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Abstract

In this paper we use the convection-diffusion equation to model the transport of
pollutant material through the atmosphere.  Such models have a wide range of
applications such as predicting the environmental impact from new polluting
industrial plants.

In our study we solve the convection-diffusion equation in a two dimensional
setting using the Crank-Nicholson method. For our application it is important that
the numerical scheme be positive.
The developed numerical model is used to predict the distribution of pollutant
material for a few example scenarios. We also discuss the influence of external
model parameters such as diffusion coefficient, drift velocity and chemical activity,
on the results.
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1. Introduction
In this work we propose a mathematical model that can be used to track the
movement of pollutant material in the atmosphere. Such models are
important tools for planning the industrial development of a country since
they can be used to predict the impact of polluting industrial plants on, e.g.,
important tourist sites.

Our mathematical model is based on the classic convection-diffusion
equation; which essentially expresses a mass balance statement for the
pollutant material as it is transported through the air [1]. In our model we
assume that the concentration φ of pollutant material satisfies the following
2D convection – diffusion equation:+ + − + + = , (1.1)
where ( , ) are the components of the wind velocity, or drift- velocity
vector, ≥ 0 is the pollutant chemical transformation coefficient or fall
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out to the ground, is the diffusion coefficient, and is a source term that
describes where the pollutant material is generated and its power.

Besides the time derivative, the left hand side of equation (1.1) has three
distinct parts with different physical interpretation. First we have the
convection part which describes the movement of pollutant particles due to
wind. The wind speed has to be measured and will depend on both time and
location. The second part describes how the pollutant spreads through the
air due to diffusion. While local variations in air quality may influence the
diffusivity constant it is acceptable for our purposes, and as an initial
simplification, to treat the diffusivity as a constant. The last term describes
how the pollutant material is removed from the air because of, e.g. chemical
transformation, or fallout to the ground [2, 3]. In a practical simulation the
coefficient has to be estimated based on meteorological data such as rain
fall and temperature.

In our code we only track pollution movement in a rectangular domain.
Thus we need to specify boundary conditions. Choosing appropriate
boundary conditions is very important for the accuracy of the results. In our
codes we use zero Dirichlet boundary conditions. This is not realistic but
the accuracy of the numerical results can still be guaranteed by choosing
example scenarios where the pollutant material never moves close to
the boundaries during the simulations. This will be explained further in
Section 3. More realistic boundary conditions have been developed, see
e.g.[2].

The paper is organized as follows: In Section 2 we discuss the discretization
of the equation (1.1) using the Crank-Nicholson method. Also we discuss
the positiveness of the resulting finite difference scheme. In Section 3 we
present a few test scenarios that will be used for evaluating our proposed
method. Also the results from numerical calculations are presented. Finally,
in Section 4 we summarize our results and discuss future improvements to
our codes.

2. Discretization

Generally the two dimensional convection-diffusion equation (1.1) cannot
be solved analytically. Instead we have developed a finite difference solver
based on the Crank-Nicholson method; which is second order accurate in
both time and space, see e.g. [4, 5]. For our application it is important that
the components of the numerical solution , , are positive
numbers since they represent the concentration of pollutant material. Thus
we need to refine the Crank-Nicholson method slightly by including a
positiveness condition [2].
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The computational domain is the rectangle Ω = [0, ] × [0, ] and we
simulate the system during a time period[0, ]. The space domain is
discretized using a uniform grid of size . The grid parameters areℎ = and = . (2.2)
We introduce a vector ф( ) that contains the individual concentrations, , at the grid points. By discretizing the space derivatives in (1.1),
using finite differences, we obtain a linear system:

ф + ( )ф( ) = ( ), = + − − + , (2.3)
where ( ) is a vector that holds the source strengths ( , , ) at the grid
points. , = 1,2,3,4 are defined square × dimensional matrices and

is the identity matrix. Note that generally model parameters will not be
constant and if, for instance, the wind speed = ( , , ) then the matrix

is replaced by = ( , ).
In our numerical code the Crank-Nicholson method is used to discretize the
time derivative. At each step of the method we need to solve a linear system
of equations,− 2 ф = + 2 ф + 2 + . (2.4)
Solving the linear systems represents a significant amount of computational
work and a sparse solver is necessary.

Recall that, for our application, we require that the computed concentrations
ф are positive [7]. We give the following definitions:

Definition 2.1 A difference scheme is called positive if its solution is non-
negative when its right hand side, initial condition and boundary conditions
are all non-negative.

Definition 2.2 A difference scheme is called monotone if it preserves the
monotonicity along lines in the space domain between time steps.

It is desirable that our numerical solution is positive and that monotonicity
is preserved. This holds if the grid parameters ℎ, and satisfy the relations
[6, 8]:< 2 , ℎ < 2 , ≤ 12 2 −2 > 1 + 1ℎ (2.5)
These additional conditions provide information about the optimal grid size
parameters , in (2.2).

The above finite difference scheme has been implemented using Matlab as
a function:

function [Phi]=Pollution2D(N,M,P,X,Y,T,[u,v],mu,sigma,f,Phi0);
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where [ , ], is a vector (or vector valued function) representing the wind-
speed, and , and , are Matlab functions implementing the
coefficients in (1.1).

3. Numerical experiments

In this section, scenarios which show the influence of the coefficients in the
equation (1.1) are presented. In particular we will show the influence of the
diffusion coefficient and the drift velocity on the time evolution of polluted
zones. The physical interpretation of the results will be discussed. For the
simulations we used a uniform grid of size ( , ) = (80,80) and
performed = 80 time steps. The same transformation coefficient =0.05 was used in all tests.

3.1 The Influence of the Pollutant Diffusion on the Evolution of
Polluted Zones

In the first scenario we assume a single pollutant source of constant strength= 5 located in the area 0.4 ≤ ≤ 0.6 and 0.4 ≤ ≤ 0.6 . The wind
speed is assumed constant ( , ) = (2,2), and thus the pollutant material
should mainly spread into the interior of the computational domain. This
has the effect of ensuring that the boundary condition = 0 is accurate
during the simulation. The numerical results are shown in Figure 1.
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Figure 1: The evolution of the pollutant zones for diffusion coefficient = 0.1
(green) and = 0.9 (red). The graphs shows the level curves ( , ) ≥ 0.01. The
polluted zones are displayed at different dates = 0.7, = 1.2, = 1.7, = 2.2, =2.7, = 3.2, = 3.7, = 4.

The diffusion coefficient plays a big role in the evolution of the polluted
zones. For a light pollutant, i.e. a high diffusion coefficient, the polluted
zone expands rapidly, but also dissipates quickly when the polluting activity
is stopped. A heavy pollutant, having a low diffusion constant, only
expands slowly, but it also stays longer in polluted regions.

3.2 The Influence of Drift Velocity on the Evolution of Polluted Zones
In the second scenario we also assume a single pollutant source of constant
strength = 5 located in the area 0.4 ≤ ≤ 0.6 and 0.4 ≤ ≤ 0.6 . We
compare two situations characterized by different constant values of the
wind speed ( , ) = (2,2) and ( , ) = (6,6) and thus the pollutant
material should mainly spread into the interior of the computational
domain. This has the effect of ensuring that the boundary condition = 0
is accurate during the simulation. The numerical results are shown in
Figure 2.
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Figure 2: The evolution of polluted zones in two environments with two different
drift velocities = . (green) and = . (red). The graphs shows the level

curves ( , ) ≥ . . The polluted zones are displayed at different dates= . , = . , = . , = . , = . , = . , = . , = .
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The drift velocity plays a significant role in the expansion of pollutant in the
affected region. For a high drift velocity the pollutant spreads on a big
region but also quits the observed zone more quickly when the polluting
source is stopped. For a low drift velocity it spreads slowly than the
previous one and it stays in affected region relatively longer.

4 Concluding Remarks

In this paper we discussed the behavior of air pollution using the
convection-diffusion equation. We constructed an adequate numerical
scheme which is positive and monotone. The graphical representation
showed how the pollution concentration changes according to the variation
of the parameters equation and the time evolution of the polluted zones.

By this model it is possible to predict the movement of the air pollution and
then be able to plan according to data taken on the ground. It will enable us
to put industrial plant in a way they will not harm a lot of the population or
the environment.

Future work will concentrate on using an adequate boundary condition as
the transparent boundary condition in two dimensions, on resolving a full
three dimension convection-diffusion equation or a collection of two
dimension convection-diffusion equation with different layers where we can
include some layers coupling.
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