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Abstract  

 

The urban population is rapidly increasing and more than half of the world's population is 

currently living in cities. About 1 billion of city dwellers are living in slums and informal 

settlements. Addressing the issue of slums and informal settlements require information on these 

areas. This study explored the potential of Convolutional Neural Network (CNN) and Very-High 

Resolution satellite image to map the informal settlements in urban areas of the city of Kigali, 

Rwanda. The study applied modified U-Net model with MobileNetV2 model as the base model 

to discriminate areas with informal settlements from other areas. The model was obtained by 

modifying the original U-Net architecture to incorporate dilated convolutional operations at the 

beginning of the network. The findings demonstrate that based on the spatial characteristics of 

informal settlements, the model was able to detect informal settlements in urban areas with a 

recall of 0.862, a precision of 0.810 and an F1-Score of 0.809. Based on these results, the study 

can be a basis for finding relevant information about informal settlements that are of concern in 

the implementation of SDGs, especially goal 11 addressing the issues of safe and inclusive cities 

and human settlements. 

 

Keywords: Convolutional Neural Network, informal settlements, slums, VHR images 

 

 

1. Introduction 

1.1. Background of the Study 

The urban population is rapidly increasing and more than half of the world's population is 

currently living in cities (United Nations, 2018), which require a well-planned and arranged 

urban development process to accommodate the population. The increase in urban population 

has been one of the global challenges over the last decades. Cities, especially in developing 

countries, have not managed to deal with the challenge caused by urban population growth 
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(Mahabir et al., 2016). The high increase in urban population has exceeded the capacity of 

developing countries in urban planning, provision of adequate and affordable housing, and 

infrastructure provision to most urban dwellers. At present, about 1 billion of turban population 

is living in deprivation (UN-Habitat, 2016). Deprivation is regarded as a lack of benefits 

considered to be basic necessities in a society and is linked to the way people live and work 

(Baud, Sridharan, & Pfeffer, 2008). Most of the urban population that lacks such necessities live 

in urban deprived areas, known as slums and/or informal settlements (Friesen, et al., 2020; 

Kuffer et al., 2020). Failure to adopt adequate planning policies or poor implementation of 

existing ones for inclusive cities force high proportions of urban dwellers to live in those slums 

and informal settlements. 

Slums and informal settlements often exhibit physical and socio-economic features characterized 

by lack of basic infrastructure, poor housing, overcrowding, unhealthy living conditions, poverty, 

social exclusion, and tenure insecurity (UN-Habitat, 2003). On the other hand, solutions for 

slums and informal settlements are difficult to implement due to a lack of reliable information on 

the status of existing challenges. The common source of geo information has been over the last 

decades, manual image digitization. However, the information from this source is outdated, time 

and resources consuming for its creation and presents discrepancy of the reality on the ground 

due to methods applied (Kuffer et al., 2018). The lack of information about slums and informal 

settlements is a challenge for monitoring the implementation of goal 11 of the Sustainable 

Development Goals (SDGs) aiming at making safe and inclusive cities and human settlements 

(United Nations, 2015). To address the aforementioned challenges, there is a need for other 

methods that can provide useful and updated information. 

In Kigali city, the largest and capital city of Rwanda, the implementation of goal 11 of SDGs is 

embedded in urban policies redevelopment aimed, among others, at coping with the growth of 

informal settlements across the city, which occupy about 65% of the built-up residential areas of 

the entire city (Manirakiza et al., 2019). Of these policies, the master plan aims to improve urban 

dwellers' living conditions by ensuring adequate land use, provision of modern housing 

solutions, provision of adequate transportation, and a healthy environment (City of Kigali, 2019; 

(Uwayezu, and de Vries, 2020). Its implementation involves property redevelopment 

arrangements that require demolition of existing and inadequate housing facilities in slums and 

informal settlements characterized by low-quality building materials (Hitayezu et al., 2018). 

Thus, there is a need for adequate information about slums and informal settlements to support 

the implementation of urban redevelopment. 

 

Timely and adequate information about slums and informal settlements is recognized as crucial 

for implementing urban redevelopment policies (UN-Habitat, 2018). Furthermore, it provided a 

guideline for ensuring justice and equal opportunities for poor and low-income urban dwellers, 

who predominantly reside in slums and informal settlements, to live and benefit from cities 

(Chigbu et al., 2019). In this regard, information about slums and informal settlements status 

unravel the situation concerning spatial and social (in)justice that arises from the implementation 

of urban development policies (Moroni, 2018). The need for up-to-date information about slums 

and informal settlements and the availability of Very High Resolution (VHR) earth observation 

images have triggered the use of earth observation as an alternative way to source information 

that helps understand the physical aspects of slums and informal settlements (Kuffer et al., 
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2016). Earth observation can enable to capture detailed and enough information for spatially 

identifying and characterizing these areas (Kuffer et al., 2018; Mahabir et al., 2016). Earlier 

researches demonstrated that spatial information derived from earth observation has the potential 

to facilitate the understanding of the nature, evolution and growth of slums and informal 

settlements (Wang et al., 2019; Arribas-Bel et al., 2017; Kohli et al., 2016; Kuffer et al., 2017; 

Mboga et al., 2017), and their environment conditions (Friesen et al., 2020; Georganos et al., 

2019).  

Earth observation has shown the advantages of detecting high spatial and temporal 

characteristics of urban deprived areas, useful for effectively monitoring and tracking urban 

deprived areas' growth and providing essential information to support urban development 

policies formulation and implementation (Mahabir et al., 2016). However, despite the 

effectiveness of earth observation-based information for spatially characterizing and 

understanding slums and informal settlements, there is a need to explore further methods for 

extracting adequate information about slums and informal settlements in the global south. In this 

regard, exploring new methods can bridge data scarcity about slums and informal settlements. 

Therefore, this research explores the potential of VHR earth observation image to provide 

information about slums and informal settlements based on their spatial characteristics. The 

following section will present slums, informal settlement and deprivation, followed by a section 

on the techniques for slum and informal settlements mapping. Then, the sections on method used 

and results obtained will follow ending with sections on the discussion and recommendations. 

1.2. Slums, Informal Settlements and Urban Deprivation 

The term deprivation is conceptualized in many different ways, but in general, it is often used to 

indicate the lack of a wide range of necessities in a society (Baud et al., 2008). The lack of 

necessities in life is often used interchangeably with poverty in some social studies and denote 

slums and informal settlements. However, urban scientists use the term deprivation instead of 

poverty, and it goes beyond poverty. Deprivation depicts multiple social, environmental (built 

and natural) and ecological aspects that significantly impact dwellers of urban deprived areas 

(Kuffer et al., 2020). It is crucial to note that some aspects are specific for deprivation while 

others are not (Thomson et al., 2019). For instance, environmental and ecological aspects such as 

flood plain and slope can also exist in non-deprived areas, whereas poor sanitation and 

inadequate housing are specific to deprived areas (Uwayezu, and de Vries, 2020). In a more 

general sense, deprivation represents multi-dimensional factors that describe sub-standard socio-

economic and physical living conditions (UN-Habitat, 2015; Lilford et al., 2019). Researchers 

group these factors in domains to elaborate more comprehensive frameworks for measuring 

urban deprivation. For instance, Thomson et al. (2019) described a framework that groups 

deprivation factors in five domains: social and environmental risk, lack of facilities, unplanned 

urbanization, contamination, and tenure insecurity. Very recently, the research by Abascal et al. 

(2021) conceptualizes deprivation in the so-called Domains of Deprivation Framework. It 

encompasses concepts resulting from the review of various literatures on deprivation alongside 

the validation by experts.  

The Domains of Deprivation Framework allows a detailed understanding of deprivation, and the 

data for all its dimensions play a crucial role in its understanding (Abascal et al., 2021). 

However, its multi-dimensionality requires a broad range of data that is not easily available or 

obtainable. (Lilford et al., 2019) recognized three essential methods for obtaining data about 
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deprivation: household surveys for socio-economic data, ground surveys for identifying physical 

features, and earth observation to identify physical features. Though surveys provide reliable 

data, they are time-consuming, economically inefficient and do not reflect the fast-changing pace 

of urban deprived areas. Earth observation is an important source of up-to-date information in 

deprived areas. It is more efficient for capturing spatial and temporal physical properties of urban 

deprived areas. Moreover, earth observation alongside advanced machine learning and deep 

learning methods have shown the potential to capture socio-economic information. In this 

context, it is claimed that the physical appearance of deprived areas reflects the socio-economic 

status of their dwellers (Arribas-Bel et al., 2017; Duque et al., 2015). 

1.3. Spatial Characteristics of Urban Deprived Areas 

Urban deprived areas present physical aspects such as poor structural quality of housing, 

overcrowding, high building density, solid waste management, environmental conditions (such 

as proximity to the wetland and steep slopes), and inadequate access to infrastructure such as 

roads, water supply, electricity (UN-Habitat, 2015). Different researches (Lilford et al., 2019; 

Kuffer et al., 2018; Wurm & Taubenböck, 2018; Taubenböck & Kraff, 2014) describe urban 

deprived areas as areas characterized by high building densities, small buildings, irregular 

arrangement of buildings and street networks as well as their location, which, in some cases is 

high-risk zones. The physical characteristics of deprived areas differ across locations and can be 

explained differently depending on the context (Kuffer et al., 2020). However, urban deprived 

areas present similar morphological characteristics. Kohli et al. (2012) conceptualized these 

morphological characteristics in three levels, namely object, settlement and environs, in the 

generic of slum ontology. Object-level represents characteristics such as building roof type, 

footprint, shape and orientation. The settlement level presents characteristics such as the irregular 

shape of roads and building density. Lastly, environs level presents characteristics linked to the 

location, such as proximity to hazardous places, such as flooding areas, wetland areas and steep 

slopes. Lilford et al. (2019) have extended the concept of slum ontology by including more 

physical characteristics to describe urban deprived areas. They suggested that deprived areas can 

be characterized based on their built environment, ecology, and services, but the main 

characteristics remain the same as presented in slum ontology. 

Different researches studying urban deprivation have identified the spatial characteristics of 

urban deprived areas that can be extracted using earth observation methods. Those characteristics 

serve as guidance for efficient use of earth observation to produce reliable information on 

deprived areas. In this regard, this research gathered spatial characteristics of deprived areas 

based on a series of literature on deprivation and categorized them in three main categories 

adapted from Lilford et al. (2019). Table 1 illustrates a compilation of spatial characteristics of 

urban deprived areas. 

Table 1: Spatial characteristics of deprived areas from literature 

Category Characteristic Research Comment 

Built 

environment 

 Small buildings; 

 High building 

density; 

 Irregular building 

layouts; 

 

(Wurm & 

Taubenböck, 2018), 

  

(Lilford et al., 2019),  

Image analysis techniques 

are used to extract these 

characteristics from VHR 

remote sensing images. 
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 Poor roofing 

materials; 

 Low road 

coverage,  

 Presence of 

unpaved roads; 

 Irregular road 

networks; 

 Lack of access to 

electricity;  

 Lack of streets 

lightning 

 

(Kohli et al., 2012), 

  

(Kuffer et al., 2018), 

  

(Kuffer et al., 2020),  

 

(Taubenböck & 

Kraff, 2014). 

 

 

 

 

(Graesser et al., 

2012),  

 

(Kohli et al., 2016), 

 

(Georganos et al., 

2019),  

 

(Arribas-Bel et al., 

2017),  

 

(Friesen et al., 2020) 

Mapping night light from 

VHR remote sensing image 

indicate the existence of 

electricity services in areas 

Ecology  Gradient and 

altitude (floodplain, 

steep slope for 

landslides, other 

hazards) 

 Green spaces 

 Air quality  

The use of multispectral 

remote sensing images and 

the Digital Elevation 

Model (DEM) to get 

information on topographic 

conditions of areas can 

reveal the possibility of 

disasters such as landslides 

or flood. 

Services  Presence of open 

sewers and solid waste 

disposal 

Detected from VHR remote 

sensing images and reveal 

the unhealthy living 

conditions. 

 

1.4. Techniques for Mapping Slums and Informal Settlements 

Researchers have employed different methods and algorithms for detecting spatial characteristics 

of slums and informal settlements from VHR remote sensing images and aerial images. The 

methods such as Object-Based Image Analysis (OBIA) and machine learning have been used to 

detect spatial characteristics of areas from VHR remote sensing images (Kohli et al., 2016). 

OBIA segments input image into several homogeneous contiguous groups before classification 

(Blaschke, 2010). OBIA approaches have shown capabilities of detecting both area and object-

based information in slums and informal settlements mapping (Kuffer et al., 2016).  Random 

Forest, a machine learning approach, has shown the potential to achieve relatively high 

performance for urban mapping (Sun et al., 2017). The Support Vector Machine, which is also a 

machine learning method, was shown to have improved accuracy for detecting features from 

earth observation data (Huang & Zhang, 2013). Though the above-mentioned methods have 

gained more credit for detecting spatial characteristics of areas from VHR remote sensing 

images, they present challenges for detecting spatial characteristics of complex spatial contextual 

and texture features (Sameen et al., 2018) and intra-class spectral variability (Chen et al., 2014) 

mostly in case of mapping slums and informal settlements due to their morphology. Moreover, 

these methods fail to distinguish different urban structures in VHR images and this is challenging 

because of the abstract semantic definition of the classes as opposed to the separation of standard 
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land-cover classes (Persello & Stein, 2017). Therefore, the increase in VHR images' availability 

and the challenges associated with the commonly used methods have left researchers' room to 

explore and propose new approaches for detecting spatial characteristics of areas from VHR 

remote sensing images.  

There is a trend in applying deep learning methods for mapping slums and informal settlements 

since they have shown the advantage of automatically learning and extracting spatial features 

from images with high accuracy than the commonly used methods (Bergado et al., 2016). Deep 

learning models have gained popularity for analyzing remote sensing images. They originated 

from Artificial Neural Networks developed as an advance in perceptron, and they consist of three 

categories of layers: the input layer, hidden layers, and output layers (Lecun et al., 2015). Deep 

learning models are built to learn from the known data and predict the other data based on what 

they learnt. Typically, Convolutional Neural Networks (CNNs), a type of deep learning models, 

have gained more popularity in processing image through image classification and semantic 

segmentation, which is the classification that occurs at a pixel level of an image (Sameen et al., 

2018a). CNNs are built of one or more convolutional layers made of sliding filters over the input.  

The advantages of CNNs are that they are found in different architectures, and they allow 

flexibility for modification whereby the layers can be modified according to the user's need 

(Indolia, et al., 2018). 

In the context of image processing, deep learning through CNNs had demonstrated its potential 

for remote sensing image analysis. Since their breakthrough in semantic segmentation, known as 

image classification in remote sensing (Shelhamer et al., 2017), different researchers have 

applied CNNs with different architectures to analyze VHR earth observation and aerial images in 

urban studies. Researchers (e.g., Ajamie et al., 2019; Wurm & Taubenböck, 2018; Kuffer et al., 

2017; Persello & Stein, 2017) employed deep learning methods to map slums and informal 

settlements. These researchers illustrated that application of deep learning result in more relevant 

spatial information compared to other methods. Deep learning methods have illustrated the 

advantage of classifying the image into some predefined labels at higher accuracy than 

commonly used methods such as Support Vector Machine (SVM) and Random Forest (Sameen 

et al., 2018). The advantage of deep learning methods over other commonly used method is their 

capacity to learn spatial contextual information from image and produce more accurate results 

(Bergado et al., 2016). Moreover, the research by Mboga et al. (2017) explored the performance 

CNNs for detecting informal settlement from VHR images, and they compared their 

performance to that of SVM and found out that CNN was able to lead to better classification 

accuracy. (Wang et al., 2019) explored CNN's performance through U-Net architecture for 

identifying pockets of deprivation and found that the U-Net architecture used was able to detect 

and map the distribution and variation of deprivation. Sameen et al. (2018) benefited from the 

flexibility of CNNs and designed the architecture that could classify VHR aerial photo with high 

accuracy. 

2. Materials and Methods 

2.1. Study Area 

Given the conditions of Kigali City in terms of undergoing city redevelopment strategies, the 

research has identified three research areas: Gatsata, Gitega and Kimisagara. These areas were 
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purposively selected because they are known to be dominated with informal settlements and 

present major characteristics of slum areas such as high buildings density, small buildings and 

limited access to roads and they are among priority areas for urban transformation in accordance 

to the implementation of the master plan (City of Kigali, 2019). Figure 1 below show the 

location of these areas. 

 

Figure 1: Localization of the study areas: Gatsata, Gitega and Kimisagara in Kigali city 

 

2.2. Data 

The research employed a VHR Google Earth (GE) image of Kigali city, which was downloaded 

with enough zoom level similar to VHR imagery with sub-meter pixel size. The image was 

downloaded using the SAS Planet tool, a free and open tool for downloading high-resolution 

satellite images from Google Earth (GE), Bing and Esri Imagery services 

(http://www.sasgis.org/sasplaneta/). The VHR GE image comprised of 3 visible bands: Red, 

Green and Blue. Though the VHR GE image quality may be lower than some VHR remote 

sensing imageries acquired by different commercial platforms, VHR GE images are freely 

available to the public (with respect to their terms and conditions). VHR GE images' availability 

gives an advantage for areas and cities with limited resources for purchasing standard VHR 

satellite images. For instance, VHR GE images have been used to study living environment 

deprivation in Liverpool, England (Arribas-Bel et al., 2017), to explore the potential of machine 

learning for automatic slum identification in Latine America (Duque et al., 2017), and to map 

squatter settlements in South Africa (Gunter, 2009). These studies illustrated that using VHR GE 

image is a good alternative to commercial VHR images for their respective applications. 

Apart from the survey data and VHR GE image, the research used administrative boundaries 

sourced from the Institute of Statistics of Rwanda and informal settlements boundaries in Kigali 
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city sourced from the Rwanda Land Management and Use Authority. The research also 

employed the data sourced from the literature, including the spatial characterization of deprived 

areas and physical proxies for characterizing perceived tenure insecurity in deprived areas and 

the model for detecting spatial characteristics of deprivation.  Table 2 illustrates the data used for 

this research. 

 

Table 2: Summary of the data used in the research 

Data Source Acquisition 

year 

Specification 

Household data for 

120 respondents 

and their locations 

Field survey 2021 Characteristics of physical 

environment and perceptions of 

respondents on tenure insecurity + 

locations 

Satellite image Google Earth/ SAS 

Planet 

2020 VHR GE image (RGB) with sub-

meter pixel resolution (0.65m) 

Administrative 

boundaries 

National Institute of 

Statistics 

2012 Shapefile 

Informal 

settlements in 

Kigali city 

Rwanda Land 

Management and 

Use Authority 

2018 Shapefile 

 

2.3. Methods 

The CNN-based method for detecting spatial characteristics in the study area is based on a 

supervised VHR earth observation image classification. The CNN model learns from a set of 

ground truth data, also called training data, to predict and classify the image. Training data is a 

set of observations expected by CNN as examples of all classes to be classified (Chen et al., 

2014). This means that the CNN model uses the training data as an example for classes, and 

hence when new data are passed, it predicts their classes based on what it learnt from the training 

data. The workflow for image classification for this project consists of 3 steps: data preparation, 

setting and training the model for image classification and model validation. The workflow is 

shown in figure 2 below.  
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Figure 2: Workflow for remote sensing image classification (Source: authors) 

2.3.1 Data Preparation 

The study experimented on 14 tiles of 1500×1500 pixels for each of VHR GE images covering 

the three study sites. Since deep learning models require enough training data, there was a need 

for sufficient time to prepare labelled data to train our classification model. Training data were 

prepared delineated slum polygons obtained from the former Rwanda Land Management and 

Use Authority (RLMUA) currently Known as National Land Authority (NLA). These polygons 

were checked one by one on top of the available images (VHR GE images). Nevertheless, almost 

all polygons were not accurate enough to confidently be used for training a CNN model. This 

might be attributed to the temporal gap between the time the images were captured and the time 

the polygons were delineated. Moreover, this may have originated from the error in its creation. 

Thus, they were manually edited to match with the informal settlements in images. The obtained 

polygons were hence converted into raster format since the input of the classification model was 

in raster format as labels.  

Python libraries used for data preparation include: Geospatial Data Abstraction Library (GDAL) 

for reading and writing raster and vector data, NumPy library for multi-dimensional arrays and 

matrices functions to operate these arrays, Matplotlib for plotting, OS library for interacting with 

data directory, Skimage for image processing and sklearn for splitting training data into train 

data and test data, and pyrsgis for exporting GeoTIFFS. Figure 3 below illustrate an example of 

one image tile on the left with its corresponding labels. Eight tiles were used for training the 

model, two for testing and the last four were reserved for inferencing (prediction on the 

new/unseen data). 

https://dx.doi.org/10.4314/rjeste.v5i1.2
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Informal settlements        Others  

Figure 3: Input image tile (Left) and its corresponding label (Right) 

2.3.2 The Model 

This study adapted a Pixel-based image classification model that uses a Fully Convolutional 

Network (FCN) through U-Net architecture. The U-Net architecture, which was originally 

designed for analyzing medical images, has gained popularity in satellite image pixel 

classification, commonly known as semantic segmentation (Pham & Nguyen, 2020). In this 

study, a modified U-Net architecture developed by Wang et al. (2019) was employed for 

detecting and mapping informal settlements in the study area. The model was developed for 

detecting small pockets of deprivation. It was obtained by modifying the original U-Net 

architecture to incorporate dilated convolutional operations at the beginning of the network. 

These operations generated low-level feature maps at multiple scales, which helped prevent 

information loss during convolutional and max pooling operations. The modified U-Net 

architecture showed significant improvements in detecting small pockets of deprivation 

compared to the traditional FCN model of U-Net architecture. This was achieved by 

incorporating dilated convolutional operations, which allowed the network to capture more 

contextual information while still maintaining the resolution of the input image. Thus, it fits for 

the purpose of this study. The modified model architecture is shown in figure 4. 

Libraries used for deep learning model include: Keras, TensorFlow and Hdf5 for saving deep 

learning model. Keras is an open-source library that provides a Python interface for artificial 

neural networks. Keras is a powerful and easy-to-use free open-source Python library for 

developing and evaluating deep learning models. It acts as an interface for the TensorFlow 

library. This combination of frameworks is a popular choice for deep learning tasks and provides 

a user-friendly interface to design, train, and evaluate deep learning models. 

https://dx.doi.org/10.4314/rjeste.v5i1.2
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Figure 4: U-Net model architecture (Source: Wang et al., 2019) 

The model starts by the section of codes defining the encoder part of the model. The model uses 

the MobileNetV2 model as the base model. The MobileNetV2 model is commonly used as the 

base model for U-Net due to its computational efficiency, good feature extraction capabilities, 

and pre-trained weights. It has a small number of parameters, making it ideal for low-power 

hardware platforms (Wang et al., 2019).  The MobileNetV2 model is followed by the actual U-

Net model shown in the figure 4 above. It starts by indicating the size of input images followed 

by convolutional layer with 16 filters each of size 3x3. The batch normalization layer is then 

used followed by a relu activation layer and then another convolutional layer with 16 filters of 

size 3x3, batch normalization layer, relu activation layer and a maxpooling layer of 2x2 size. It is 

important to know that the output of previous layer is used for the next layer as input. Blocks 

similar to the above are repeated 4 times with exponential growth of convolutional layers. The 

fifth block is also similar to the other with convolutional layers with 256 and 512 filters but does 

not have a maxpooling layer. The above-describes blocks building a part of the model called an 

encoder and then follows codes sections that made the second part of the model called decoder. 

In decoder parts, blocks are written by transposing convolutional layers. Means, the blocks in 

decoder part are duplicates of the encoder in opposite direction and hence use transpose as a 

transformation to achieve that. Batch normalization help the model to regularize and learn faster.  
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The blocks are defined in a Python function defining the model. They are followed by blocks of 

functions for metrics that helps to access the behavior of the model. That block is followed by 

the block defining the optimization, calling the model function and model compilation to have 

the complete built U-Net model followed by a line of codes that visualize the model architecture. 

The line that compiles line of codes features a loss function which is a binary cross-entropy. This 

is due to the problem in hand which is binary classification whereby the image is classified in 

two classes (informal settlements and non-informal settlements). If the user prefers to implement 

multi-classes classification, the loss function should be replaced by the categorical cross-entropy. 

The functions for accessing model behavior do not play any role in learning but are only useful 

for assessment of the model performance. 

2.3.3 Training and Validating the Model 

Training data were split into two sets: train set counting for 80% of all training data and test set 

counting 20% of all training data. The training set was used for training the model, whereas the 

test set was used to evaluate the model's performance. The research used more training data than 

testing data to ensure that enough training data are fed to the model to identify the features in the 

input images. Image tiles and their corresponding labels were reduced into the size (patches) 

adequate for the model to train the model. The image patch size used for this research ranges 

from 64×64 and 128×128 pixels. The model was trained on 200 epochs. The patch size plays a 

significant role in computational cost in terms of the memory required and the model's accuracy. 

Reducing the image tiles into small patches help to deal with computational limitations. The 

implementation was evaluated through model accuracy on the test set and metrics such as 

precision, recall and F1-score. The recall, precision, and F1-Score are commonly used evaluation 

metrics for binary and multi-class classification tasks (Nivaggioli & Randrianarivo, 2019). 

Precision measures the ratio of correctly classified pixels to the total number of all classified 

pixels in the classified map. The recall measures the ratio of correctly classified pixels in a 

classified map to the total number of pixels in the reference map. Finally, the F1-score is 

obtained based on the precision and the recall value and indicates the model's performance by 

showing the harmonic value balancing both precision and recall. In other words, the recall 

measures the proportion of actual positives that are correctly identified by the model, while 

precision measures the proportion of predicted positives that are actually true positives. The F1-

Score is the harmonic mean of precision and recall and provides a balance between the two 

metrics. 

Training the model takes a long time due to the capacity of the computer being used and the size 

of the data. After the training process is completed. The model behavior is evaluated through 

plotting training curves (accuracy and loss) and the section of codes for evaluating the model 

performance on training set and test set. After being satisfied by the model performance, the last 

part is to use the model to predict/inference on the unseen image tiles for prediction. The first 

section of codes prepares the image tile to be fed into the model for prediction. The whole 

process was implemented in Python 3. As for the hardware specifications, the process took place 

on a personal computer with Intel(R) Core (TM) i7-9750H CPU at 2.60 GHz, a RAM of 16 GB, 

and dual GPU: Nvidia Quadro T1000 and Intel(R) UDH Graphics 630. These specifications were 

able to handle deep learning tasks on small to medium-sized datasets. Thus, the available 

computational resources would not allow the smooth performance on a bigger dataset. If the 

dataset is too large, it is necessary to use a more powerful computing platform such as a server or 
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cloud-based service with advanced Graphic Processing Units (GPUs) to accelerate the training 

process, especially for computationally intensive deep learning tasks. 

3. Results  

The research relied on how different studies on deprivation conceptualize and spatially 

characterize urban deprived areas using information derived from earth observation. Typically, 

the research took advantage of the spatial characteristics of urban deprived areas. Training 

accuracy and training loss graph were used to understand the behavior of the model during 

training and guided the decisions on how the model’s performance would be improved. The 

training accuracy, on the other hand, measures how often the model correctly predicts the output 

label compared to the actual label during training. The graphs in figure 5 and 6 below presenting 

training and testing accuracy show an increasing trend for the training and testing accuracy over 

the course of the training process. An increasing trend in training accuracy indicates that the 

model was learning to fit the training data better and was becoming more accurate in its 

predictions. On the other hand, an increasing trend in testing accuracy was a good sign that the 

model was generalizing well and was able to make accurate predictions on new, unseen data. 

This suggests that the model was not overfitting to the training data and was learning to identify 

the key features of informal settlements that are present in the testing data. 

 

Figure 5: Training and testing accuracy for the dataset with 128 by 128 pixels size 
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Figure 6: Training and testing accuracy for the dataset with 64 by 64 pixels size 

 

Figure 7: Training and testing loss for the dataset with 128 by 128 pixels size 
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Figure 8: Training for the dataset with 64 by 64 pixels size 

The graphs in figure 7 and 8 above presenting training and testing loss show a decreasing trend 

for the training loss during training process. The training loss, which is typically the mean 

squared error or cross-entropy loss, measures the difference between the predicted output of the 

model and the actual output. Training loss is the error that the model makes on the training data, 

while testing or validation loss is the error that the model makes on a separate test set of data. 

The test set is typically used to monitor the performance of the model during training and to 

avoid overfitting. Both the training loss and validation loss were decreasing, which means that 

the model was learning to generalize well and was not overfitting to the training data. The model 

trained on the patch size of dataset with 64 by 64 pixels size illustrated better training and loss 

accuracy compared to when trained on the image patches of 128 by 128 pixels size. The smaller 

patch size allowed the model to capture finer details and features in the images, resulting in 

better accuracy whereas the larger patch size led to more information loss and made it more 

difficult for the model to learn important features. 

The model was evaluated on testing data. After tuning parameters for the model, the model 

trained on patch size of 64 by 64 pixels was found to have achieved more accuracy. The final 

accuracy obtained on the test set was 86.6%. The model achieved a recall of 0.862, precision of 

0.810 and F1-Score of 0.809. The F1-Score of 0.809 suggests that the model was able to achieve 

a balance between precision and recall. The performance of the model was good, and the visual 

results are satisfactory given the quality of the input image and available data for training the 

model. Figure 8 presents the prediction results of the model four tiles that were reserved for 
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prediction and were not used for neither training or testing the model. The results show that the 

model output prediction for classifying informal settlements in the study areas was quite good. 
 
 

Tile Reference Prediction 
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                            Informal settlements        Others  

Figure 8: Results of the model on prediction image tiles 

4. Results Discussion 

The proposed approach identified informal settlements in urban settings having spatial 

characteristics of slums. Thus, as shown by Lilford et al. (2019); Kuffer et al. (2018); Wurm & 

Taubenböck (2018), the CNN model applied in this study enabled to distinguish informal 

settlements from other land covers using VHR GE image. The model was able to learn, identify 

and segment the features of informal settlements in the input images. This is an important step 

towards building a reliable model for identifying and mapping informal settlements, which can 

have significant implications for urban planning and policy-making. The evaluation of the model 

on the testing data was a crucial step in assessing its accuracy and overall performance. After 

tuning the parameters for the model, it was found that the model trained on a patch size of 64 by 

64 pixels achieved higher accuracy compared to other patch sizes tested. The final accuracy 

obtained on the test set was 86.6%. This was a significant achievement given the limitations of 

the input image used for the study. The model was able to accurately facilitate the classification 

of informal settlements in the study area, demonstrating its potential for application in slum 

mapping and deprivation research. 

The recall of 0.862 indicates that the model was able to identify 86.2% of all positive cases 

correctly, while the precision of 0.810 suggests that the model was able to accurately identify 

81% of positive cases. These results are promising and indicate that the model is robust and 

reliable in identifying informal settlements in the study area. The model's performance was 

considered good, and the visual results were satisfactory given the quality of the input image and 

the available data for training the model. The freely accessible VHR GE image used in this study 

has low quality compared to VHR images acquired from commercial providers. The limitations 

of the VHR GE image used in this study are worth exploring in more detail. While the image is 

freely accessible, it suffers from a number of quality issues that are not present in VHR images 

acquired from commercial providers. One major issue is the lack of spectral information, as the 

image only has visible bands (Red, Green and Blue), which can make it difficult for the CNN 

model to discriminate against certain features in the input image (Hu et al., 2013). In addition, 
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the low quality of the image affects the accuracy of image classification, particularly in areas 

with shadow. 

Despite these limitations, the CNN model still managed to achieve interesting results in the 

study. This is significant, given that most research on slum mapping and deprivation has relied 

on commercial VHR remote sensing images, which can be prohibitively expensive for many 

institutions and countries with limited financial resources (e.g., Wang et al., 2019; Kuffer et al., 

2017; Tapiador et al., 2011; Bergado et al., 2016). The fact that the VHR GE image was freely 

available allowed this research to take advantage of an important resource that would otherwise 

have been inaccessible for institutions and countries with limited financial resources to use them. 

It is important to consider that the spatial characteristics of urban informal settlements are 

conceptualized depending on the place (Kuffer et al., 2020). Besides, the concepts of informal 

settlements and slums is linked to several events and regulations, which also differ from place to 

place. In this regard, the scalability and transferability of this research must focus on the overall 

method employed and considering spatial characteristics of informal settlements, which are 

location dependent. Therefore, methods used in this research CNN model can be transferred to 

other contexts by feeding them with new sample data. Though new CNN architecture or other 

types of machine learning models can be introduced, and tuning of their hyperparameters may 

differ from what is employed in this research, but the general analytical framework remains the 

same. 

5. Conclusions 

The research has applied the CNN model through U-Net architecture to detect informal 

settlements in the study area. The accuracy assessment of results needs to be related to the ability 

of CNN model used to distinguish area level features of informal settlements rather than pixel-

based accuracy. Therefore, the results of the model are not pixel-based but is based on 

homogenous areas with similar spatial characteristics of slums and informal settlement often 

denoted as urban deprived areas. This study provides new evidence about the potential of 

Convolutional Neural Networks and earth observation to map informal settlements in urban 

settings. The study shows that application of CNN alongside satellite images can provide 

adequate information for supporting municipalities and stakeholders to address the issue of 

informal settlements. Furthermore, the research provides a basis for further researches 

concerning the spatial measurement of urban informal settlements toward the implementation of 

the SDGs, especially goal 11 for achieving safe, inclusive and sustainable cities and human 

settlements. 
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