

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

66

Web geoprocessing services on GML
with a fast XML database

Clarisse KAGOYIRE
CGIS-NUR, PO BOX 212, Rwanda
Cell phone no: +250788837322
ckagoyire@nur.ac.rw, clarisse.kagoyire@cgisnur.org

Abstract
Nowadays there exist quite a lot of Spatial Database Infrastructures (SDI) that
facilitate the Geographic Information Systems (GIS) user community in getting
access to distributed spatial data through web technology. However, sometimes the
users first have to process available spatial data to obtain the needed information.
The geoprocessing services can be provided over the web using the conventional
databases (such as the relational databases or object-oriented databases) as back-
end, though this causes a concrete problem of overhead of data conversion. In this
research, we proposed an approach to provide the web geoprocessing services,
using an XML (eXtensible Markup Language) database system as back-end and the
Geography Markup Language (GML) as data encoding standard. Currently there is
not yet a formal standard query language for GML, we demonstrate that the XML
Query (XQuery) language can be extended with spatial semantics to carry out
spatial computation upon GML data.
A scenario was chosen, namely the assessment of soil erosion caused by rainfall, to
apply the proposed approaches. After describing and analysing the requirements of
an assessment of soil erosion caused by rainfall, we proposed a suitable system
prototype design combining the Model View Controller (MVC) architectural pattern
with Service-Oriented Architecture (SOA) principles. To add robustness and
flexibility to the system, the implemented web geoprocesses were provided through
Web service orchestration. Such system prototype can support the decision-making
activities, such as planning the land use for environmental conservation purposes.
Keywords: Geoprocessing, XQuery, XML database, spatial queries, GML, Web
service orchestration.

1. Introduction
The exponential growth of the use of web technology has led people to hail it
as one of the innovating technological events in information sharing. In the
domain of Geographic Information Systems (GIS), this growth has
emphasized the need for sharing spatial information as well as the need for
interoperability among heterogeneous spatial information systems over the
web. In fact, nowadays there exist quite a lot of SDIs (Spatial Database
Infrastructures) that facilitate the GIS user community in getting access to

 Rwanda Journal Volume 20, Series C, 2011 : Mathematical Sciences, Engineering and Technology 67

distributed spatial data through web technology. However, sometimes the
users are unable to get the precise required information, and are forced to
first process the available spatial data to determine the needed information
(Kiehle et al., 2007). In such cases, users may need to make use of
distributed geoprocessing services available through the web. The basis of
distributing geoprocesses over the web is the spatial data on which they are
applied. They must not only have access to the spatial data sources (spatial
databases or image repositories), but also carry out geographic computation
tasks on those data and return response messages and/or data outputs. To
achieve an efficient distribution of geoprocessing services among various
spatial information systems (based on interoperability); there should be a
standard for encoding the spatial data to support the data exchange.
Moreover, there should also be a flexible orchestration of geoprocessing
services with the aim of facilitating the implementation of an expeditious
application system that can handle spatio-analytic functions on the web.

An SDI can use GML (Geographic Mark-up Language) as data encoding to
support their transportation from one application system to another (from
one node to another) over the Internet. Considering the state-of-art of data
management technologies (such as RDBMS,3 ORDBMS,4 OODBMS5)
(Pardede et al. 2006; Shimura et al., 1999), each node that receives the data
in GML format, has to parse and store them into an internal or proprietary
format (depending on the data management system in use), apply a number
of functions on them and then convert back the resulting information into
GML before transmitting them to the next node. This brings out a concrete
problem of overhead of data conversion. However, given that GML encodes
spatial and non-spatial data using XML (eXtensible Markup Language)
encodings (Lake et al., 2004), GML documents can be stored and
manipulated in an XML DBMS6 (such as MonetDB/XQuery7) (A. Boncz et
al., 2006) without any need of data conversion. Therefore, XML databases
are more favourable to manage GML data for providing geoprocessing
services in an SDI. However, we have to bear in mind that there is a need of
optimizing their manageability as the characteristics of spatial data and their
data volume may drastically affect the effectiveness of application systems
that handle GML documents.

3 Relational Database Management System.
4 Object-Relational Database Management System.
5 Object-Oriented Database Management System.
6 XML Database Management System.
7 A fast XML database that fully supports the World Wide Web Consortium XQuery language.

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

68

A number of studies has been carried out and recommended several
approaches to tackle the problem of providing geoprocesses on the web and
the problem of spatial data exchange to ensure interoperability among
various spatial information systems. However, the integration of different
spatial data sources with different schemas and the performance of SDIs
(Kiehle et al., 2007) within a distributed computing environment remain
questionable due to the complexity of spatial data and their large data
volumes. For instance, Chia-Hsin, et al. (2006) implemented a GML query
processor to support and speed-up geospatial functionality but concluded
that the technique used of XML/GML prefiltering was not good enough to
reduce the cost of retrieving the index, thus recommended more studies to
improve the way of processing GML documents. Kiehle (2006, pp.1749-
1750) described the development of a business-logic component for the
geoprocessing of distributed geodata, showing the main web technologies
available to utilize distributed and heterogeneous spatial data.

This research has the aim of optimizing the provision of distributed web
geoprocessing service applied on GML data sources, using an XML database
as a back-end. After describing MonetDB/XQuery database system and
enquiring into what XQuery offers to retrieve and manipulate GML data
stored in an XML database; a number of spatial functions will be realized in
MonetDB/XQuery and provided over Internet through Web service
orchestration. The Service-Oriented Architecture (SOA) approach will be
used to support the organisation and utilization of distributed functions and
distributed spatial data. Each computation node in our distributed
geoprocessing system, will be equipped with MonetDB/XQuery database
system and some spatial functions and/or spatial data that are accessible over
the Web. The rest of the paper is structured as follows: Section 2 provides
the basic concepts of XQuery and describes its implementation,
MonetDB/XQuery. Section 3 describes the implementation of an extension
of XQuery for spatial functionality in MoneDB/XQuery. Section 4 and
Section 5 discuss the design of our system prototype and its implementation,
respectively. Finally, the last Section concludes the paper, outlining the
achievements in regards with the innovation aimed at and recommendations
for further research.

2. The XML Query Language

This section contains the basic concepts of XQuery. The XML Query
Language (XQuery) is a language for processing XML data. It is built on
XPath (XML Path Language) (W3C, 2007b) expressions. XML was

 Rwanda Journal Volume 20, Series C, 2011 : Mathematical Sciences, Engineering and Technology 69

designed for storing and transferring data. It reduces the efforts spent on data
transformation for transport and facilitates the integration of data from
different platforms and different formats, owing to their self-descriptive
characteristics. XML allows us to define and use new elements according to
the data to be represented without any restriction. In other words, XML
allows us to define our own tags which are like attribute in table-based
databases. For instance Figure 1 shows an XML document (buildings.xml)
with data about city buildings; note that the names of the tags give an idea of
the data they enclose. This flexibility entails irregularity and heterogeneity in
the structure of XML data, in contrast with relational data whose structure is
regular and homogeneous. To take advantage of XML flexibility and
extensibility, there is a need for a query language that can provide
possibilities to retrieve and manage easily information represented in the
XML format given their irregular structure. XQuery was designed to retrieve
information from XML databases including relational databases that store
XML data or that present non-XML data sources as XML views. XQuery
was developed by the W3C XML Query Working Group to be a language in
which queries are short and simple (W3C, 2007f).

Figure 1: Example of an XML document.

XQuery is based on the XPath language, which is a W3C standard that
facilitates to navigate through the hierarchical structure of an XML

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

70

document using path expressions (W3C, 2007b). As the name reveals, the
path expressions describe a path to select a particular node within an XML
document. An XML document has a tree-based structure of which the root is
represented by a document node. A node can be one of seven kinds of node:
document, element, attribute, text, namespace, processing instruction and
comment. The structure of the XML document represented in Figure 1 is
illustrated in Figure 2.

Figure 2: Representation of a document part in the XQuery Data Model (adapted from

(Howard et al., 2003)

A document node or an element node is a parent of its children. A child node
can have only one parent and the nodes that have the same parent are
siblings. The ancestors of a node are the parent of that node, its parent’s
parent, and so on. The descendants of a node consist of the children of that
node, children of the children, and so on. To navigate through XML
documents, path expressions are used and they commonly start at the root
node. XQuery extends XPath, providing more flexibility to handle complex
tasks such as record-selection that may require recursion.

2.1. XQuery Formal semantics

The XQuery Formal Semantics provides a mathematical meaning to each of
the XQuery expressions through the XQuery Data Model. For more details
about the XQuery Data Model, refer to (W3C, 2007c). XQuery is a

 Rwanda Journal Volume 20, Series C, 2011 : Mathematical Sciences, Engineering and Technology 71

functional language as it is based on expressions that can be nested given
that the result of an expression can be used as an argument in another
expression. XQuery is a strongly typed language because it prevents any
compilation of incorrectly typed expressions; it supports compulsory
dynamic typing and optionally static typing. The dynamic type checking is
carried out at run-time, and detects type errors on the values of expressions
such as using zero as a divisor within an arithmetic operation expression.
Static typing detects type errors in expressions at compile-time, and permits
to detect the error before the expression is evaluated. This can be used as a
basis of certain classes of optimisation as well (Howard et al., 2003; W3C,
2007d).

In XQuery language, each query consists of either a simple expression or a
composed expression; and various kinds of expressions can be combined by
operators to constitute new expressions. XQuery has two input functions that
can be used within expressions to access input data from an XML document,
meaning from an XML database in which the document is stored. The doc ()
function returns the document or more precisely the document node
associated with the specified URI. The collection () function returns a
sequence of document nodes, from a given URI. The most common XQuery
expressions are literals, path expressions, FLWOR (For-Let-Where-Order
by-Return) expressions, elements constructors, and conditional expressions
(W3C, 2007d).
• Literals
The literals are the simplest XQuery expressions. A literal consists of an
atomic value that can be numeric or string. There are three kinds of numeric
literals; integers, decimals and doubles.
• Path expressions
The path expressions are used to navigate through the tree structure of XML
documents to locate nodes of interest. The expression: doc
("buildings.xml")/cityBuildings/city/building/title will return all the title
elements along such paths. The function doc () is used to access and open,
the operator / is used to navigate through the document buildings.xml (Figure
1), and find the element nodes title.
• FLWOR expressions
The FLWOR expression (pronounced ”flower expression”) format is the
most powerful XQuery expression, and is syntactically similar to the SQL
statement SELECT-FROM-WHERE. It allows us to express iteration in
XQuery. Here is a simple example of an expression that returns the titles of
the buildings that have been constructed in 1913 and the number of
architects associated with each of the returned buildings, using FLWOR.

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

72

for $b in doc ("buildings.xml")//building
let $a := $b/architect
where $b/@year="1913"
return
 <building>
 {$b/title,<count>{count($a)}t</count>}
 </building>
In our case, there is only one building constructed in 1913. The result of the
query above is:
<building>
 <title>American Academy in Rome</title> <count>2</count>
</building>

The for clause binds the variable $b to the list of the buildings evaluated
from the expression doc(“buildings.xml”)/city/building, the let clause binds
the variable to all returned architects of each building, the where clause
filters the returned buildings to retain only the buildings constructed in 1913
and the return clause returns the title of each of those buildings, and its
number of architects. Observe that both for and let are a means to state
iteration over a list of elements and the evaluation of where and return are
nested inside those iterations.

• Element constructors
In the above example, the element constructor is used to create the element
node “building” in the return clause.

• Conditional expressions
Queries in XQuery can also use conditional expressions just as they are used
in other languages. For example, to return only the buildings that have been
designed by more than one architect, one uses the following query:
for $b in doc ("buildings.xml")/city/building
let $a := $b/architect
return
 if (count ($a)>1) then $b/title
 else ()
Note that else () indicates that in case the expression if (count ($a)>1) is
evaluated to false, nothing will be returned.

XQuery provides a number of functions and operators, some of which are
commonly used in other languages. It has arithmetic operators, comparison
operators and sequence operators. In addition to operators, XQuery has built-
in functions and supports user-defined functions. The full list of these

 Rwanda Journal Volume 20, Series C, 2011 : Mathematical Sciences, Engineering and Technology 73

functions and their descriptions can be found in (W3C, 2007e). It is always
better to make use of user-defined functions instead of a long complex query
as these are reusable and easier to understand. The user defined functions
can be put in a module, which in return can be imported by a query to access
its functions (Howard et al., 2003). Here is the syntax of a function definition
with its module declaration:
module namespace prefix="nameModule" ;
declare functionprefix:functionName($parameter AS datatype)
AS returnDatatype { (: function code :) };
Note that the character “$” indicates a variable, that means, the $parameter
is a variable passed as argument to the function functionName, whose
module is nameModule. Whatever appears inside “(: :)” is considered as
comment and is not evaluated. To call the function within a query
expression, the module should first be imported before calling the function,
as follows:
import module namespace prefix="nameModule"
at "URI_locationModule/filename.xq";
prefix:functionName ($argument)

2.2. XQuery implementation: MonetDB/XQuery

Relational database technology is well-known and has been proven to be
very effective in structured data management. Its mature infrastructure can
be used to build a fast and scalable XML database management system such
as MonetDB/XQuery. MonetDB/XQuery is an XML database system that
supports the W3C XQuery language (Teubner, 2007; A. Boncz et al., 2006).
MonetDB/XQuery system architecture
MonetDB/XQuery consists of the Pathfinder XQuery compiler on top of the
MonetDB RDBMS. It resulted from the effort of using a process model of an
existing relational database system (MonetDB RDBMS) to construct a
purely relational XQuery processor (Pathfinder) (Teubner, 2007; Peter
Boncz, 2005b). Pathfinder was used to link the relational processing model
with the XQuery Data Model following the XQuery processing stack shown
in Figure 3.

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

74

Figure 3: XQuery processing stack (adapted from (Peter Boncz, 2005b))

MonetDB/XQuery allows to store XML documents and manipulate them
using XQuery. Its architecture (shown in Figure 4) consists of the Pathfinder
XQuery compiler that turns the input XQuery expression into a relational
algebra query for execution in the MonetDB kernel. The relational algebra
query is sent out to the MonetDB kernel expressed in terms of MIL
(MonetDB Interpreter Language), after the query processing has finished,
the result is serialized into XML and sent back to the user.

Pathfinder XQuery compiler
The Pathfinder XQuery compiler supports almost the full XQuery standard,
closely following the W3C XQuery Formal Semantics as stated in (Peter
Boncz, 2005a). To implement the Pathfinder, the following techniques were
used as described in (Grust, 2002): XPath accelerator, the staircase join and
the loop-lifting compilation procedure.

Figure 4. Architecture of the MonetDB/XQuery system

(from (Peter Boncz, 2005b))

 Rwanda Journal Volume 20, Series C, 2011 : Mathematical Sciences, Engineering and Technology 75

3. Extending MonetDB/XQuery with spatial functionality

This section details the implementation of an extension of XQuery for spatial
functionality in MonetDB/XQuery. The functions currently implemented in
Monet/XQuery do not provide any spatial functionality, hence it should be
improved with an extension of functions that can handle GML data and data
in other spatial formats (such as KML, KMZ, GPX and GeoRSS) to provide
spatial computations. GML (the Geography Mark-Up Language) is an OGC
(Open Geospatial Consortium) standard specification that expresses
geographic information, supports their exchange among disparate
applications and is an XML encoding. XQuery can provide the ability to
navigate through a GML document given its XML navigation mechanism;
however, it lacks the spatial semantics required to carry out spatial
computation upon GML features. For the moment, there is not yet a formal
standard query language for GML, though several previous researches have
been carried out proposing different ways to query GML data. Córcoles and
González (2001) proposed a specification of a query language over GML
without taking into account XQuery, as the latter was still under
development, but this leaves out a number of features supported in XQuery.
Moreover it is based on predefined geometry elements, which constrains the
flexibility of GML.

3.1. Basic concepts of Geographic Mark-Up Language (GML)
GML objects

GML can be used to integrate spatial and non-spatial data for representing
real-world objects, i.e the geographic features; though not all GML objects
are features. GML objects include the features and geometries.

• Features: In GML, features represent real-world objects, which can be
physical or abstract objects. The concrete objects are physical objects such as
buildings, roads, bridges, . . . And the abstract objects may consist of
political boundaries, health regions, ... GML features are described by their
properties which may be geometric or non-geometric. A GML feature is
defined by creating its feature instance and each feature instance must have
its own unique identifier (unique within the GML document) (Lake et al.,
2004). For example, to create a Building instance, one may use the following
syntax: <Building gml:id = "id01"> ... </Building>
Note the use of XML Namespaces in GML with the prefix gml (Refer to
(W3C, 2006) for more details on XML namespaces).

• Geometries: GML geometries are objects that can be used to represent
the geometric characteristics of a feature such as position, centre, extent,

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

76

location . . . For instance, to represent the position of the Building feature;
position can be used as the geometry-valued property of the Building
instance.
<Building gml:id = "id01">
 <name>Four Times Square</name>
 <type>Commercial office</type>
 <owner>The Durst Organization</owner>
 <gml:position>
 <gml:Point srsName="ReferenceSystemNumb">
 <gml:pos>...</gml:pos>
 </gml:Point>
 </gml:position>
</Building>

Other GML objects: Besides the features and geometries, GML has other
objects introduced in its third specification version (GML 3.0), namely:
topologies, coordinate systems, coverages, and units of measure . . .

3.2. Syntax of XQuery extension for GML

XQuery is a more appropriate query language to query XML data than
traditional query languages like SQL, given its ability to navigate through
the XML document. Even though GML data is based on XML data model
and can be queried using XQuery, XQuery does not have the spatial
semantics required to handle spatial computation over GML data. As a
solution to this, we propose a syntax for spatial functions in XQuery based
on the GML data model. The proposed syntax is based on the object-
property model and not on a predefined GML application schema, so that the
spatial functions can be applied to any GML data regardless its application,
and this is in accordance with GML extensibility. Moreover, the proposed
syntax takes into consideration only the GML objects defined in GML
Simple features profile that consists of points, lines, polygons geometries
and their respective geometry collections. The spatial functions in XQuery
will have the same expression structure as other non-spatial XQuery
functions:

prefix:functionName ($argumentsGeom as argumentType) as return
Type
For example, to extract the geometric properties of a given feature from a
GML document, the following function is proposed:

geoxml:geometry ($nodeGeom as node*) as string*[=wkt*]

 Rwanda Journal Volume 20, Series C, 2011 : Mathematical Sciences, Engineering and Technology 77

Here, geoxml is the prefix of the concerned spatial functions module (or
library), geometry is the name of the function, nodeGeom is the argument of
the function, node* is the type of the arguments (as defined in XQuery data
model, but it should also be a valid GML object) and string* is the type of
the returned result. The geoxml:geometry function should receive a node as
argument and return a string, namely a geometry in well-known text (WKT)
representation. Thus, any node containing geometric properties which is
valid in GML can be passed to this function regardless of its application
schema. The spatial queries resulting from this syntax can be compared with
SQL spatial queries as shown in Table 1.

Table 1 Comparison of spatial queries in XQuery and SQL spatial
queries

XML databases Relational databases
XQuery SQL
GML document Table containing geometries
Node element with geometric properties Geometry column

Spatial Queries using XQuery

Generally, spatial queries involve spatial functions applied on geometries.
These may concern spatial relationships between geometries, spatial
processing (computing the area, length, ... of geometries), geometry
constructors and accessors.
a. Geometry constructors and accessors
A function accesses the geometric properties of a given feature and return
the represented geometry is important for spatial queries in XQuery. Besides
the access to geometries already represented in GML, one would like to
create a new geometry from a string representing a geometry in well-known
text format. Below is a list of some geometry accessors and constructors:
Accessors
1. geoxml:geometry($nodeGeom as node*) as xs:string*[=wkt*]
2. geoxml:srid($geom as xs:string*[=wkt*]) as xs:integer
3. geoxml:geometryType($geom as xs:string*[=wkt*]) as xs:string
Note that the last three functions above receive an argument with same type
as the return type of the function geoxml:geometry (), namely geometry in
WKT. Their returned results are respectively: the spatial reference system
number and the geometry type of the given geometry (if the geometry is
simple, NULL is returned). The list of accessors can be extended, with more

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

78

functions that return different property values of a geometry, such as
geoxml:X(), geoxml:Y(), and geoxml:Envelope(), . . .

Constructors
1. geoxml:geometryFomText($geom as xs:string*[=wkt*], $srs as

xs:integer) as node*
2. geoxml:polygonFomText($geom as xs:string*[=wkt*], $srs as xs:integer)

as node*
The above function returns a geometry encoded in GML, given a WKT
representing that geometry and its spatial reference system number. There
are more geometry constructors that can be used to construct specific GML
geometries namely geoxml:pointFomText(), geoxml:linestringFomText(),
geoxml:polygonFomText(), and geoxml:multipointFomText(),
b. Functions for spatial relationships
To check the spatial relationship between two geometries, a number of
functions is needed namely geoxml:intersects(), geoxml:touches(),
geoxml:within(), geoxml:overlaps(), geoxml:relate()... These functions return
boolean accordingly. For instance, for the geoxml:intersects(),
geoxml:within() we have:
1. geoxml: intersects ($geom as xs: string* [= wkt*], $geom as xs: string* [= wkt*]) as
xs: Boolean
2. geoxml: within ($geom as xs: string* [= wkt*], $geom as xs: string* [= wkt*]) as xs:
Boolean

c. Functions for spatial processing
The spatial processing involve functions to compute the area, the length, the
centroid, the boundary, the buffer of a geometry, the intersection, the
difference, the union of two geometries. The first four functions are unary
function whereas the remaining functions are binary. Note that there are two
kinds of union function, the binary union function that takes two geometries
as arguments and returns their union, and the aggregate union function that
take one set of geometries and returns their union. Below, is the syntax of the
two kinds of union function and the intersection function syntax:
1. geoxml:union ($geom1 as xs:string*[=wkb*], $geom2 as
2. xs:string*[=wkb*]) as xs:string*[=wkb*]
3. geoxml:union ($geomset as item*) as xs:string*[=wkt*]
4. geoxml:intersection ($geom1 as xs:string*[=wkb*], $geom2 as
5. xs:string*[=wkb*])
 as xs:string*[=wkb*]

 Rwanda Journal Volume 20, Series C, 2011 : Mathematical Sciences, Engineering and Technology 79

3.3. GEOXML: an extension of XQuery for spatial functionality in
MonetDB/XQuery

The proposed extension of XQuery was implemented in the
MonetDB/XQuery database management system. Currently, it consists of
only a few spatial functions that provide basic spatial computation
functionality over GML data, namely two geometry accessors: geoxml:
geometry() and geoxml:wkb(); two geometry processing functions: geoxml:
distance() and geoxml:intersection() and one function for geometry spatial
relationship geoxml:relate(). The geoxml:relate() function can be used to
express other spatial relationships between geometries such as Disjoint,
Overlaps, Touches, Within and Crosses by means of the Dimensionally
Extended Nine-Intersection Matrix (DE-9IM) (Garnett and Owens). The
implementation of the GEOXML library in MonetDB/XQuery is based on
GEOS (Geometry Engine - Open Source) library. With a C++ API
(Application Programming Interface), GEOS consist of all spatial functions
and spatial operators for SQL Simple Features profile, included in JTS (JTS
Topology Suite, a Java API consisting of spatial data operations).

4. Design of a distributed geoprocessing system prototype

In this section we discuss in details the design of our system prototype based
on a chosen scenario of soil erosion assessment within the watershed of
Sebeya river located in the Western Province of Rwanda. We designed a
distributed environment for a geoprocessing prototype system that can
compute the annual average of soil loss caused by precipitation. It consists of
a number of autonomous nodes (computers) connected through a network,
and where each node can provide processing services and those services
should be accessible to any node within the system. All the nodes within our
system are able to exchange information with each other, and appear to the
user of the system as one single component. The term geoprocessing refers
to information processing in which the involved processes apply operations
to spatial data (Foerster and Schäffer, 2007). To assess the soil loss by water
erosion, a number of spatial data sets is required, especially weather data,
soil data, topographic data and land cover data. It is assumed that each data
set is located on a node in our distributed geoprocessing system and all
nodes are communicating over a network. Having each node equipped with
MonetDB/XQuery, will allows us to use the Remote Procedure Call (RPC)
mechanism to ensure the interprocess communication.

To compute the annual average soil loss, the Universal Soil Loss Equation
(USLE) is mostly used (Wishmeier and Smith, 1998), it takes into account a
number of physical and management parameters of the considered site,

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

80

which are expressed as numerical factors: rainfall erosivity factor R, soil
erodibility factor K, slope length factor L, slope steepness factor S, cover
management factor C and support practice factor P, as used in Equation 1.
A = R * K * L * S * C * P (Equation 8)
Since the USLE factors vary by location, their retrieval and management
require spatial functions. That implies that the prototype should provide
some spatial functions such as Intersection, Overlap, Within applied on
GML data (stored in an XML database). To calculate the annual average of
the soil loss of a selected (particular) area within Sebeya watershed, the
following steps are followed (Figure 1):
a. A request of locating the site to be assessed is sent to Node 1 from user

machine through a web browser.
b. Based on information stored in place names data set, the area of interest is

delimited and the data (the geometry) representing that area is shipped to
Node 2, where the annual average soil loss (A) is calculated.

c. Before computing A, all USLE factors should be retrieved, to do so the
following tasks are executed:

 K factor is retrieved from the soil data set (Node 2). The soil data are
clipped according to the site of interest, then K values are assigned to the
clipped geometries according to their respective soil type.

 R factor is retrieved from the weather data set (Node 3). After the
interpolation of the recorded rainfall data, the interpolated data are
clipped according to the site of interest. Then, the annual and monthly
(for the wettest month) rainfall values are retrieved and used to compute
the value of R factor.

 LS factor is retrieved from the topographic data set (Node 4). After
clipping the topographic data according to the selected site, the values of
slope angle are retrieve to compute LS.

 C factor is retrieved from the land cover data set. The land cover data are
clipped according to the site of interest, and then C values are assigned
to their corresponding vegetation cover.

d. After computing all the needed factor, the annual average of the soil loss
is computed (Node 2).

e. The computed annual average of the soil loss is sent back to Node 1.
f. Node 1 presents the computed annual average of the soil loss back to the

user via a web browser.
To design our prototype, we used the SOA approach for which the principal
technical concepts are services, interoperability and loose coupling. Services
are self-contained functionality within a system that can be technically
viewed as the interface for exchanged messages between the provider node

 Rwanda Journal Volume 20, Series C, 2011 : Mathematical Sciences, Engineering and Technology 81

and consumer node of the services. The interoperability enables the
distribution of services over different nodes within the system. The loose
coupling concept reduces the dependencies. As stated in (Josuttis, 2007):
“Web services might help provide the infrastructure, but you still have to
construct the architecture.” That being said, it should be pointed out that we
adopted the Model-View-Controller (MVC) architectural pattern to separate
the application functionality (business logic) from the presentation. The
MVC architecture consists of the model, the view and the controller.

Figure 5: Processing steps for calculating the annual average of the soil loss

The model represents the data of the system, the view ensures the
presentation of the data to the user of the system, and the controller deals
with the application functionality. The controller ensures the interaction
between the user and the system translating the user actions to the model or
to the view (Reenskaug, 1979; McGovern et al., 2003). The controller
consists of business logic or middleware, it comprises a number of functions
used to access data, process them and send the results to the view. For our
prototype, these functions inside the business logic comprise the spatial
functions to handle the geoprocesses. The communication between the view

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

82

and the business logic will be handled by XRPC, an XQuery extension that
uses a Remote Procedure Call paradigm.

XQuery Remote Procedure Call (XRPC)
XRPC is an extension of XQuery that enables distributed querying and
processing among heterogeneous data sources. It has been fully implemented
in MonetDB/XQuery. XRPC adds the RPC concept to XQuery, adding a
destination URI8 to the ordinary XQuery function call (or procedure call)
(Zhang and Boncz, 2007). It supports the use of heterogeneous XQuery
engines within a distributed system, but our application happens not be
heterogeneous since all the nodes will be equipped with MonetDB/XQuery.
As XRPC enables the cooperation of different XQuery nodes to handle a
given processing task, this involves a network protocol to support their
communication. XRPC uses Simple Object Access Protocol (SOAP) over
HTTP, which allows integrating XQuery data sources with web services and
SOA. XQuery remote functions can be executed using SOAP XRPC
messaging as long as they are defined in a module stored on an accessible
node. Below is an example of an XRPC Request message, sent to a remote
node clark (Figure 6). This request executes the function bounds() defined in
geom.xq module.

Figure 6: An example of an XRPC Request message

8 Uniform Resource Identifier

 Rwanda Journal Volume 20, Series C, 2011 : Mathematical Sciences, Engineering and Technology 83

5. Implementation a distributed geoprocessing system prototype
The implementation of our system prototype relies on the logical architecture
designed in section 4. A SOA approach was adopted to make available the
geoprocessing services in a distributed environment through service
orchestration. The model of our system prototype was implemented using
the MonetDB database system with XQuery front-end (MonetDB/XQuery),
which allowed us to store and manage our data in GML format. The user
interface was implemented using HTML, JavaScript a client-side scripting
language, and a stylesheet language CSS (Cascading Style Sheets). It is
implemented in such a way that it allows the user to provide input data to the
system and get back the output. It consists of a form that allows the user to
choose the watershed and sector name for which s/he would like to compute
the annual soil loss, and submit the input to the system as illustrated in
Figure 7.

Figure 7: User interface

After submitting the form, the user retrieves the resulting data displayed in a
text area in GML format (and this can be visualized in any WFS/GML
viewer). The map on the top-right of the user interface as shown in Figure 7,
consists of the output map and the bottom-right consists of maps of the
different input parameters, namely rainfall, land cover, slope and soil. The
main functionality of our web-based prototype system is to compute the
annual average of soil loss caused by precipitation, in a distributed

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

84

environment. The provision of such a processing service involves the
implementation of a number of processes, namely the site location, retrieval
of USLE factors and the calculation of annual average soil loss (erosion
rate). To model these processes and their workflow, eClarus Business
Process Modeler for SOA Architects (eClarus BPMSOA) system was used
with BPMN (Business Process Modeling Notation) standard. The resulting
business process diagram (BPD) is shown in Figure 8.

Figure 8. Process workflow for computing the annual average

 of soil loss caused by precipitation

Web service orchestration
A service consists of a function that performs a task (or many tasks); it is
self-contained and independent. A service is called a Web service if it is
accessible over the Internet, so it should be described using the WSDL
standard (W3C, 2007a) to provide meta-information about how it can be
accessed. Moreover, a Web service is published, to make it discoverable.
Publishing Web services is optional and is done using the UDDI (Universal
Description, Discovery and Integration) standard. As already mentioned, a
Web service may consist of more than one activity (task) to fulfil a specific
business goal, i.e., to carry out a business process. Orchestration is the act of
defining the sequence flow of all activities involved to carry out a business
process. After describing our Web service, we orchestrated it by means of
eClarus BPMSOA system with BPEL9 (Diane Jordan and John Evdemon,
2007) standard. Based on the BPD created to model the workflow of
processes (Figure 8), we performed the Web service orchestration, mapping
the semantics behind the graphical notation elements into BPEL language by
means of eClarus BPMSOA system. To map the BPD into BPEL, the system
uses the description of the Web service and the properties of the graphical

9 Also known as WSBPEL (Web Services Business Process Execution Language) is
an XML-based language used for composing and orchestrating services that result in
Web service.

 Rwanda Journal Volume 20, Series C, 2011 : Mathematical Sciences, Engineering and Technology 85

notation specified in the BPD. After setting up the BPEL document for
computing the annual average of soil loss process, the process was then
executed on the orchestration engine provided by eClarus BPMSOA system.

6. Conclusions

A distributed system prototype, that provides web geoprocessing service,
was designed and implemented using an XML database system as back-end.
The SOA approach was adopted to implement this system prototype, which
allowed us to orchestrate our Web service and provide a more flexible
geoprocessing service over the Web. Since GML was used as data format,
we proposed a syntax for spatial functions in XQuery applied on GML data.
A scenario was chosen, namely the assessment of soil erosion caused by
precipitation, to apply the proposed approaches. After describing and
analysing the requirements of an assessment of soil erosion caused by
precipitation, we proposed a suitable system prototype design combining the
MVC architectural pattern with SOA principles. Based on the experience
acquired throughout the implementation phase, it can be concluded that the
combination of MVC architectural pattern and SOA provides an opportunity
to add robustness and flexibility to the implemented Web service. It allows
to separate the business logic and the data model from the presentation and
to control the sequence flow of the processes through Web service
orchestration.

For further research, we propose a study on the implementation of OpenGis
web services (such as Web Map Service, Web Feature Service, Catalog
Service, . . .) using an XML database system as back-end. As an
improvement to the current work, we recommend the following:
• The implementation of a complete library of spatial functions in

MonetDB/XQuery database system.
• The implementation of spatial indexes in MonetDB/XQuery database

system.
• Further work on map visualisation of GML data, using SVG and XSLT,

in a web browser. This can be used to visualize the GML results returned
by our system.

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

86

Bibliography

A. BONCZ, P., GRUST, T., VAN KEULEN, M., MANEGOLD, S.,
RITTINGER, J. & TEUBNER, J. Year. MonetDB/XQuery: a fast
XQuery processor powered by a relational engine. In: Proceedings of
the 2006 ACM SIGMOD International Conference on Management of
Data, 2006 Chicago, IL, USA. 479-490.

CHIA-HSIN, H., TYNG-RUEY, C., DONG-PO, D. & HAHN-MING, L.
2006. Efficient GML-native processors for web-based GIS: Techniques
and Tools. Proceedings of the 14th annual ACM international
symposium on Advances in Geographic Information Systems. Arlington,
Virginia, USA: ACM.

CORCOLES, J. E. & GONZALEZ, P. 2001. A specification of a spatial
query language over GML. GIS '01: Proceedings of the 9th ACM
International Symposium on Advances in Geographic Information
Systems, 112--117.

DIANE JORDAN AND JOHN EVDEMON 2007. Web Services Business
Process Execution Language Version 2.0. Organization for the
Advancement of Structured Information Standards, Available at
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf [Accessed
January 17 2009].

FOERSTER, T. & SCHÄFFER, B. Year. A client for distributed geo-
processing on the web. In: TAYLOR, J. M. W. A. G. E., ed. Proceedings
of web and wireless geographical information systems : 7th International
Symposium, 28-29 November 2007 2007 United Kingdom. Springer-
Verlag, 252--263.

GARNETT, J. & OWENS, B. Spatial Validation -- Academic References.
Refractions Research, Inc.

GRUST, T. 2002. Accelerating XPath Location Steps. Proceedings of the
21st ACM SIGMOD Int'l Conference on Management of Data (SIGMOD
2002). Madison, Wisconsin, USA, : ACM Press.

HOWARD, K., DON, C., MICHAEL, K., PHILIP, W. & DENISE, D. 2003.
XQuery from the Experts: A Guide to the W3C XML Query Language,
Addison-Wesley Longman Publishing Co., Inc.

JOSUTTIS, N. M. 2007. SOA in practice : the Art of Distributed System
Design, Beijing etc., O'Reilly.

KIEHLE, C. 2006. Business logic for geoprocessing of distributed geodata.
Computers & Geosciences, 32, 1746-1757.

KIEHLE, C., GREVE, K. & HEIER, C. 2007. Requirements for Next
Generation Spatial Data Infrastructures-Standardized Web Based

 Rwanda Journal Volume 20, Series C, 2011 : Mathematical Sciences, Engineering and Technology 87

Geoprocessing and Web Service Orchestration. Transactions in GIS, 11,
819-834.

LAKE, R., BURGGRAF, D. S., TRNINIC, M. & RAE, L. 2004. GML :
Geography mark - up language : foundation for the geo - web,
Chichester, Wiley & Sons.

MCGOVERN, J., AMBLER, S. W., STEVENS, M. E., LINN, J., SHARAN,
V. & JO, E. K. 2003. A Practical Guide to Enterprise Architecture,
Prentice Hall.

PARDEDE, E., RAHAYU, J. W. & TANIAR, D. Year. XML-Enabled
Relational Database for XML Document Update. In: 20th International
Conference on Advanced Information Networking and Applications,
2006. 205-212.

PETER BONCZ, S. M., AND JAN RITTINGER. 2005a. Updating the
Pre/Post Plane in MonetDB/XQuery. Proceedings of the ACM
SIGMOD/PODS 2nd International Workshop on XQuery
Implementation, Experience and Perspectives (XIME-P 2005).

PETER BONCZ, T. G., MAURICE VAN KEULEN, STEFAN
MANEGOLD, JAN RITTINGER, AND JENS TEUBNER. 2005b.
Pathfinder: XQuery - The Relational Way. Proceedings of the 31st Int'l
Conference on Very Large Databases Trondheim, Norway.

REENSKAUG, T. 1979. The original MVC reports. Department of
Informatics, University of Oslo.

SHIMURA, T., YOSHIKAWA, M. & UEMURA, S. 1999. Storage and
Retrieval of XML Documents using Object-Relational Databases.
Springer, In Database and Expert Systems Applications, 206-217.

TEUBNER, J. 2007. Pathfinder: XQuery Compilation Techniques for
Relational Database Targets. Proceedings of the 12th GI-Fachtagung für
Datenbanksysteme in Business, Technologie und Web (BTW 2007).

W3C 2006. Namespaces in XML 1.0. Second Edition ed.: W3C, World
Wide Web Consortium, Available at http://www.w3.org/TR/xml-names/
[Accessed September 19 2008].

W3C 2007a. Web Services Description Language (WSDL) Version 2.0.
W3C recommendation, World Wide Web Consortium, Available at
http://www.w3.org/TR/wsdl20.

W3C 2007b. XML Path Language (XPath) 2.0. W3C recommendation,
World Wide Web Consurtium, Available at http://www.w3.org/
TR/xpath20/ [Accessed September 15 2008].

W3C 2007c. XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C
recommendation, World Wide Web Consortium, Available at
http://www.w3.org/TR/xpath-datamodel/ [Accessed September 11
2008].

 Rwanda Journal Volume 20, Series C, 2011: Mathematical Sciences, Engineering and Technology

88

W3C 2007d. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C
recommendation, World Wide Web Consortium, Available at
http://www.w3.org/TR/xquery-semantics/ [Accessed September 16
2008].

W3C 2007e. XQuery 1.0 and XPath 2.0 Functions and Operators. W3C
recommendation, World Wide Web Consortium, Available at
http://www.w3.org/TR/xpath-functions/ [Accessed September 15 2008].

W3C 2007f. XQuery 1.0: An XML Query. W3C recommendation, World
Wide Web Consortium, Available at http://www.w3.org/TR/xquery/
[Accessed September 11 2008].

WISHMEIER & SMITH 1998. Predicting Rainfall Erosion Losses - A guide
to conservation planning.

ZHANG, Y. & BONCZ, P. 2007. XPRC: interoperable and efficient
distributed XQuery. Proceedings of the 33rd International Conference
on Very Large Databases.

