI = 1). At this point, infiltration is at 

maximum capacity and any further increase in rainfall intensity leads to increase in contribution to surface 

runoff. This is supportive of the concept used in the Meier et al. (2011) runoff model. Although the shape of 

the BWI-rainfall relationships is the same for all the sub-catchments, the steepness of the curves is different 

for each. Mara mines is observed to have lower BWI peak values compared to the other sub-catchments. This 

can be attributed to catchment characteristics. Mara mines sub-catchment has significant semi-arid regions 

typically associated with high ET compared to Nyangores and Amala that are situated at a higher altitude with 
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higher forest land cover. It can be argued that there is higher infiltration in Nyangores and Amala thus 

supporting the arguments by previous studies which attribute the high infiltration in the two sub-catchments 

to their relatively higher forest cover as compared to Mara mines (Dessu et al., 2014; Dessu & Mellesse, 2012; 

Gereta et al., 2009; Mango et al., 2011; Mati et al., 2008). 

The plots of runoff versus BWI (figure 4) show that runoff increases exponentially as BWI increases. This 

is so because when the soil is dry (low BWI) little runoff is being produced in response to rainfall. The runoff 

production increases exponentially as the BWI increase because of reduction in the infiltration capacity. This 

observation confirms that the findings of Meier et al. (2011) and Scipal et al. (2005) are also valid for the Mara 

River basin. The steepness of the curves of the relationship of runoff and BWI are taken as a measure of the 

storage capacity in the catchment with very steep slopes indicating a low storage capacity. With this 

assumption, Mara mines is shown to have lower storage capacity compared to the other sub catchments. 

Comparing Nyangores and Amala, Amala is shown to have a steeper slope as BWI increases. Amala is also 

shown to have a relatively gentle slope for lower BWI compared to Nyangores. This may be an indication of 

lower flow rates during dry seasons in comparison to Nyangores. These results support the findings by 

previous studies that Nyangores and Amala have higher storage capacities which serves to sustain Mara river 

during dry seasons, (Dessu et al., 2014; Dessu & Mellesse, 2012; Mango et al., 2011; Mati et al., 2008).  

The value of model parameter k for Mara mines is notably lower compared with the other sub catchments. 

This indicates that there are more losses within Mara mines compared to Nyangores and Amala. Amala has 

the highest k compared to Nyangores. The difference in k for the two can be attributed to land cover. Nyangores 

has more land cover than Amala(Mango et al., 2011; Mati et al., 2008). It can, thus, be assumed that few losses 

due to ET occur in Amala as most of the rainfall is drained as quick runoff.  

The model does not simulate the peak flows very well, especially for the Amala and Mara mines (figure 5). 

Notably, at Nyangores the model was able to fairly simulate the peak flows. This supports the arguments of 

Meier et al. (2011) that this model is not suitable for catchments with relatively low storage capacity and quick 
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peak runoffs. It is also observed that the model initially overestimates runoff in all the three sub-catchments. 

It can be argued that initially the soil may be dry hence less runoff, a situation not taken into consideration in 

the model design. Dessu and Mellesse (2012) in their study on modeling rainfall runoff processes in the Mara 

River basin using Soil and Water Assessment Tool (SWAT), found that Amala sub catchment was consistently 

giving poor simulation results. They attributed the poor results to uncertainties in either measured rainfall or 

measured runoff input data. 

Quantitative analysis of simulated surface and groundwater runoff shows that Nyangores generates more 

surface and groundwater runoff per unit area compared to the other sub catchments. Mara mines is observed 

to have the lowest surface and groundwater runoff generation per unit area. This may be an indication of 

relatively higher losses in the sub-catchment. This further supports our argument that there is apparently higher 

infiltration in Nyangores compared to the other sub catchments. This is also in agreement with previous studies 

which indicate that Nyangores has higher base flows than Amala(Dessu et al., 2014; Dessu & Mellesse, 2012; 

Mango et al., 2011; Mati et al., 2008).  

5. CONCLUSION 

The overall objective of this study was to develop a runoff simulation model based on satellite observed soil 

moisture and rainfall as a forcing data in the MRB. The model is built on the relationship found between 

satellite observed soil moisture and rainfall and measured runoff. The relationship between soil moisture 

versus rainfall is observed to be logarithmic for Mara mines, Nyangores and Amala with R2 of 0.54, 0.5 and 

0.51, while that of runoff versus soil moisture is exponential, with R2 of 0.6, 0.68 and 0.67 respectively. These 

results are in agreement with the findings of previous similar research (Khan et al., 2012; Meier et al., 2011; 

Scipal et al., 2005).  

In this study, the model parameter k is found to be affected by catchment characteristics like for example, 

land cover, infiltration/groundwater storage capacity, which affects ET. Mara mines assumed to have the 

highest ET has the lowest k. Amala assumed to have the least ET has the highest k. The performance of the 
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model is found to be affected by catchment’s infiltration capacity and quality of in-situ measured runoff. The 

relatively good performance of the model in Nyangores is attributed to the catchment’s apparent high 

infiltration capacity compared with the other two sub-catchments.  

The model is found to be applicable in monitoring dry season runoff even in catchments with low storage 

capacities like Mara mines. However it has a weakness in simulating wet season flows in such catchments. 

We hypothesize that this can improve by the use of higher spatial resolution rainfall and soil moisture products 

for example from the NASA’s Global Precipitation Mission and Soil Moisture Active/Passive (SMAP) 

mission and ESA’s Sentinel-1 mission. 
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