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Abstract 

In this paper, we prove that no nontrivial timelike or spacelike parallel vector field 
exists in a region where the gravitational field created by macroscopic bodies and 
governed by Einstein’s equations does not vanish. 

In other words, we prove that the existence of such vector fields in a region implies 
the vanishing of the Riemann curvature tensor in that region. 
To prove this statement, we reduce the 4-dimensional problem to a 3-dimensional 
one. This enables us to use a link existing between the Riemann curvature tensor and 
the Ricci tensor in a 3-dimensional Riemannian manifold. 

1. Introduction  

This paper deals with the existence of covariantly constant smooth vector 
fields in a gravitational field. I call them parallel vector fields because, when 
those vector fields exist, they are parallel with respect to any smooth curve 
of space-time. Stephan Waner [2] uses the same terminology.  

M. Ray [1] calls them uniform fields, but he states that the construction of a 
uniform vector field is possible if and only if the Riemann-Christoffel 
curvature tensor vanishes, which is wrong. 

Through an affine connection defined on a differentiable manifold, it is 
possible to define a parallel displacement of vectors which, at the 
infinitesimal level, has the same properties as the parallel displacement in 
linear spaces. 

But the integrability of this parallel transport for any vector is an intrinsic 
property of linear spaces. 
On one hand, it is an interesting mathematical problem to try to find for 
which kind of vectors the parallel transport is an integrable process. 
On the other hand, Einstein’s equations of General Relativity constitute a 
highly sophisticated system of partial differential equations, and it is 
interesting to know which kind of solutions we will obtain by imposing the 
existence of a parallel vector field. 
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This paper uses Einstein equations of General Relativity as presented for 
example in Landau and Lifchitz and standard theorems of Differential 
Geometry as presented, for example in Sternberg [3]. 

2. Parallel vector fields on Riemannian manifolds 

Let M be an n-dimensional Riemannian manifold with metric tensor g  

given by its components gij in a local coordinate system ( )1ix i n≤ ≤ . 

A vector field X defined by its contravariant components ( )iX  or its 

covariant components ( )iX  is called parallel if it is parallel with respect to 
any smooth curve on M. 
Then X will be parallel if it satisfies the following equations 

; 0
i

i i k
j jkj

XX X
x

∂
≡ + Γ =

∂
                                                      (1) 

the i
jkΓ being the Christoffel symbols associated with g in the coordinate 

system ( )ix . 

The covariant form of Eqs.  (1) reads 

  ; 0ki
i j ij kj

XX X
x

∂
≡ −Γ =

∂
          (2) 

From this equation it is clear that 

  0ji
j i

XX
x x

∂∂
− =

∂ ∂
         (3) 

and then, by Poincaré theorem we conclude that :  

Any parallel vector field is a gradient field. 

From Eqs. (1), it is easy to deduce that a necessary condition for X to be 
parallel is that 

  0l
ijklR X =         (4) 

As consequence of Eqs. (4), we have also the relation 
  0l

jlR X =                     (5) 
Rijkl and Rjl are respectively the components of the Riemann curvature tensor 
and of the Ricci tensor associated with gij. 
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3. Einstein equations of gravity, parallel vector field and energy - 
momentum tensor 

In General Relativity, gravitational fields are governed by Einstein’s field 
equations 

  
1
2ij ij ijR R g Tκ− =       (6) 

where 
• ( )ij i j ijT p u u p gε≡ + − is the energy-momentum tensor of the 

macroscopic body creating the gravitational field ; 
• ij

ijR g R= is the scalar curvature ; 

• ijg  is the metric tensor of space- time with respect to the coordinates 

( )ix ; 

• κ  is the gravitational constant whose value depends, of course, on 
the choice of the units system ; 

• p  is the pressure and ε  is the proper energy density [4] ; 
• iu  are the components of the 4-velocity. 

The signature of the metric tensor ijg  is (1, 3) or equivalently ( ), , ,+ − − − . 

This signature corresponds to the relation 1i j
ijg u u =  for the 4-velocity. 

The following proposition is the main statement of this paragraph 

Proposition 3.1  If the metric ijg  satisfies Einstein Eqs. (6) and admits a 

non-trivial parallel vector field X, the energy- momentum tensor ijT  is 
identically zero. 

Proof: From Eqs. (6), we can write 
 

    
1
2

ij ij
ij ij ijg R R g g Tκ⎛ ⎞− =⎜ ⎟

⎝ ⎠
 

with ( )ij i j ijT p u u p gε= + − , and then we obtain 

  ( )3R pκ ε= − −       (7) 
Replacing in Eqs. (6) R by its value (7), we get    

 ( ) ( )1 3
2ij ij i j ijR p g p u u p gκ ε κ ε+ − = + −                 (8) 

 
Then 
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( ) ( )1 3
2

i j i j i j i j
ij ij i j ijR u X p g u X p u u u X p g u Xκ ε κ ε κ+ − = + −    (9) 

The equality 1i
iu u =  for the 4- velocity and the vanishing of 

    ( ) 0i j j i
ij ijR u X R X u≡ =  

for a parallel vector field reduce Eq. (9) to 
 
  ,)()3(

2
1 j

j
j

j
j

j XpuXupXup κεκεκ −+=−   

which yields 
( ) 0j

jp u Xε + =                         (10) 

The meaning of Eq. (10) is that 0pε + =  or 0j
ju X = . 

i) Let us assume that 0j
ju X = . 

                Then from Eqs. (8) we write  

 ( ) ( )1 3
2

j j j j
ij ij i j ijR X p g X p u u X p g Xκ ε κ ε κ+ − = + −  

Since 0j j
ij jR X u X= = , we get    

   ( )1 3
2

j j
ij ijp g X p g Xκ ε κ− = −  

and finally 

( )1 0
2

j
ijp g Xκ ε − =                   (11) 

Since ijg is regular and X is non zero, 0pε − = . 
Generally, for macroscopic bodies, 3 0pε − ≥ [4]. 
Therefore, pε =  implies 0pε = =  and the energy momentum tensor is 
identically zero. 
 ii) If 0j

ju X ≠ , then 0pε + =  and 0pε = = , which implies 0ijT =  
                This ends the proof of the proposition (3.1) 

4. Einstein equations’ solutions with parallel vector fields 

The parallel vector field can be timelike, spacelike or lightlike. 
The 3 cases have to be considered separately. In this paper we deal only with 
the 2 first cases. 

In the sequel, if an index can take 4 values 0, 1, 2, 3 it is represented by a 
latin letter, if it takes 3 values 1, 2, 3, it is represented by a greek letter. 
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4.1 Solutions with timelike parallel vector field X 
Since the vector field X never takes the value 0 and is of constant length, we 
can take X as corresponding to the coordinate 0x of a local coordinate system 

( )0 1 2 3, , ,x x x x  of space-time [3] 

 ( ) 000 , , 1X g X X g
x
∂

= = =
∂

                (12)     

Since 0 1, 0, 1 3,X X α α= = ≤ ≤ Eqs. (1) of parallel vector fields read 
 0 0i k i

jk jXΓ ≡Γ =                  (13) 

i.e 0 0
0 0j jlik k

k l

g g gg
x x x

∂ ∂⎛ ⎞∂
+ − =⎜ ⎟∂ ∂ ∂⎝ ⎠

                  (14) 

The covariant components of X are given by 
 0

j
i ij iX g X g= =                              (15)       

Then since X is a gradient field, there exists a differentiable function f such 
that 

 
0i i

fg
x

∂
=

∂
                              (16)                       

Equation (13) reads 

 00
0 0jk jik k

j k

g ggg
x x x

∂ ∂⎛ ⎞∂
+ − =⎜ ⎟∂ ∂ ∂⎝ ⎠

 

On the other hand, Eqs. (16) give 

    
2 2

00 0jk
j k j k k j

gg f f
x x x x x x

∂∂ ∂ ∂
− ≡ − =

∂ ∂ ∂ ∂ ∂ ∂
 

Then (14) reduces to 
    

0 0jkik g
g

x
∂

=
∂

 

and since ikg is regular, we obtain 

 
0 0jkg

x
∂

=
∂

                  (17) 

which means that the metric tensor ijg depends only on the variables 1 2,x x  

and 3x . 
 
This circumstance will allow us to transform our 4-dimensional problem into 
a 3-dimensional one as follows : 
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 Since 00 1 0g = ≠ , the symmetric matrix ( )1 , 3gαβ α β≤ ≤ is regular 

and we can consider the 3-dimensional Riemannian space whose metric 
tensor αβγ satisfies 

 gαλ α
αβ βγ δ=                       (18)                   

We obtain αβγ  by the following considerations : 

From   0
0 00 0 0 0j

jg g g g g gα α αλ α
λ δ≡ + = =  and 00 1g = , 

we deduce 
 0

0g g gα αλ
λ= −                  (19) 

Then the formula 
    0

0
j

jg g g g g gα α αλ α
β β λβ βδ≡ + =  

takes the form 
 ( )0 0 0 0g g g g g g g g gαλ αλ αλ α

λ β λβ λβ λ β βδ− + = − =  

Therefore, the 3-dimensional metric tensor γ  is given by 
 0 0g g gαβ αβ α βγ = −                  (20) 

It satisfies the condition gαβ αβγ= . 
Our aim is to show that the existence of a timelike parallel vector field and 
the vanishing of the Ricci tensor in space- time implies the vanishing of the 
Riemann curvature tensor. 
• First we note that, from Eqs. (4), 0l

ijklR X = , with 0 1X =  and 

0, 1 3X α α= ≤ ≤ , 
It is clear that 
 0 00, 0, 0 , , 3ijk jR R i j k= = ≤ ≤                    (21)          

• It remains to prove that 0Rαβλδ =  for    1 , , , 3α β γ δ≤ ≤ . We proceed as 
follows : 
Let us denote by , ,P Pα

βγ αβγδ αβΛ  and P respectively the Christoffel symbols, 
the Riemann curvature tensor, the Ricci tensor and the scalar curvature 
corresponding to the metric tensor αβγ , the analogous quantities for ijg being 

denoted respectively by i
jkΓ , ,ijkl ijR R  and R. 

 

Then we prove the following equalities: 

, , , , 1 , , , 3R P R P R Pα α
βγ βγ αβγδ αβγδ αβ αβ α β γ δΛ = Γ = = = ≤ ≤  
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1.  The Christoffel symbols corresponding to αβγ : 

1
2 x x x

γλ βγα αλ αλ
βγ β β λ

γ γγγ
∂ ∂⎛ ⎞∂

Λ = + −⎜ ⎟∂ ∂ ∂⎝ ⎠
 

Taking account of the fact that 0 0g g gαβ αβ α βγ = −  and that 0
fg
xα α

∂
=

∂
, a 

straightforward calculation gives : 
1
2

g g g
g

x x x
βλ γλ βγα αλ α

βγ βγγ β λ

∂ ∂ ∂⎛ ⎞
Λ = + − = Γ⎜ ⎟∂ ∂ ∂⎝ ⎠

 

2. The Riemann curvature tensor associated with αβγ : 

( )
2 2 221

2
P

x x x x x x x x
βγ αγ βδ λ μ λ μαδ

αβγδ λμ αδ βγ αγ βδβ γ λ δ β δ α γ

γ γ γγ γ
⎛ ⎞∂ ∂ ∂∂

= + − − + Γ Γ − Γ Γ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
2 2 22 2 2 2 21 . .

2
g g gg f f f f

x x x x x x x x x x x x x x x x
βγ αγ βδαδ

β γ λ δ β δ α γ α δ β γ β δ α γ

⎛ ⎞∂ ∂ ∂∂ ∂ ∂ ∂ ∂
= + − − + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 ( ) ( )0 0
k l k l k l k l

kl k lg g gαδ βγ αγ βδ αδ βγ αγ βδ+ Γ Γ − Γ Γ − Γ Γ −Γ Γ , with  

         0 , 3, 1 , 3k l λ μ≤ ≤ ≤ ≤ . 
Straightforward calculations yield 

 ( )
2 2 2 2

0 0 . .k l k l
k l

f f f fg g
x x x x x x x xαδ βγ αγ βδ α δ β γ β δ α γ

∂ ∂ ∂ ∂
Γ Γ − Γ Γ = −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

Therefore 
2 2 2 2 2 2 2 2

. . . .f f f f f f f fP R
x x x x x x x x x x x x x x x xαβγδ αβγδ α δ β γ α γ β δ α δ β γ α γ β δ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + − − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
i.e  P Rαβγδ αβγδ=  

3. The Ricci tensor associated with αβγ : 

The relations 0 0 0 0 0R R Rα β αλβ αλ β= = =  imply,  

R g R g P Pλμ λμ
αβ λαμβ λαμβ αβ= = = . 

4. The scalar curvature associated with αβγ : 
It is obvious that P R=  
The following proposition is useful for our purpose and is valid only for 
3-dimensional Riemannian manifolds. 

Proposition 4.1 Let gαβ be the metric tensor of a 3-dimensional Riemannian 
manifold. 
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Let the definition of Ricci tensor 
  R g Rλμ

αβ λαμβ=                 (22) 
be considered as a linear system on a 6-dimensional vector space with  

1212 1213 1223 1313 1323 2323, , , , ,R R R R R R  as unknowns. The system (22) admits the 
unique solution 

( )1
2

R R g R g R g R g R g g g gαβγδ αγ βδ αδ βγ βδ αγ βγ αδ αδ βγ αγ βδ= − + − + −  

The proof of this proposition is easy but will not be given here. 

As a consequence, if the Ricci tensor of a 3-dimensional Riemannian 
manifold is zero, the Riemann curvature tensor is zero. 

We have seen that if a metric ijg satisfies Einstein’s equations and admits a 
parallel vector field, then its Ricci tensor is identically zero. The reduction of 
the previous 4-dimensional problem to a 3-dimensional one leads to the 
following conclusion : 
If a metric tensor ijg satisfies Einstein’s equations of General Relativity and 

admits a non trivial timelike parallel vector field, the ijg is the metric of a 
flat space-time. 

4.2 Solutions with Spacelike parallel vector field X 

In that case, we can consider that 
1X

x
∂

=
∂

 with ( ) 11, 1g X X g= − = . 

Mathematically, there is no inconsistency if we use a non physical reference 
frame and put 

0X
x
∂

=
∂

 with ( ) 00, 1g X X g= = − . 

Then , 1 , 3gαβ α β≤ ≤  will be a regular matrix and 0 0g g gαβ αβ α βγ = + is 
its inverse. 
The metric tensor of space-time will not depend on 0x and αβγ can be 
considered as the metric tensor of a 3-demensional Riemannian space. 
The same reasoning as in the case 1 shows that the existence of spacelike 
parallel vector field implies that the metric ijg corresponds to a flat space-
time. 

5. Conclusion 

The considerations presented in this paper refer systematically to open 
submanifolds corresponding to a coordinate system ( ix ). 
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Stricto sensu, the conclusion of our analysis is that space-time admits 
timelike and spacelike parallel vector fields only on open submanifolds 
where the gravitational field vanishes. 

For example, in the case of a central symmetric gravitational field, if the 
body responsible of the gravitational field possesses an empty cavity, the 
region of the world restricted to this cavity constitutes a spatially bounded 
flat space-time, while the region outside the body corresponds to a nontrivial 
Riemannian manifold. 

The conclusions concerning timelike and spacelike parallel vector fields 
cannot be extended automatically to the case of lightlike vector fields. 

In that case, if we consider 0X
x
∂

≡
∂

as a lightlike parallel vector field, 

( ) 00, 0g X X g= = . 

Therefore, the submatrix ( ) 1 , 3gαβ α β≤ ≤ of the inverse matrix ijg  of  

ijg is necessarily singular. The process which allowed us to reduce our 4-
dimensional problem to a 3-dimensional one is not valid any more. 
However, work is in progress concerning this case also. 
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