# An Optimal Design Model for New Water Distribution Networks in Kigali City 

Oreste HAGENIMANA ${ }^{1}$ and Verdiana Grace MASANJA ${ }^{2}$
${ }^{1}$ National University of Rwanda, Applied Mathematics Department, B.P. 117, Huye, Rwanda, email: hagenimanaoreste17@gmail.com Tel: +250788416430
${ }^{2}$ National University of Rwanda, Directorate of Research, B.P. 56, Huye, Rwanda, vmasanja@nur.ac.rw (corresponding Author) Tel: 0788494984


#### Abstract

This paper is concerned with the problem of optimizing the distribution of water in Kigali City at a minimum cost. The mathematical formulation is a Linear Programming Problem (LPP) which involves the design of a new network of water distribution considering the cost in the form of unit price of pipes, the hydraulic gradient and the loss of pressure. The objective function minimizes the cost of the network which is computed as the sum of the initial cost of the individual pipes. The model is solved using the Simplex algorithm which is implemented by the Linear Interactive and Discrete Optimizer (LINDO) using data from a sample network in Kigali. The optimal solutions show that the cost is reduced compared to the cost of the sampled existing networks of Kigali city.


Keywords: Linear Programming models, water distribution network, hydraulic gradient, pressure loss, minimize cost, Kigali City

## 1. Introduction

Kigali is the largest city in Rwanda and its population is increasing at a drastic rate and thus widening surface area. This has resulted in water rationing because water production has not matched with the ever increasing needs. The cost of distributing clean water is high and the aged distribution piping system badly needs rehabilitation. A water distribution network consists of pipes, reservoirs, pumps, valves, and other hydraulic components and its purpose is to provide reliable service to the customers under various demand conditions. The least cost design of water distribution networks is an optimization problem, which has been solved using linear programming, nonlinear programming, dynamic programming and heuristic based optimization methods (Kessler and Shamir, 1989; Eiger et al. 1994; Dandy et al 1996). This paper presents an attempt to achieve the optimal solution with the minimum design cost for the Kigali water distribution network with available pipe sizes, using the gradients calculated from the dual variables.

## 2. Methodology

### 2.1. The Linear Programming Problem

Definition1: A mathematical programming problem (MPP) is an optimization problem of finding the values of the unknown variables $x_{1}, x_{2}, \ldots x_{n}$ that

Maximize (or minimize) $\quad f\left(x_{1}, x_{2}, \ldots x_{n}\right)$
Subject to $g_{i}\left(x_{1}, x_{2}, \ldots x_{n}\right)(\leq,=, \geq) b_{i} \quad i=1,2, \ldots, m$
Where the $b_{i}$ are real constants and the functions $f$ and $g_{i}$ are realvalued. The function $f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is called the objective function of the MPP (equations (1) and (2)) while the functions $g_{i}\left(x_{1}, x_{2}, \ldots\right.$ $x_{n}$ ) are called the constraints of the MPP.
In vector notations, (1) and (2) can be written as:

$$
\begin{equation*}
\text { Maximize (or minimize) } \quad f\left(X^{T}\right) \tag{3}
\end{equation*}
$$

Subject to $g_{i}\left(X^{T}\right)(\leq,=, \geq) b_{i} i=1,2, \ldots, m$
Where $X^{T}=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is the solution vector.
A linear programming problem (LPP) is a mathematical programming problem having a linear objective function and linear constraints, expressed as,

Minimize or maximize $z=f(x)=\sum_{j} c_{j} x_{j}$
Subject to $\quad\left\{\begin{array}{c}a_{i j} x_{j}(\leq,=, \geq) b_{i} \\ x_{j} \geq 0\end{array} \quad i=1,2, \ldots, m ; j=1,2, \ldots, n\right.$
Equations (5) and (6) form the LPP model. Equation (5) is the linear objective function in the decision variables $x_{j}$ that the decision maker wants to maximize (revenue or profit) or minimize (cost). The decision-variables $x_{j}$ are the unknown to be determined by the solution of the model. Equation (6) are the constraints on the decision variables with coefficients $a_{i j}$ while $b_{i}$ are the equality or inequality right hand side of the linear combination. The constraints represent the physical limitations of the system with the constraint that the decision variables $x_{j}$ are nonnegative. It is assumed that the known constants $a_{i j}, b_{i}$ and $c_{j}$ are real. If all the constraints are inequalities and the unknowns $x_{j}$ are restricted to nonnegative values, then the form is called canonical. The canonical form of an LPP is

$$
\begin{equation*}
\text { Max or } \min z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \tag{7}
\end{equation*}
$$

$$
\text { Subject to }\left\{\begin{array}{c}
a_{11} x_{1}+\ldots+a_{1 n} x_{n} \leq b_{1}  \tag{8}\\
\vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n} \leq b_{m}
\end{array}\right.
$$

Where $x_{i} \geq 0, \quad i=1,2, \ldots, n$.
If all $b_{i} \geq 0$, then the form is called a feasible canonical form. The Simplex method will be used to solve the LPP. As such, the canonical form must be converted into the standard form:

$$
\begin{equation*}
\operatorname{Max} z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \tag{10}
\end{equation*}
$$

Subject to $\left\{\begin{array}{c}a_{i 1} x_{1}+\ldots+a_{i n} x_{n} \leq b_{i}, \quad i=1,2, \ldots, m \\ \vdots \\ x_{j} \geq 0, j=1,2, \ldots, n\end{array}\right.$
It is assumed that the $b_{i}$ are nonnegative while the number of variables may or may not be the same as before. The LPP can easily be changed into the canonical form or into the standard form (see for example Dantzig, 1963).
For convenience the standard form of the LPP is expressed in matrix notation as:

> Max or Min $c^{T} x$
> Subject to $\left\{\begin{array}{c}A x=b \\ x \geq 0\end{array}\right.$

Where $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n \times 1}, b=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right) \in \mathbb{R}^{m \times 1}$ and
$c=\left(\begin{array}{ccc}c_{11} & \cdots & c_{1 m} \\ \vdots & \ddots & \vdots \\ c_{n 1} & \cdots & c_{n m}\end{array}\right) \in \mathbb{R}^{n \times m}$ and $\operatorname{rank}(A)=m$.

### 2.2. Existence of an optimal solution of a LP problem

It is important to know whether the LPP has an optimal solution or not.

## Definition2:

a) If $x$ satisfies $A x=b, x \geq 0$, then $x$ is a feasible solution. The set of all feasible solutions is called the feasible region.
b) A feasible solution to an LPP is said to be an optimal solution if it maximizes the objective function of the LPP, i.e., an optimal

32 Rwanda Journal, Volume 23 Series C, 2011 : Mathematical Sciences, Engineering and Technology
solution $x *$ is a feasible solution such that $c^{T} x^{*}=\min \left\{c^{T} x: A x=b, x \geq 0\right.$.
c) A linear program is unbounded if $\forall \lambda \in \mathbb{R}, \exists$ a feasible $x^{*}$ s.t. $c^{T} x^{*} \leq \lambda$

Definition3: Given a system of $m \times n$ linear equations $A x=b$, let $B$ be any nonsingular $m \times m$ sub-matrix made up of columns of $A$. Then, if all $n-m$ components of $x$ not associated with columns of $B$ are set equal to zero, the solution to the resulting set of equations is said to be a basic solution to $A x=b$ with respect to the basis $B$. A feasible solution to an LPP is said to be a basic feasible solution (BFS) if it is a basic solution with respect to the linear system $A x=$ b. If a BFS is non-degenerate, then we call it a non-degenerate basic feasible solution.

Theorem 1 (Dantzig, 1963): If there is a feasible solution then there is a basic feasible solution.

Assuming that there is a feasible solution $x$ with $p$ positive variables where $p \leq n$, then the feasible solution can be written as $x^{T}=$ $\left(x_{1}, x_{2}, \ldots, x_{p}, 0,0, \ldots, 0\right)$ so we have $\sum_{j=1}^{p} x_{j} a_{j}=b$. For simplicity we can write $x^{T}=\left(x_{1}, x_{2}, \ldots, x_{p}, 0,0, \ldots, 0\right)$ as $x^{T}=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$

Theorem 2 (Border, 2003): Let the LPP be
$\max z=c^{T} x$
Subject to $\left\{\begin{array}{c}A x=b \\ x \geq 0\end{array}\right.$
Assuming $b \geq 0$ and $\operatorname{rank}(A)=m$. Let $a_{j}$ be columns of $A$ i.e. $\operatorname{col} A=\left[a_{1}, a_{2}, \cdots a_{n}\right]$. Let $B$ be a $m \times m$ non-singular matrix whose columns are linearly independent columns of $A$ and denote $B=$ [ $b_{1}, b_{2}, \ldots, b_{m}$ ],where $b_{i}$, is the $i^{\text {th }}$ column of A. For any choice of basic matrix $B$ there corresponds a basic solution $A x=b$ given by the m vector $x_{B}=\left[x_{B 1}, x_{B 2}, \cdots x_{B m}\right]$ where $x_{B}=B^{-1} b$. Since A is mxn and $\operatorname{rank}(A)=m$, the column space of $\quad A$ is mdimensional. Thus the columns of $B$ form a basis for the column space of $A$. Let $a_{j}=\sum_{i=1}^{m} y_{i j} b_{i}, \forall j=1,2, \ldots, n$. Put $\left[\begin{array}{c}y_{1 j} \\ \vdots \\ y_{m j}\end{array}\right], \forall j=$ $1,2, \ldots, n$ then $a_{j}=B y_{j}$; hence $y_{j}=B^{-1} a_{j}$.

Theorem 3 (Border, 2003): Let $x_{B}$ be a BFS to an LPP with corresponding basic matrix $B$ and objective value $z$. Let $z_{j}=c^{T} y_{j}$. If
a) there exists a column $a_{j}$ in $A$ but not in $B$ such that the condition $c_{j}-z_{j}>0$ holds and if
b) at least one $y_{i j}>0$, then it is possible to obtain a new BFS by replacing one column in $B$ by $a_{j}$ and the new value of the objective function $\hat{z}$ is larger than or equal to $z$.
Proof (Border, 2003):
We first note that given any feasible solution $x$, then by the assumption that $z_{j}-c_{j} \geq 0, \forall j=1,2 \cdots n$ and we have

$$
\begin{equation*}
z=\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n} z_{j} x_{j}=\sum_{j=1}^{n}\left(c^{T} y_{j}\right) x_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{m} c_{i} c_{i j}\right) x_{j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} y_{i j} x_{j}\right) c_{i} \tag{11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
z \leq \sum_{i=1}^{m}\left(\sum_{j=1}^{n} y_{i j} x_{j}\right) c_{i} \tag{12}
\end{equation*}
$$

It is claimed that

$$
\begin{equation*}
\tilde{x}_{i} \equiv \sum_{j=1}^{n} y_{i j} x_{j}=x_{i}, \quad i=1,2, \cdots m \tag{13}
\end{equation*}
$$

Since $x$ is a feasible solution, $A x=b$. Thus
$b=\sum_{j=1}^{n} x_{j} a_{j}=\sum_{j=1}^{n} x_{j}\left(B y_{j}\right) \sum_{j=1}^{n}\left(\sum_{i=1}^{m} y_{i j} b_{i}\right) x_{j} \sum_{i=1}^{m}\left(\sum_{j=1}^{n} y_{i j} x_{j}\right) b_{i}=\sum_{i=1}^{m} \tilde{x}_{i} b_{i}=B \tilde{x}$
Since $B$ is non-singular and $B x=b$, it follows that $\tilde{x}=x$. Thus

$$
\begin{equation*}
z \leq \sum_{i=1}^{m} c_{i} x_{i}=z_{0} \tag{15}
\end{equation*}
$$

$\forall x_{i}$ in the feasible region.

### 2.3. Literature Review

Alperovits and Shamir (1977) presented a linear programming gradient (LPG) in optimizing water distribution network. Segmental length of pipe with differential diameter was used as decision making variable. The LPG method was later further improved by Kessler and Shamir (1989) who presented two stages LPG method. In the first stage, parts of the variables are kept constant while other variables are solved by LP. For a given set of flows, the corresponding sets of heads are determined by LP. In the second step, search is conducted based on the gradient of the objective function. Flows are modified according to gradient of the objective functions. Fujiwara and Khang (1990) proposed a nonlinear programming gradient (NLPG) approach that considered the flow distribution and pumping head as
the decision variables and used a gradient approach to arrive at their optimal values. However, most NLP methods assume that the pipe diameters are continuous variables and hence, cannot guarantee optimality when the continuous diameters are rounded off to discrete commercially available diameter values. Werey (2000) used a dynamic programming approach to schedule pipe. However, both these approaches don't allow the designer to consider the hydraulic performance of the network.

The surplus head at a node refers to the excess of the available head at a node over the desirable head. It is assumed that the node with the minimum surplus head is the most critical in terms of the potential to fail. Hence, designs based on minimum surplus head try to maximize this critical residual head. However, this approach only considers the most critical node and doesn't consider the performance at other nodes during the periods in which the critical node fails. Further, the use of minimum surplus head as a reliability measure implies that partial flows are not considered in arriving at reliability (Nirmal Jayaram, 2006).
This research uses a LPP model which involves the design of a new network of water distribution considering the cost in the form of unit price of pipes, the hydraulic gradient and the loss of pressure.

## 3. The LP Model for Water Distribution Networks in Kigali

### 3.1. Model data

The objective of cost minimization can be obtained by employing scientific optimization techniques in order to reduce the life cycle cost of the project. One of the biggest components of cost associated with any water distribution network is the initial cost. However, a new water distribution network would have to be optimally designed to handle forecast demands at a desired level of service, throughout its service life. The cost of a water distribution network depends upon proper selection of the geometry of the network. The decision variables in the optimal design problem are the pipe diameters, which are discrete in nature. The optimal solutions to the design problem should be a set of commercially available diameters that minimize the cost of the network, while maximizing its reliability.

Table 1 gives the prices of different pipes in Rwanda Francs obtained in Kigali. The price varies based on pipe length and pipe diameter.

Table 1: Prices of pipes for different sizes of diameters in Rwanda francs (RWF)

| 121166.7 | 242333.4 | 363500.1 | 484666.8 | 605833.5 | 727000.2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 189567 | 379134 | 568701 | 758268 | 947835 | 1137402 |
| 273533.3 | 547066.6 | 820599.9 | 1094133.2 | 137666.5 | 1641199.8 |
| 381458.3 | 762916.6 | 114474.9 | 1525833.2 | 1907291.5 | 2288749.8 |
| 670734.5 | 1341469 | 2012203.5 | 2682938 | 3353672.5 | 4024407 |
| 907762.3 | 1815524.6 | 2723286.9 | 3631049.2 | 4538811.5 | 5446573.8 |
| 1752810 | 3505620 | 5258430 | 7011240 | 8764050 | 10516860 |
| 2536230 | 5072460 | 7608690 | 10144920 | 12681150 | 15217380 |
| 6913705 | 13824710 | 20741115 | 27654820 | 34568525 | 41482230 |
| 8236383.3 | 16472766.6 | 2470949.9 | 32945533.2 | 41181916 | 49418299.8 |

Source: Data collected from the Energy,
Water and Sanitation Authority (EWSA), Rwanda
Table 2 gives data on relationship between hydraulic gradient with pressure loss when water is distributed at a constant velocity of water of $25 \mathrm{~m} / \mathrm{s}$, commonly known as head loss. The diameters of the pipes have a large effect on the internal head losses, which in turn determine the adequacy of supply at the output nodes at desirable pressures. The hydraulic gradient depends on the discharge, the pipe diameter and the Hazen William's coefficient.
Table 2: Hydraulic gradient with loss of pressure

| Pressure <br> in Pa | Hydraulic gradients in mm |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 40 | 2.7779 | 1.5724 | 1.1856 | 1.2417 | 1.0447 | 1.1448 | 0.5695 | 0.4649 | 0.346 | 0.3074 |  |
| 70 | 3.3198 | 2.02 | 1.5951 | 1.4482 | 1.4423 | 1.3591 | 0.6383 | 0.534 | 0.3987 | 0.3545 |  |
| 200 | 8.5792 | 5.3193 | 3.9872 | 3.6979 | 2.9021 | 3.1358 | 1.6091 | 1.3174 | 0.9850 | 0.8750 |  |
| 400 | 19.0515 | 11.8749 | 8.9646 | 9.1475 | 6.1325 | 7.1195 | 4.0273 | 3.026 | 2.4904 | 2.2125 |  |
| 500 | 29.1065 | 17.0994 | 12.8108 | 11.1097 | 9.2605 | 9.259 | 5.657 | 4.279 | 3.2439 | 2.8154 |  |
| 600 | 41.2638 | 24.0239 | 17.9925 | 15.5906 | 12.9706 | 12.9639 | 7.9213 | 5.991 | 4.5419 | 4.0351 |  |

Source: Data from EWSA

### 3.2. Model Formulation

The objective function to minimize the cost of distribution network of clean water is:

$$
\begin{equation*}
\operatorname{Min} \sum_{i=1}^{m} c_{i j} x_{i j}, j=1,2, \ldots, n \tag{16}
\end{equation*}
$$

Subject to the constraints

$$
\begin{align*}
& \sum_{i=1}^{m} a_{i j} x_{i j} \geq b_{i} j=1,2, \ldots, n \\
& (17) \\
& x_{i j} \geq 0, i=1,2, \ldots, m ; j=1,2, \ldots, n \tag{18}
\end{align*}
$$

Equations 16, 17 and 18 form the LPP model. $x_{i j}$ are sizes of pipe diameters at a given section. The constraints represent the condition that the total pressure losses in a hydraulic path between a pump station or tank and every critical node (i.e. the end of the pipe network or the extreme elevation inside the network) should be less than or equal to the hydraulic gradient of the diameter with size $j$. These constraints are based on the minimum network pressure requirements needed for the operation of the system. Given the minimization requirement for the investment costs, the objective function is the sum of the products of the individual pipeline unit prices and their required size of diameters. By incorporating multidemand conditions in the model we have a system of constraints for every demand pattern. When pumps are also included in the model, the main input parameter is its pump curve. The right sides of the constraints vary according to the pump's operating conditions.
Table 3: The unknown pipe diameters $x_{i j}$ and the unit prices $c_{i j}$ of pipeline with diameter $j$ used in the sum $\sum_{i=1}^{m} c_{i j} x_{i}, j=$ $1,2, \ldots, n$ (Equation (16))

| $\boldsymbol{x}_{i}$ | $c_{i 1}$ | $c_{i 2}$ | $c_{i 3}$ | $\boldsymbol{c}_{i 4}$ | $c_{i 5}$ | $c_{i 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{1}$ | 121,166.7 | 242,333.4 | 363,500.1 | 484,666.8 | 605,833.5 | 727,000.2 |
| $x_{2}$ | 189,567 | 379,134 | 568,701 | 758,268 | 947,835 | 1,137,402 |
| $x_{3}$ | 273,533.3 | 547,066.6 | 820,599.9 | 1,094,133.2 | 137,666.5 | 1,641,199.8 |
| $\boldsymbol{x}_{4}$ | 381,458.3 | 762,916.6 | 114,474.9 | 1,525,833.2 | 1,907,291.5 | 2,288,749.8 |
| $x_{5}$ | 670,734.5 | 1,341,469 | 2,012,203.5 | 2,682,938 | 3,353,672.5 | 4,024,407 |
| $x_{6}$ | 907,762.3 | 1,815,524.6 | 2,723,286.9 | 3,631,049.2 | 4,538,811.5 | 5,446,573.8 |
| $x_{7}$ | 1,752,810 | 3,505,620 | 5,258,430 | 7,011,240 | 8,764,050 | 10,516,860 |
| $x_{8}$ | 2,536,230 | 5,072,460 | 7,608,690 | 10,144,920 | 12,681,150 | 15,217,380 |
| $x_{9}$ | 6,913,705 | 13,824,710 | 20,741,115 | 27,654,820 | 34,568,525 | 41,482,230 |
| $x_{10}$ | 8,236,383.3 | 16,472,766.6 | 2,470,949.9 | 32,945,533.2 | 41,181,916 | 49,418,299.8 |

These constraints are formulated using data given in Table 4 and Table 5 below.

Table 4: Hydraulic gradients $a_{i j}$ used in the constraints $\sum_{i=1}^{m} a_{i j} x_{i} \geq b_{i} j=1,2, \ldots, n$

| $a_{l j}$ | 2.7779 | 1.5724 | 1.1856 | 1.2417 | 1.0447 | 1.1448 | 0.5695 | 0.4649 | 0.346 | 0.3074 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a_{2 j}$ | 3.3198 | 2.02 | 1.5951 | 1.4482 | 1.4423 | 1.3591 | 0.6383 | 0.534 | 0.3987 | 0.3545 |
| $a_{3 j}$ | 8.5792 | 5.3193 | 3.9872 | 3.6979 | 2.9021 | 3.1358 | 1.6091 | 1.3174 | 0.985 | 0.875 |
| $a_{4 j}$ | 19.0515 | 11.8749 | 8.9646 | 9.1475 | 6.1325 | 7.1195 | 4.0273 | 3.026 | 2.4904 | 2.2125 |
| $a_{5 j}$ | 29.1065 | 17.0994 | 12.8108 | 11.1097 | 9.2605 | 9.259 | 5.657 | 4.279 | 3.2439 | 2.8154 |
| $a_{6 j}$ | 41.2638 | 24.0239 | 17.9925 | 15.5906 | 12.9706 | 12.9639 | 7.9213 | 5.991 | 4.5419 | 4.0351 |

Table 5: Pressure loss $b_{i}$ used in the constraints $\sum_{i=1}^{m} a_{i j} x_{i} \geq b_{i} j=$ $1,2, \ldots, n$

| $\boldsymbol{b}_{\boldsymbol{1}}$ | $\boldsymbol{b}_{\boldsymbol{2}}$ | $\boldsymbol{b}_{\mathbf{3}}$ | $\boldsymbol{b}_{\boldsymbol{4}}$ | $\boldsymbol{b}_{\boldsymbol{5}}$ | $\boldsymbol{b}_{\boldsymbol{6}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 40 | 70 | 200 | 400 | 500 | 600 |

The objective function is thus formulated as follows:

## Minimize

$$
\begin{align*}
& (121166.7+242333.4+363500.1+484666.8+605833.5+727000.2) x_{1}+ \\
& (189567+379134+568701+758268+947835+1137402) x_{2}+ \\
& (273533.3+547066.6+820599.9+1094133.2+1367666.5+1641199.8) x_{3}+ \\
& (381458.3+762916.6+1144374.9+1525833.2+1907291.5+2288749.8) x_{4}+ \\
& (670734.5+1341469+2012203.5+2682938+3353672.5+4024407) x_{5}+ \\
& (907762.3+1815524.6+2723286.9+3631049.2+4538811.5+5446573.8) x_{6}+ \\
& (1752810+3505620+5258430+7011240+8764050+10516860) x_{7}+ \\
& (2536230+5072460+7608690+10144920+12681150+15217380) x_{8}+ \\
& (6913705+13827410+20741115+34568525+27654820+41482230) x_{9}+ \\
& \left(8236383.3+16472766.6+32945533.2+32945533.2 x_{10,4}+41181916.5+\right. \\
& 49418299) x_{10} \tag{19}
\end{align*}
$$

Subject to:

1. $2.7779 x_{1}+1.5724 x_{2}+1.1856 x_{3}+1.2417 x_{4}+1.0447 x_{5}+1.448 x_{6}$ $+0.5695 x_{7}+0.4649 x_{8}+0.346 x_{9}+0.3074 x_{10} \geq 40$
2. $3.3198 x_{1}+2.02 x_{2}+1.5951 x_{3}+1.4482 x_{4}+1.1423 x_{5}+1.3591 x_{6}$ $+0.6383 x_{7}+0.534 x_{8}+0.3987 x_{9}+0.3545 x_{10} \geq 70$
3. $8.5792 x_{1}+5.3193 x_{2}+3.9872 x_{3}+3.6979 x_{4}+2.9021 x_{5}+3.1358 x_{6}$ $+1.6091 x_{7}+1.3174 x_{8}+1.9850 x_{9}+0.8750 x_{10} \geq 200$
4. $19.0515 x_{1}+11.8749 x_{2}+8.9646 x_{3}+9.1475 x_{4}+6.1325 x_{5}+7.1195 x_{6}$ $+4.0273 x_{7}+3.026 x_{8}+2.4904 x_{9}+2.2125 x_{10} \geq 400$

$$
\begin{array}{ll}
\text { 5. } 29.1065 x_{1}+17.0994 x_{2}+12.8108 x_{3}+11.1097 x_{4}+9.2605 x_{5}+9.259 x_{6} \\
& +5.657 x_{7}+4.2790 x_{8}+3.2439 x_{9}+2.8154 x_{10} \geq 500 \\
\text { 6. } & 41.2638 x_{1}+24.0239 x_{2}+17.9925 x_{3}+15.5906 x_{4}+12.9706 x_{5}+ \\
& 12.9639 x_{6}+7.9213 x_{7}+5.9910 x_{8}+4.5419 x_{9}+4.0351 x_{10} \geq 600 \tag{25}
\end{array}
$$

To ensure the model has an objective function we apply it to the Theorem.

$$
\left.\begin{array}{l}
\text { Choose } \\
B=\left[\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4}
\end{array} b_{5} b_{6}\right.
\end{array}\right] \text { be the first } 6 \text { columns of } A \text {. }
$$

Thus $x_{i}$ are optimal solutions. Hence the data verify the theorem.

## 4. Results

Data used in the LPP model are obtained from an existing water distribution network in Kigali City. This has been illustrated using a sample network configuration with pipes of different lengths and diameters. The diameters of pipes considered are: 1.97inches, 2.56inches, 3.14 inches , 3.94inches, 4.92 inches , 5.51 inches, 7.87 inches, 9.84 inches, 11.81 inches, 15.75 inches and the lengths are: $100 \mathrm{~m}, 200 \mathrm{~m}, 300 \mathrm{~m}, 400 \mathrm{~m}, 500 \mathrm{~m}, 600 \mathrm{~m}$. The model was solved using the Simplex method which was implemented on the Linear Interactive and Discrete Optimizer (LINDO) software package. The data were collected from the Energy, Water and Sanitation Authority (EWSA). The optimal solution has been found after 6 iterations and it requires RWF $38,761,640$ for a new water distribution network, using pipes of 14.399366 inches, 21.085608 inches, 20.995722 inches, 17.178293inches, 14.540589 inches of 100 m of length and 0.022857 inches of 600 m of length.

## 5. Discussions

The obtained results show reduction in the cost compared to the actual cost of the given data. For illustration purposes Figure 1 shows the cost of the existing sample pipelines in Kigali city and the reduced cost obtained from the model computations for a pipe of 2.56 inches of diameter for different lengths of the pipes.


Figure 1: Actual cost and reduced cost for a pipe diameter of 2.56 inches and various lengths

## 6. Conclusion

This paper presents a linear programming method to solve an optimal water distribution network to new locations in Kigali City. The main aim is to achieve the optimal solution with the minimum design cost to the new locations and, at the same time, satisfy the demand with available pipe sizes, using the gradients calculated from the dual variables. The results obtained show a reduction in cost compared to the actual cost of the sampled pipelines in Kigali city. It is recommended that optimization techniques be used before designing and constructing new water distribution networks.

## References

1. Kessler, A. and Shamir, U. (1989). "Analysis of the linear programming gradient method for optimal design of water supply networks", Water Resources Research, Vol. 25, No.7, pp. 14691480.
2. Chiplunkar, A.V., Mehndiratta, S.L. and Khanna, P. (1986) "Looped water distribution system optimization for single loading", Journal of Environmental Engineering, Vol. 112, No. 2, pp. 265-279.
3. Gupta, I., Gupta, A., and Khanna, P. (1999). "Genetic algorithm for Optimization of water distribution systems", Environmental Modelling \& software Vol.-4, pp. 437-446.
4. Cunha, M.D.C., and Sousa, J. (1999). "Water Distribution Network Design Optimization: Simulated Annealing Approach." Journal of Water Resources Planning and Management, Vol. 125, No. 4, pp.215-221.
5. Spall, J. C. (2003). Introduction to stochastic search and optimization www.diva.eng.cam.ac.uk/energy/../stochastic/5rlintroduction.pdf
6. Fujiwara. O. and Khang, D. B. (1990). "A two-phase decomposition method for optimal design of looped water distribution networks." Water Resources Research, Vol. 26, No. 4, pp. 539-549.
7. Werey (2000) water pipe renewal using a multiobjective optimization approach.
8. Kleiner, and Ali, M. (2001). "Optimal design of water distribution Systems using genetic algorithms." Comput. Aided Civ. Infrastruct. Eng., 15_5_, 374-382.C
9. Xu, C., and Goulter, I. C. (1999). 'Reliability-based optimal design of water distribution networks." J. Water Resour. Plan. Manage., ASCE, 125(6), 352-362.
10. Nirmal Jayaram. (2006), Reliability Based Optimization of Water Distribution Network
11. Dantzig, G. B. 1963. Linear programming and extensions. Princeton: Princeton University Press.
12. KC Border, (2003). Notes on the theory of linear programming California Institute of Technology.
