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Abstract 

 
This paper highlights the importance of transforming Artisanal and Small-scale Mining (ASM) 

sector into a more sustainable enterprise and shows the reclamation of despoiled mined sites as an 

opportunity to return land to beneficial uses which do not compromise future development of the 

sites. It presents some of environmental impacts produced by ASM and the contribution of a 

geomorphological approach to alleviate them. The methodology consisted of the review 

supported by field survey in small-scale mining areas to summarize the most relevant scientific 

findings and the importance of stabilizing the land that will support sustainably reclamation 

structures. The impacts include haphazard excavations with no land reclamation plan, pits, 

trenches inadequately protected, siltation of open water bodies, soil and rock wastes, negative 

change of soil properties, and accelerated erosion of the mine sites. To transform the sector into a 

more responsible industry, ASM has to be placed within two integrated perspectives: (i) building 

the capacity of ASM sector, and (ii) promoting restoration approach by building a critical 

knowledge mass through collaboration of relevant stakeholders, with emphasis on 

multidisciplinary approach.The study opens a relevant new research field and emphasises on the 

collaboration of mining stakeholders including local communities to develop an integrated 

approach to address challenges that ASM industry is facing in developing countries. This review 

highlights the impacts of small-scale mining sector on land use potentials and it is essential 

contribution towards the sustainability of ASM industry and reclamation of despoiled mined 

lands. 
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INTRODUCTION 

 
Small-scale opencast mining is vital in the global supply of some minerals like ‘coltan’ and gold 

and provides income for millions of people in many developing countries (Seccatore et al., 

2014).Traditionally, in many countries, artisanal mining is operated without prior license and 

without formal identification of mineral deposits (Kumwimba, 2009). However, in some 

countries, like Rwanda, this practice is changing and formalization is a requirement before 

operation, though the entities still largely operate on hand tools basis. Formal Small-scale Mining 

requires a legal mining license granted after prospection has confirmed the existence of 

extractable ore (Kumwimba, 2009). The context of ASM is the form where hand tools and /or 

relatively low-level technology are employed and the mining is largely on the or near surface 

(shallow) (Byizigiro et al., 2015). It includes Small-Scale Opencast Mining (SSOM) 

whichessentially involves extraction of surface ores by removing relatively thin covers of soil, 

sediments or bedrock (Byizigiro et al., 2015). This type of superficial mining commonly takes of 

vegetation and soils, interrupts ecosystem fluxes, and results in loss of valuable farmland 

(Schueler et al, 2011). Such mining practices expose the land to open pitting and trenching 

rendering the land dangerous to use for other purposes, accelerated soil erosion, aggradation of 

solid waste on important farm lands, mass movements and silting of surface waters. The 

uncontrolled human activities aggravate the effects of the natural phenomena of erosion and mass 

wasting.  

The impacts of both anthropogenic and natural processes on affected sites include soil 

degradation and landscape change, which are especially significant in densely populated regions 

of developing countries that experience land shortages (Byizigiro and Biryabarema, 2008). 

Beside its negative effects, ASM is bound to last since there are often no valid alternative 
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livelihoods for people in these mining regions, and the attractiveness of quick profit is not 

sufficiently counterpoised by concern about environment or safety (Seccatore et al., 2014). Some 

developing countries took initiatives towards assessment of environmental impacts produced by 

mining operations and re-cultivation of mined degraded land (Rukazambuga, 2008);but the effort 

is far little to move the small-scale mining sector towards more sustainable development, 

particularly to assess geomorphic processes specific of SSOM sites in sub-Saharan developing 

countries (Freak, 1998). Fortunately, the negative impact of SSOM in developing countries has 

recently moved into the focus of research, covering a variety of disciplines, such as legal, socio-

economic and chemical contamination impacts (Sandell et al., 2018. However, concrete 

restoration measures and actions are often lacking. In this regard, an increased governmental 

input, expanded partnerships, and improved dissemination of technology could lead to the 

development of promising environmental solutions (WuZhenhua et al., 2019). 

In support of other disciplines from both natural and social sciences, the purpose of this paper is 

to highlight the importance of a geomorphologic approach in providing the required skills and 

regulation regarding reclamation of mining sites. In fact, there is a primordial role of 

geomorphologic skills in constructing topography and soils that would be stable enough to 

support sustainably reclamation structures (Toy and Chuse, 2005). Many times, geomorphic 

processes are often overlooked by mining operators in the evaluation of environment impacts, 

despite their importance. It is, therefore, vital to continue highlighting their importance and 

encourage the participation and collaboration of potential stakeholders towards the sustainable 

SSOM in developing countries. In addition, it is important to underscore the necessity that 

geomorphic processes, associated with SSOM activities, in all efforts intending to stabilize and 

recover affected sites for further land uses.  

 

MATERIALS AND METHODS 
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In order to get acquainted with environmental impacts resulting from mining operations, this 

study used the review of existing literature supported by field survey conducted in small-scale 

mining areas. Regarding the literature review, relevant published and unpublished documents on 

geomorphologic and environmental impacts resulting from ASM were consulted. In addition, key 

documents research findings on some approaches of stabilizing the land towards its reclamation 

have been reviewed. The field survey was conducted in two countries of the African Great Lakes 

Region, namely Rwanda and Burundi, between from 2007-2015.  

For the field visit, a particular attention was paid to: (i) areas under mining activities; (ii) areas of 

transfer of sediment and earth material proceeding from mined areas; and (iii) areas in low-lying 

zones before accumulation. On these three locations, particular geomorphic features were 

identified onsite and offsite, and classified as a direct or indirect impact of human intervention. 

Finally, block diagrams were constructed based on pictures taken during field survey to 

representing identified landforms and to showing Landscape evolution within ASM sites and 

adjacent areas.  

 
RESULTS AND DISCUSSION 

An Overview on Geomorphic Impact of the ASM 
 
Artisanal and Small-scale Mining has the potential of creating degradation and aggradational 

landforms as a result of newly initiated or modified natural geomorphic processes, arising from 

modifications in the landscape. The direct and most spectacular features onsite are of 

excavational nature such as quarries, pits and trenches; or overburden waste piles or rock dumps. 

As mentioned in the previous paragraphs, the secondary impacts may well extend on foot slopes 

and in alluvial plains, beyond the actual mining areas. Braided channels and alluvial fans are 

among the most encountered associated geomorphic features (Figures 1-3).  
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Fig.1. An example of a Dualism of Semi-mechanized and Purely Artisanal Mining 
Operations in the Gatumba tin-tantalum Mining Sites, Western Rwanda 

A - A bulldozer used to excavate ore; B - Alluvial mining using simple hand-held tools (pick, shovel, basins); C - 
Electrical shaking table for mineral concentration &D - Ground-sluicing where running water with ore in suspension 

is flushed into a prepared sluice channel to recover minerals. 
 

 
 

Fig.2. An Example of Off-site Impact of SSOM in Gatumba Mining Sector (Rwanda) 
showing Devastation of Low-lying Fertile Alluvial Plains by an Abundant Sediment 

Delivery 
 

A B 

C D 
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The landscape evolution for the mine sites represented on the two figures above can be 

represented of the diagram below which is basically a process of levelling-off by increased 

erosion of topographic highs, and corresponding deposition in topographic lows. 

 

 
Fig.3: Landscape Development within Small-scale Mining Sites and Adjacent Areas 

 
I (1-4): On-site opencast mining causing gradual removal of surface earth materials and exposing subsurface 

geological structures to further mass translocation by (II) natural erosion agents.  Off-site effect includes III mass 
gain which overlies the natural ground in depression and results in increase of volume of relocated earth material IV. 
 
In such conditions, natural processes of soil erosion and earth material under the control of 

numbers of natural factors including substratum, slope, climate and vegetation among others are 

intensified or altered. Often operating concomitantly with mining operations, the relative high 

magnitude of natural process is much more prominent after decommissioning of activities from 

the site. Pitting and trenching are types of mining and quarrying the most applied in small-scale 

mining to excavate geological structures. They involve relocation of huge earth material 

involving farmland and soil loss. This human activities result directly or indirectly in a variety of 
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landforms which were classified by Jones (2001) into (i) human-made, (ii) human-induced and 

(iii) human-modified landforms. These three groups of landforms associated with small scale 

opencast mining are hypothesised and schematically represented on the diagram (Figure 4) 

below.  

On the one hand, human-made landforms are those produced intentionally, like the removal of 

overburden material to access the underlying ore in the case of mining activities. They are mostly 

associated with excavation of geological structures and their exposure to further translocation 

agents. On the other hand, human-induced landforms are created by natural processes in places 

and timeswholly dependent on human inducedactivities (Jones, 2001). In opencast mining sites, 

erosiondevelops action on pits, waste heaps, mine pit walls or in the surroundings where the 

primary human-made landforms were created. The most identifiable newly created landforms 

include “rills”, formed by surface runoff on pit walls. Piping which becomes one of prominent 

geomorphic processes is likely to trigger the development of number of landforms in mined sites. 

Pipes are progressively enlarged with on-going erosion and develop to “gullies”, a process that 

can ultimately lead to the formation of badlands (Byizigiro and Biryabarema, 2008). Once slope 

failure occurs, there is disturbance of the whole earth-geological fabric. This leads often to the 

weakening of adjacent areas, particularly on the upper part of the back-slope. This results in the 

development of “cracks”and decrease of shear or tensile strength which allow the entry of water 

into weakened zones between blocks (Varnes, 1984;Holl and Aide, 2011). These weakened zones 

constitute preferably planes for further mass movements from the summit of the pit.  

 

Human-modified landforms are created when the extent of geomorphic processes is changed by 

human activity. The change in hydrological budget through the removal of protective vegetative 

cover or the exposure of excavated overburden material to erosion processes is the main 

mechanism that triggers the formation of such landforms (Jones, 2001). SSOM operations thus 
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may indirectly result inslumping along concave stream banks and debris flows may spread 

downstream, often contributing to the formation of “braided stream channel” system. . According 

to Goudie (2006) , through a lack of understanding of the operation of geomorphologic systems, 

humans have deliberately and directly altered landforms and processes and have thereby caused a 

series of events that were neither anticipated nor desired. 

 
Fig.4.Hypothetical Landforms resulting from SSOM Impacts 

(Adapted from Byizigiro et al., 2015) 
 
The figure above represents:  I - Mineralized vein/ore which is basically extracted for the search of 
minerals,  II - Stumps of cleared vegetation during the preparation of the ground before mining starts; III - 
Pit wall either sides of the ore being extracted ; IV - Rills developed on pit wall by overflowing water 
which may enlarge to form V – Gullies, VI - Land slide, VII Slump and VIII – Topples are mass 
movement depicting the level of weakening of shear and tensile strength; IX – Stack which is an isolated 
topple; X - Gallery associated with the underground excavation; XI – Sinkhole where the underlying 
geological structure have been removed through a underground mining; XII - Flow track excavated earth 
material being relocated downstream by rain of stream water; XIII - Mine Pit a depression expressing a 
deficit of earth material cause by mining removal process ; XIV - Tailing dump which is a pile of waste 
accumulated near the pit; XV - Debris flow; XVI - Tailing fan & XVII - Braided stream channel 

Reconstructing Soils and Landforms to Improve the Sustainability of ASM 
 
Mining operations are renowned to trigger changes in erosion–sedimentation processes and soil 

properties. Martin-Duque (2010) asserts that the knowledge of soil properties and landforms is 

fundamental for an understanding of the environmental effects of opencast mining if we expect 

further reconstruction of mining sites(Wilkinson and McElroy, 2007) . Toy and McElroy (2007) 



   

9 
 

underscore the importance of designing the most appropriate strategies for reclamation of mined 

sites. In this regard, many researchers including Toy and Chuse (2005) and Craul and Rowe 

(2008) put emphasize on the importance of stabilizing the topography to be reconstructed and the 

mastery of soil erosion control.  

Toy and Chuze (2005) listed ten (10) geomorphic principles that need to be consecutively applied 

in order to achieve a successful reclamation: 2) reclamation planning and engineering; 2) site 

characterization; 3) material management; 4) topographic reconstruction; 5) replacement of 

topsoil or soil substitute; 6) surface manipulation; 7) addition of soil amendments; 8) re-

vegetation; 9) irrigation; and 10) site monitoring and maintenance. According to Ser (2004), an 

ideal restoration would enable and support similar diversity and community structure in 

comparison with reference sites, with the presence of indigenous species, and presence of 

functional groups necessary for long-term stability. The physical environment would be capable 

of sustaining reproducing populations, and normal functioning that integrates with the landscape 

and eliminates potential threats. The site should then be self-sustaining and resilient to natural 

disturbances. Stabilization techniques depend on the individual topography position of the site 

e.g. pits located in alluvial plains or on hilltops, or trenches on hillside (Rowe, 2008). 

Reconstruction relates more to the refilling and shaping that provide the site with a topography 

and profile capable of supporting reclamation practices and complying more or less with the 

surroundings. Mimicking the original topography and blending it with the surroundings is the 

best option (Martin-Duque et al., 2010).Many researchers suggest, however, that this maximum 

requirement might be possible to achieve to variable degree only (Holmberg, 1983;Sandell 

Festin, 2018). 

 

The type and degree of modification depends strongly on the volume of relief and properties of 

the material (particularly its stability and whether or not it needs to be covered or protected from 
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weathering) (Holmberg, 1983). Furthermore, geological material, if successfully reshaped will 

enable to achieve: (i) the best ecological conditions for the planned land use; (ii) proper 

hydrologic structure; and (iii) the most pleasing aesthetic impression; admitting that the three 

criteria may not be compatible (Holmberg, 2003). Thus, the required topographic modification 

must be based on the individual site with no universal application. For this, topographic 

reconstruction becomes an opportunity for creativity and imagination (Crauland Rowe, 2008). 

The compacted stepped sub-base provides engineered stability of the entire system, as long as the 

slope, namely the angle of repose of the material to be shaped, is well designed (Crauland Rowe, 

2008). 

Where applicable, all earth material should be removed in a separate layer from the area 

subjected to mining and preserved in various piles. In addition, they should be well confined to 

avoid loss and/or any contamination of the ground. These stockpiles are later used in the process 

of reclamation, specifically refilling. In most cases, this is not possible due to several reasons 

highlighted in various discourses: (i) the operators have no capacity and organization to achieve 

that; (ii) the landscape is strongly hilly with no appropriate locations to store the material or the 

infrastructure to transport it to the right location; (iii) some of the ASM sites exist for a long time 

and are always reworked by subsequent operators; etc. However, reconstitution in one way or 

another has to be planned even if it involves fresh land scarping and re-designing the site for 

beneficial land use. Whichever approach is applied the following important soil parameters have 

to be considered:  (i) structure and texture; and (ii) humus and mineral content both determining 

the soil properties responsible for the success of re-vegetation and thus the start of a sustainable 

land use after mining. 
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Assessing ASM Impact in a  geomorphologic perspective 
 
Regarding geomorphic impact assessment and mitigation, effective incorporation of restoration 

and conservation priorities remain hampered by inadequate knowledge of the natural landform 

dynamics and the difficulty in designing restoration criteria (Bridges, 1987). Knowledge of 

geomorphic processes and their importance in reconstituting landscapes degraded by ASM is 

vital. However, this has to be in concomitant with other key disciplines to successfully restore 

and re-use such landscapes. Cao Diogo et al.(2017 underscores the importance of collaboration of 

all stakeholders if we expect a successful reclamation of mine sites. Skills from all disciplines 

should complement each other but the primordial role of geomorphology skills in the process of 

restoration of degraded lands has gained broad consensus.   

Generally, the mitigation approach of geomorphic processes associated with ASM can be placed 

within two integrated perspectives. The first one is to build the capacity of ASM sector 

(technical, financial, managerial) in order to deploy proven approaches to mitigate any adverse 

land degradation consequences (Holmberg, 1984). This would have to be accompanied with 

realistic regulatory framework, i.e. converting the sector into a responsible enterprise. The second 

one is the development of geomorphic restoration approaches through building a scientific 

database of existing research results and promoting new research activities into building a critical 

mass of knowledge through collaboration of relevant stakeholders; with strong emphasis on 

multi-disciplinary approach. A broader consideration can be possible through a harmonized 

collaboration of all stakeholders including scientists and government ministries and agencies 

(Rukazambuga et al., 2009).The existence of a comprehensive knowledge would lead to the 

development of detailed and effective regulations and standards, which would be realistic from 

the industry point of view and effective from the regulators point of view. According to Byizigiro 

et al(20015), the mitigation approach of geomorphic processes associated with ASM can be 
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facilitated by providing consistent guidelines through legal requirements, technical aspects, 

practical approaches, organized structures and consistent plans (Fig. 5).  

 
Fig.5. Requirements for the Sustainability of Small-scale Mining Sector 

(Adapted from Holmberg, 1983) 
 

Legal Requirements &Technical Aspects 
 
For legal requirements, consistent acts for ASM and reclamation should be set and used in 

developing guidelines. Any reclamation measures should specifically aim at striking a balance 

between environmental protection and the social-economic benefits of the nation or local people 

(Manciniand Sala, 2018). The licensing agreement should contain clear articles on progressive 

land reclamation and final reclamation before decommissioning. The source of reasonable 

rehabilitation funds has to be included in the agreement. Regarding technical aspects, the 

development of sustainable land use systems for areas severely affected by ASM is a difficult for 

three major reasons. Firstly, under natural conditions, landscapes evolve as determined by 

geology, climate, soil and vegetation cover conditions. The reclaimed soil and cover conditions 

after reclamation almost always are very different from those before mining (Toy et al., 2002). 

Secondly, because landscape resources often were not conserved (stockpiled), the exercise of 
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reconstructing soil design becomes very difficult (Rowe, 2008). The alternative to import topsoil 

and other materials from off-site would not be a good option because these materials on an off-

site location should probably remain there for eventual restoration of that site unless it is to be 

totally occupied by structures. Lastly, because many governmental departments are understaffed, 

minimal commitment has been made to address environmental problems (Veiga et al., 2014). In 

this regard, the collaboration of all stakeholders as well as the use of multidisciplinary research 

approaches would be much beneficial.  

Practical Approach 
 
Apart from few research groups, there have been few systematic concrete actions to rehabilitate 

affected sites and identify those which need more attention and immediate intervention. There has 

been even less work to quantify the nature and level of associated problems so as to prioritize 

remediation efforts. In addition, a legacy from decades of old ASM practices continues to exist in 

most mining operations and the shift towards new ones that comply with environmental 

safeguard and local people needs isstill slow.  All these old practices should be revisited. Thus, 

orphaned, abandoned and/or owned mines should be identified and the extent of physical impact 

determined. Within the mines and areas of their influence, levels of disturbancehave to be 

identified and zoned.Categorization levels of land degradation in zones highly disturbed, zones 

strongly disturbed and zones moderately disturbed is recommendable in the perspective of 

allocating appropriate remediation tools and strategies. Furthermore, it would enable to decide 

whether remediation measures would (i) rely completely upon spontaneous recovery; (ii) or 

exclusively adopt technical measures; or (iii) to combine both techniques by monitoring 

spontaneous recovery towards a target (Prach, 2008).  

Organized Structures 
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The existence of clear frameworks and responsibility between government and stakeholders 

needs to be well formulated through laws, regulations, mining standards, contracts and 

agreements. Organized systems are very important for an effective process of rehabilitation. This 

will usually involve a well-coordinated collaboration of all stakeholders such as mining 

industries, government ministries and agencies, scientific institutions, local government entities, 

and local communities (Fig. 6). In addition, a wide range of skills might be involved due to the 

complexity of the nature and the relevance of the task (France, 2008). The program for 

reclamation of degraded sites may lead to the development of national approaches, impact 

assessment, prioritization of areas to be rehabilitated and actions to be carried out, objective 

setting and developing action plans. These programs could provide useful guidelines for the 

mining industry. Gavini (2003) and Senos (2008) highlight that sustainable small-scale mining 

operation and successful landscape management plans will assess not only appropriate mining 

techniques but also the possibility of rescheduling management tasks, whereby the need for labor, 

energy as well as material are sensibly reduced. This suggests that required task for a successful 

restoration could be allocated to appropriate individuals or institutions. Last but not least funding 

liabilities must be determined and on that basis a budget plan must be set up. 
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Fig.6: Sharing Tasks to Enable the Re-cultivation of Mined Affected Areas 

(Adapted from Freak, 1998; Gavini, 2002; Senos, 2008 & Holmberg, 1983) 
 

CONCLUSIONS 
 

Mining is essentially artificial mass movement superimposed on natural mass movement 

processes. The landscape evolution for the mine is fundamentally a process of levelling-off by 

intensified erosion of topographic highs, and complementary deposition in topographic lows. 

Field surveys have shown gradual mass deficit is the direct impact associated with onsite 

excavation of mineral bearing ore which exposes subsurface geological structures to further mass 

translocation by natural erosion agents. On the other hand, offsite impact of mining operation 

includes translocation or accumulation of earth material, and stream siltation which results in 

mass gain which reversely buries the natural ground in low-lying area. Natural geomorphic 

agents operating simultaneously or consecutively with mining activities on mined areas result in 

specific and distinct landforms onsite and offsite locations.    
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Understanding mining and post-mining mass movement and associated geomorphic processes 

and the control of these processes is a fundamental prerequisite toward a successful restoration of 

mined sites, and the sustainability of the sector. Strategies leading to reclamation mine-affected 

sites and mitigation of geomorphological impacts cut across number of scientific disciplines, 

including social and political boundaries. In an inclusive reclamation approach of mined sites 

stakeholders need to work in synergy with courage and strong commitment. The mining statutory 

authority in partnership with the scientific community has to develop an interdisciplinary 

approach and coordinated effort to address this challenge facing the small-scale mining industry 

of developing countries. 
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