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Abstract
A shielded thermocouple is a measurement device used for monitoring the
temperature in chemically, or mechanically, hostile environments. The sensitive
parts of the thermocouple are protected by a shielding layer. In this work we use
numerical methods to study the accuracy and dynamic properties of a shielded
thermocouple design. Also, we show that by formulating and solving an
appropriate inverse problem, we can significantly reduce the errors in the
measurement process.

1. Introduction
Temperature measurements in mechanically, or chemically, hostile
environments are often difficult to perform since the recording device can
be destroyed. In such situations a shielded thermocouple can be used [6,
10]. In such a device the measurement points, as well as wires, are protected
by a shielding material.

Although shielding material protects the measurement points and the wires,
it can also reduce the accuracy and change dynamic properties of the
measurement device. In the stationary case there may be a thermal gradient
along the length of the thermocouple acting as a heat sink lowering the
temperature locally. Also if the temperature of the surrounding medium
changes it will take some time until the change has propagated through the
shielding material and becomes notice- able at the measurement points.
These effects cannot be avoided but can be minimized by good
thermocouple design. A typical shielded thermocouple is displayed in
Figure 1.1.

In this work we attempt to use numerical methods to investigate the
performance of shielded thermocouple designs. A mathematical model of
the thermocouple is obtained by derivation of the heat propagation equation
in cylindrical coordinates and by considering the axial symmetry of the
problem [7]:
The unknown temperature function ),( trT is the solution of the equation
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which satisfies  boundary conditions,
0),0( tTr and ).(),( 2 tFtrT  (1.2)

Here k is the thermal conductivity, pc is the specific heat capacity,  is

the density, T is the ambient temperature, and  describes the
conductance of heat along the thermocouple. The function )(tF is the time
dependent temperature of the medium surrounding the thermocouple, or the
temperature that we want to measure. By solving (1.1) we can compute the
temperatures at the measurement points, i.e. at 0rr  and 1rr  .

Figure 1.1 : A sketch of a shielded thermocouple. The measurement points are
protected by a layer of magnesium-oxide. The hollow interior ( 00 rr  )

contains wires.

Solving the forward problem (1.1) gives us important information, such as
the step function res- ponse for a specific shielded thermocouple design. In
this work we will further investigate the possibility of using the recorded
temperatures, at 0rr  and 1rr  respectively, to compute the temperature

at the surface 2rr  . Calculating the surface temperature of a body given
interior measurements is an inverse problem that has been studied
extensively. The problem is ill-posed as small measurement errors can be
blown up and dominates the numerical solution. Hence special
regularization techniques are needed.
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Recall that the temperature ),( trT is recorded by thermocouple giving us
access to measurements,

)(),( 0 tGtrT  and )(),( 1 tHtrT  (1.3)

By solving a well-posed problem in the interval 10 rrr  ,  the heat-flux

),( 1 trTr can be computed. Hence the inverse problem is: Find the
temperature ),( trT that satisfies

    tprr TrrcTTrrTrk
r

)()()()(1    , 21 rrr  (1.4)

given Cauchy data,
)(),( 1 tHtrT  and )(),( 1 tqtrTr  (1.5)

The paper is organized as follows. The ill-posedness of the inverse problem
is demonstrated in Section 2. Numerical algorithms for solving the
equations (1.1) and (1.4) are discussed in Sec- tion 3. In Section 4 a few
numerical experiments are presented and, finally, some conclusions are
given in Section 5.

2. Ill--posedness and Regularization
In this section we study the inverse problem (1.4) and show that it is ill-
posed [1, 2, 4]. We cons-ider the simplified problem: Find the temperature

),( txT satisfying:
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where x is the space coordinate, t is time, )(tg is the recorded
temperature at the measurement point 1x , k is the thermal diffusivity.
Of course, since )(tg is assumed to be measured, there will be
measurement errors, and we will actually have a data function 2Lgm 

satisfying,  ,.)1(Tggg mm

where 0 represents a bound on the measurements error.

The problem (2.1) is ill-posed in the sense that the solution, if it exists, does
not depend continuously on the data. The ill-posedness can be seen by
solving the problem in the Fourier domain. In order to simplify the analysis,
we define all functions to be zero for 0t .
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be the Fourier transform of the exact data. The problem (2.1) can now be
formulated in frequency space, as follows:
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The solution to the above problem is given by
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where i denotes the principal value of the square root. Since the real

part of i is positive, and our solution ),(ˆ xT is assumed to be in

)(2 IRL , we see that the exact data function )(ˆ g , must decay rapidly as

 . Now we assume that the measured data function satisfies

)()()( ttgtgm  , where )(2 IRL is a small measurement error. If
we try to solve the problem using mg as data we get a solution
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Since we cannot expect the error )(ˆ  to have the same decay in the
frequency as the exact data )(ˆ g the solution ),(ˆ xu will not, in general
be in )(2 IRL . If we try to solve the problem numerically, high frequency
components in  , are magnified and can destroy the solution.

In our work we stabilize the problem by introducing a cut-off frequency c ,

and by removing high frequencies from the solution ),(ˆ xT . This
regularization technique works rather well and a complete analysis of the
simplified case presented above can be found in [1, 2].

The more complicated equation (1.4) is also ill-posed and a similar analysis
can be carried out in the frequency domain, see [5]. The analysis shows that
the problem can be regularized by cutting off high frequencies in the
solution and that the parameter choice rule, that can be used for finding a
good value for the cut-off frequency, can be derived.
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3. Numerical Algorithms

The forward problem (1.1) is a regular well-posed boundary value problem
for a parabolic equa- tion and hence a standard finite difference method can
be used for solving it. In our codes we introduce a space discretization
  1

0



N
iir and write T

N trTtrTtT )),(),...,,(()(:, 10  . We discretize the
governing equation using central differences and obtain a linear system

)(:,)()(:, tTtbtAT t

The Crank-Nicholsson method is used to deal with the time dependence and
in each step of our numerical scheme we need to solve a (sparse) linear
system,
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The Crank--Nicholsson method is accurate, efficient, and works well for
our purposes. Using the above scheme we create simulated experiments by
picking a surface temperature )(),( 2 tFtrT  , and computing the
corresponding temperature histories at the measurement points.

The above Crank-Nicholsson discretization can be described as a time-
marching scheme. For the inverse problem (1.4) we will instead use a
space-marching algorithm. For our numerical sche- me we introduce a time
grid   1
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equation (1.4) can be written as a system of of ordinary differential
equations,
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with initial-boundary values

)(),( 0 tGtrT m , )(),( 0 tLtrT mr  , and 0)0,( rT , IRt .

The matrix D represents a discretization of the time derivative t .

As discussed previously the inverse problem is ill-posed [1, 2] and hence
regularization is needed. In our method the problem is stabilized by
computing the time derivative by using a truncated discrete Fourier
transform. Thus the matrix D is taken as,

H
cc FFDD 
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where F is the Fourier matrix and c is the diagonal matrix
corresponding to differentiation of the trigonometric interpolant in which
frequency components with c  are explicitly set to zero. The cut-off

frequency c is a parameter that can be used to control the smoothness of
the solution to the inverse problem, and represents a trade-off between
accuracy and the influence of measurement errors.

The system of ODEs (3.1) can be solved using standard methods. For our
numerical code we use an explicit solver of Runge-Kutta type, e.g. Matlab
ode45.

4. Simulated Experiments

In this section we present experiments intended to demonstrate the
usefulness of numerical simulations for investigating the performance of
shielded thermocouple designs. Also, we will show that the accuracy of the
measurements can be improved by solving the corresponding inverse
problem.

During the tests we will assume that the shielding layers of the
thermocouple have dimensions mmr 102  , mmr 81  ,  and mmr 40  .
Further, we assume that the measurements take place during s2000 . The
material parameters are chosen to be realistic. We use the expressions for
material constants for porcelain taken from [6].

Firstly we pick an appropriate function )(tF (the surface temperature) and
simulate measure- ments )(tG and )(tH by solving the direct problem.
The results for two different functions )(tF are displayed in Figure 4.1.
Two important effects can be seen. Firstly a change of temperature at the
surface of the thermocouple must propagate through the shielding material
before it is noticeable at the measurement points. Hence there is a time
delay in the measurement device that depends on both dimensions and
material choices. Also there is an asymptotic error because the interior of
the shielded thermocouple acts as a heat sink. These two effects depend on
the thermocouple design and material choices for the shielding layers.
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Figure 4.1: The temperature response at the measurement points
)(),( 1 tGtrT  (dash-dotted curve) and )(),( 0 tHtrT  (dashed curve)

given the surface temperature )(),( 2 tFtrT  (solid curve). We present the
case where )(tF is a smooth function (left) and a step function (right).

The time delay and asymptotic error are unavoidable when using a shielded
Thermocouple [6]. However these effects can be compensated for by
solving an inverse problem. For the numerical tests we created simulated
measurements by solving the direct problem; and adding normally
distributed noise with variance 110 giving us data vectors mG and mH .

Firstly we selected a step function )(tF and created the simulated
measurements mG and mH .  By solving the inverse problem we find an
approximation mF of the surface temperature. The noisy data and
computational results obtained using different cut-off frequencies c are
display- ed in Figure 4.2. We see that it is possible to compensate for both
the time delay and to reduce the asymptotic error considerably. The effects
of the regularization parameter c can also be seen.
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Figure 4.2: The simulated noisy data mH and mG (top, left). Also the

approximate surface temperature mF obtained using 20c (top, right),

20c (bottom, left), and 200c (bottom, right).

5. Concluding Remarks
In this work we have showed the usefulness of numerical models for
understanding the performance of a shielded thermocouple. Firstly,
numerical simulations have been used for simulating such a device and for
understanding how the thermocouple design influences the accuracy of the
measurements. Two effects have been studied in particular: the time delay
since the thermal signal needs to propagate through the shielding material
and the asymptotic error resulting from the measurement device conducting
heat away from the medium.

Secondly, the inverse problem of finding the "true" temperature of the
medium given the temperature histories at the two measurement points is
ill-posed but using an appropriate regularization scheme an accurate
solution can still be found. By using the inverse problem solver as a data
filtering device we can remove the asymptotic error and reduce the effects
of the time delay.

Numerical experiments (not reported in this paper) demonstrate that
compensating for the asymptotic error is easy and the strength of the effects
causing the asymptotic error has little impact on the degree of ill-posedness
of the inverse problem. The time delay is related to the smoothing property
of the direct problem and is directly related to the ill-posedness of the
inverse problem.
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