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Abstract

The early stage of the evolution of the universe, when taken along with the recent observations
that the current universe is dominated by dark energy, leads to at least a potential problem
that modern cosmology must address. Cosmology still lacks a model to deal with the observed
current cosmic acceleration. In this paper, a framework is proposed to address the current
accelerated expansion of the universe via large scale structure formation. In this regards, we
investigate cosmological perturbations of modified Gauss-Bonnet (f(G)) gravity in the pres-
ence of a stiff fluid and two different forms of chaplygin gas model, using the 1 + 3 covariant
formalism. Gradient variables of respective fluids were defined to obtain the energy overdensity
perturbation equations in redshift space, responsible for large scale structure formation. Using
a particular functional form of f(G) model, together with two different forms of chaplygin gas,
the perturbation equations were solved separately to study the growth of energy overdensity
contrast with redshift. The numerical results for both considered forms of chaplygin gas models
show that the energy overdensity contrast decays with redshift which might enhance the large
structure formation scenario.

Keywords: Perturbations; stiff fluid; cosmic acceleration; Gauss-Bonnet gravity; chaplygin
gas

1 Introduction

In recent years, a number of cosmological observations have provided an increasing precise
picture of the accelerated expansion of the universe. The baryon density has been estimated
roughly at 5 percent of the critical density, as earlier estimate from the Big Bang Nucleosyn-
thesis (BBN) [1], provided a confirmation through the Cosmic Microwave Background (CMB)
observations from WMAP [2]. Additionally, a number of evidences from modern sources such
as weak- [3] and strong- [4] lensing, large scale structure [5] as well as CMB have confirmed
that another 23 percent energy density of the universe are in the form of dark matter as rev-
eled from the rotational curves [6, 7]. In addition, different cosmological data, such as type
Ia supernova [8], the CMB, baryonic acoustic oscillations [9] and gamma ray bursts [10] have
presented convincing evidence that about 27 percent of the energy density of the universe forms
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an exotic, negative pressure component called dark energy.

Although the existence of all those components is reasonably well established, to solve the
problems of dark matter and accelerating cosmic expansion driven by the dark energy, the
existence of the other exotic fluid is not ruled out by the current data. For example, several
models bring in the chaplygin gas [11, 12, 13]. The chaplygin gas acts as a cosmological fluid
with an equation of state of the form pchp = − A

ραchp
, where pchp and ρchp are the pressure and

energy density of the chaplygin gas, A and α are positive constants with 0 < α < 1. The
chaplygin gas model acts as dark matter in the early universe whereas it acts as dark energy in
the late-times of the universe. This model has been extended to its different variant forms such
as original generalised chaplygin gas (OGG), generalised chaplygin gas (GCG), modified gener-
alised chaplygin gas (MGCG), extended chaplygin gas (ECG) and generalised cosmic chaplygin
gas (GCCG) [14, 15, 16].

Another exotic fluid is the stiff fluid, i.e, a fluid with an equation state parameter ws = ps
ρs

= 1.

This is the largest value of w consistent with causality [7], since the speed of sound of this
fluid is equals to the speed of light. Such models were first studied by Zeldovich [17, 18], there-
after a variety of models, such as Kination [19], interacting dark matter [20], Horava-Lifshits
[21, 22, 23] and non-singular cosmological models [24, 25, 26] have been proposed that produce
a stiff cosmological fluid. Because the density of stiff fluid decays more rapidly than either
radiation or matter , the effect of the stiff fluid on the expansion rate will be the largest at the
early times [27, 28, 29] as previously discussed, the stiff fluids have usually quoted BBN limits
on the expansion rate at fixed temperature and used these limits to constrain the density of
the stiff fluid [7, 29].

An other approach to tackling the problem of dark matter and the current accelerated ex-
pansion of the universe is the use of modified theories of gravity such as f(R), f(T ) and f(G)
to name but a few, where R, T and G are the Ricci scalar, torsion tensor and Gauss-Bonnet
invariant parameter, respectively [30, 31, 32, 33]. In such kind of modified theories of gravity,
the Einstein-Hilbert action is modified by adding a particular form of function of curvature
terms. One of the advantages of these theories is that they can unify the early inflationary era
to the late-time era of the universe in a way similar to the lambda Cold Dark matter (ΛCDM).
Although the modified theories of gravity present numerous advantages in describing both the
early and late time epochs of the universe, some of these models have been challenged to ad-
dress different issues such as achieving a consistent description of neutron stars as discussed
in [34], issue of dealing with the singularities problems [35], controlling matter instabilities as
pointed out in [36] and satisfying solar system tests as pointed out in [35, 37]. But most of
these challenges seems to be in absence in f(G) models as pointed out in [38, 39, 40]. There-
fore, there has been motivation in the use of such f(G) gravity models. Different works have
been attempted to combine f(G) models with matter and scalar field or chaplygin gas models
[41, 42, 43, 44, 16, 45, 46] to describe the early and late time epochs of the universe in a unified
way. Our previous paper [47] considered a mixture of matter, chaplygin gas and Gauss-Bonnet
fluids and found that the energy density perturbations decay with redshift in both long and
short wavelength limits.

In this manuscript, we intend to consider a fluids-mixture of stiff fluid, chaplygin gas and
Gauss-Bonnet fluid to investigate its implications on large scale structure formation. The best
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way to do this is through the use of 1 + 3 covariant perturbations. Therefore, the study of
linear cosmological perturbations is the main focus using the 1 + 3 covariant formalism. There
are two main approaches to study cosmological perturbations. The metric approach developed
by Lifshitz [48], Bardeen [49] and Kodama and Sasaki [50] and the 1 + 3 covariant formalism
developed by Ehlers [51], Hawking [52], Olson [53] and, Ellis and Bruni [54]. The 1 + 3 co-
variant formalism is advantageous due to for example its ability to present true physics and
no unphysical gauge mode exist. It starts from theory and reduces to linearity in a particular
background and non-linearities can be accommodated in such formalism [55]. Different works
considered the 1 + 3 covariant formalism to study the perturbations of the mixture of matter-
chaplygin gas in f(R) [56], matter-chaplygin gas in f(T ) gravity [57, 16, 58], matter-scalar field
in f(G) gravity [45]. Our recent work [47] considered the perturbations of matter chaplygin
gas in f(G) gravity. To our knowledge, there is no work in the literature that considered the
cosmological perturbations of the stiff fluid-chaplygin gas-Gauss-Bonnet fluid mixture using the
1+3 covariant formalism. Thus, this work intend to fill this important gap using such covariant
approach. In so doing, we define gradient variables of involved fluids to derive linear pertur-
bation equations. After obtaining the energy density perturbation equations in redshift space
and considering a particular functional form of f(G) model and different forms of chaplygin
gas for pedagogical purpose, we present the numerical results and discuss their implications on
both long and short-wavelength modes as far as large structure formation is concerned.

The rest of this paper is organised as follows: in Sect. 2, a review of background field equations
and mathematical framework is presented; in Sect. 3, we present the 1 + 3 covariant formal-
ism in the context of f(G) gravity, whereas in Sect. 4, we present, analyse the perturbation
equations for matter fluctuations for both GR and the considered fluids mixture then discuss
the results. Section 5 gives closing remarks.

2 Background field equations and mathematical frame-

work

In this section, mathematical aspect is presented to describe the cosmic evolution. In this
regard, vector and scalar gradient variables of individual fluid are defined in order to get the
perturbation equations. First, On the large scale structure of the universe, the homogeneous
and isotropic assumptions imply that the current universe is close to a flat geometry with radius
of curvature R, same at every point in space and that the universe expansion has to be the
same at every space with the scale factor a(t). The relationship betwween curvature and matter
content of the universe is given by the Einstein’s equation represented as

Gµν ≡ Rµν −
1

2
gµνR = 8πGNTµν , (1)

where Gµν is the Einstein tensor, Rµν , R = gµνRµν , Tµν and GN are Ricci tensor, Ricci scalar,
energy momentum tensor and Newton gravitational constant respectively and gµν is the metric
tensor. For a perfect fluid, the energy momentum tensor is given by

Tµν = (ρ+ p)uµuν + pgµν , (2)

where, ρ and p are the energy density and isotropic pressure respectively and uµ is the 4-velocity.
Throughout this work, we shall assume that the geometrical background corresponds to that
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of a flat Friedman-Robert-Walker (FRW) metric, so that the line element is presented as

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (3)

where a(t) is the scale factor of the Universe. The metric tensor has the form

gµν = diag(−1, a2(t), a2(t), a2(t))

and for the flat metric, the curvature terms, which are Ricci scalar R and the Gauss-Bonnet
invariant G are given by

R = 6
(

2H2 + Ḣ
)
, (4)

G = 24H2
(
H2 + Ḣ

)
, (5)

where H = ȧ
a

is the Hubble parameter. The dot describes differentiation with respect to cosmic
time t. For the metric of the form eq. (3) and considering a perfect fluid in a flat goemetry,
the Friedmann, acceleration and the continuity equations are represented as

H2 ≡
( ȧ
a

)2
=

8πGNρ

3
, (6)

Ḣ = −4πGN(ρ+ p), (7)

ä

a
=
−4πGN

3
(ρ+ p), (8)

ρ̇+ 3Hρ(1 + w) = 0, (9)

where H is the Hubble parameter. The eq. (6) tells us that the universe containing matter has
to be dynamically evolving. Knowing that the critical density of matter is given by ρc ≡ 3H2

8πGN
and the density parameter Ωi = ρi

ρc
, eq. (6) can be rewritten as∑

i

Ωi = 1, (10)

where Ωi is the density parameter of the matter species present in the universe. For a barotropic
perfect fluid with an equation of state parameter given by w = p

ρ
, and from eq. (6) and eq. (7),

one gets [59]

H =
2

3(1 + w)(t− t0)
, (11)

a(t) ∝ (t− t0)
2

3(1+w) , (12)

ρ ∝ a−3(1+w), (13)

whereby for a universe dominated by a dust with an equation of state parameter (w = 0), or

radiation (w = 1
3
), yields a(t) ∝ (t − t0)

2
3 , ρ ∝ a−3 and a(t) ∝ (t − t0)

1
2 , ρ ∝ a−4 respectively,

leading to a decelerated expansion of the universe as presented in eq. (8). The accelerated
expansion (a(t) > 0) occurs for w < −1

3
. In order to include dark energy terms responsible for

the accelerated expansion of the Universe, the consideration of stiff fluid, modified-Chaplygin
gas and Gauss-Bonnet fluids was done. Let us define the total energy density and isotropic
pressure in the modified Gauss-Bonnet gravity as

ρt = 3H2 , (14)

pt = −(3H2 + 2Ḣ) , (15)
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where

ρt = ρs + ρchp + ρG, (16)

pt = ps + pchp + pG, (17)

and ρs and ps denote the energy density and pressure of the stiff fluid with an equation state
parameter equals to unity (ws = 1). Considering an f(G) model given by f(G) = cGβ [60, 35]
together with generalised modified Chaplygin gas given by pch = Bρchap − (1 + B) A

(ρch)α
and

modified chaplygin gas given by pch = Aρ − B
ρα

, with A,B constants and 0 < α < 1) [16], one

can show that modified gravity can lead to quite rich and realistic cosmological dynamics [33].
The pressures and energy densities are given by

ρG =
1

2

(
f ′G− f

)
− 24f ′′H3Ġ, (18)

pG =
1

2
(f − f ′G) +

GĠ

3H
f ′′ + 4H2G̈f ′′ + 4H2Ġ2f ′′′, (19)

ρch =
[
A+ ca−3(1+α)(1+B)

] 1
1+α

, (20)

pch = Bρchap − (1 +B)
A

(ρch)α
, (21)

ρs ∝ a−6. (22)

A convenient way for the investigation of the dynamics of late-time universe is to replace cosmic
time with redshift as dynamical parameter. Redshift transformation technique is conducted
basing on the following definitions as pointed out in [45, 58, 61] .

a =
1

1 + z
, (23)

ḟ = −(1 + z)Hf ′, (24)

f̈ = (1 + z)2H
(dH
dz

df

dz
+H

d2f

dz2

)
+ (1 + z)H2 df

dz
, (25)

where the current scale factor is considered to be equals to unity for simplicity. Hence, the
present value of cosmological redshift is set to zero. According to the mentioned transformation
technique, the involved time derivatives which are the energy density and pressure of Gauss-
Bonnet fluids (eq. (18) and eq. (19)), the energy density, isotropic pressure of the modified
chaplygin gas (eq. (20) and eq. (21)) and eq. (22), can be expressed in terms of redshift as

ρG =
1

2
c(β − 1)Gβ

[
1 + 48β(1 + z)

G′H4

G2

]
, (26)

pG =
1

2
c(β − 1)Gβ

[
− 2β(1 + z)G′

3G
− 1 +

8H2β

G2

((
(1 + z)H ′ +H

)
(1 + z)HG′

+(1 + z)2H2G′′ +
(β − 2)

(
(1 + z)HG′

)2
G

)]
, (27)

ρch =
[
A+ c(1 + z)3(1+α)(1+B)

] 1
1+α

, (28)

pch = Bρchap − (1 +B)
A

(ρch)α
, (29)

ρs = ρ0s(1 + z)6, (30)
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where the prime denotes the differentiation with respect to redshift. Eq. (7) represents a more
generalised version of the modified chaplygin gas model presented in [56, 16], with the energy
density (eq. 6) resulted from eq. (7) so that the equation corresponding to the Friedman
equation is modified as

3H2 =
1

2
c(β − 1)Gβ

[
1 + 48β(1 + z)

G′H4

G2

]
+ ρs +

[
A+ (1 + z)3(1+α)(1+B)

] 1
1+α

, (31)

G = 24H3(H − (1 + z)H ′) , (32)

R = 6H(2H − (1 + z)H ′) , (33)

where A, B, α and C are arbitrary constants, H = ȧ
a

is the Hubble parameter and a is the
scale factor. The dark energy density which involves all the geometrical terms appearing on the
right hand side of Friedman equation and the pressure orginating from dark energy are given
by

ρde =
1

2
c(β − 1)Gβ

[
1 + 48β(1 + z)

G′H4

G2

]
+
[
A+ (1 + z)3(1+α)(1+B)

] 1
1+α

(34)

pde =
1

2
c(β − 1)Gβ

[
− 2β(1 + z)G′

3G
− 1 +

8H2β

G2

((
(1 + z)H ′ +H

)
(1 + z)HG′

+(1 + z)2H2G′′ +
(β − 2)

(
(1 + z)HG′

)2
G

)]
+Bρchap − (1 +B)

A

(ρch)α
. (35)

Instead of cosmological constant, now a function of redshift appears in both equations, and
the dark energy also behaves a perfect fluid, since Hubble and matter components are also
considered as perfect fluids. Therefore the continuity equation for dark energy has the form

˙ρde + 3H(ρde + pde) = 0. (36)

where there is no coupling between matter and dark energy present. Next section present the
1 + 3 covariant formalism which is useful in the construction of perturbation equations.

3 Description of the 1 + 3 covariant formalism in the

context of f (G) gravity

The 1 + 3 covariant decomposition is a framework used in describing the linear evolution of the
cosmological perturbations [62]. In this approach, a fundamental observer divides space-time
into hyper-surfaces and a perpendicular 4-velocity field vector, where 1+3 indicates the number
of dimensions involved in each slice [63]. That is to mean that manifold geometry of the GR is
described in four dimensional space (ie,. time and space). One of the importance of the 1 + 3
covariant approach is to identify a set of covariant variables which describe the inhomogeneity
and anisotropy of the universe [64]. In this context, we define a four-vector coordinates function
of cosmological time (xµ = xµ(τ)) that labels the co-moving distance along a world-line and
the corresponding velocity given by:

uµ =
dxµ

dτ
(37)

The projection tensor, hαβ into the three dimensional and orthogonal to uµ, satisfy the following
condition:

hαβ = gαβ + uαuβ ⇒ hαβh
β
γ = hαγ , (38)

hαα = 3, hαβu
β = 0. (39)
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The covariant derivative of the four-velocitiy in terms of its kinematic quantities [65] is given
by:

5̃aub =
1

3
habθ̃ + σ̃ab + ω̃ab − ua ˙̃ub, (40)

where θ, σ̃ab, ω̃ab, ˙̃ub, are: the volume expansion, shear tensor, vorticity tensor and four-
acceleration respectively. The Hubble parameter is related to θ as θ = 3H. Assume the fluids
in our consideration are irrotational (ie.,ω̃ab = 0) and shear-free (i.e σ̃ab = 0), the rate of
expansion is given by the Raychaudhuri and conservation equations as:

θ̇ = −θ
2

3
− 1

2
(ρt + 3pt) + 5̃a

u̇a, (41)

ρ̇t = −θ(ρt + pt), (42)

5̃apt − (ρt + pt)u̇a = 0. (43)

Eq. (41)–(43) are useful for constructing perturbation equations from the gradient variables of
different fluids in the next subsection

3.1 General fluids description and perturbation equations

In this part, we assume a non-interacting stiff fluid with both generalized and modified chap-
lygin gas and Gauss-Bonnet fluids in the entire Universe where the growth of the energy over-
density fluctuations contribute to the large scale structure formation. It is currently a well
known fact that the universe is not perfectly smooth, but made of large scale structures such
as galaxies, clusters, voids to name but a few, believed to be seeded from primordial fluc-
tuations. Cosmological perturbations theory provides the mechanism to explain how these
primordial fluctuations grow and form the large scale structures we see today in the universe
[55]. The covariant formalism describes space-time through covariantly defined variables with
respect to the frame such as 1+3 space-time decomposition technique which helps in describing
physics and geometry using tensor quantities and relations valid in all coordinate systems. We
start by defining the covariant and Gauge-Invariant gradient variables that describe the stiff
fluid, chaplygin gas, Gauss-Bonnet energy densities and expansion, as per the 1 + 3 covariant
perturbation formalism [48, 62, 66, 55]. We consider an homogenous and expanding (FRW)
cosmological background to define the spatial gradient of the Gauge invariant variables such as

Ds
a = a∇̃aρs

ρs
, Za = a∇̃aθ,Dch

a = a∇̃aρch
ρch

, DG
a = a∇̃aρG

ρG
,Ga = a∇̃aG,Ga = a∇̃aĠ. The subscripts s,

G and chp stand for stiff fluid, Gauss-Bonnet fluid, Chaplygin gas fluid contributions, respec-
tively. The scalar gradient variables can be extracted from the defined vector gradient variables
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using local decomposition and scalar decomposition techniques and presented as

∆s = ∇̃a
(a∇̃aρs

ρs

)
, (44)

Z = ∇̃a
(
a∇̃aθ

)
, (45)

∆ch = ∇̃a
(a∇̃aρch

ρch

)
, (46)

∆G = ∇̃a
(a∇̃aρG

ρG

)
, (47)

G = ∇̃a
(
a∇̃aG

)
, (48)

G = ∇̃a
(
a∇̃aĠ

)
. (49)

We apply time derivative to eq. (44) through to eq. (49) to develop a system of cosmologi-
cal perturbation equations in the context of modified f(G) gravity for two different forms of
chaplygin-gas model, namely the generalised version of modified chaplygin gas and the mod-
ified chaplygin gas [16, 56]. Considering the first case of the generalised version of modified
chaplygin gas, from eq. (20), the vector term a5̃awch provides its scalar part as

a5̃awch =
(

(1 +B)(1 + α)A
)

∆ch, (50)

and the 4-acceleration is given by

u̇a = − ∇̃
apt

ρt + pt
, (51)

au̇a = − 1

(1 + wt)ρt

[
ρmD

a
m + wchpρchpD

a
chp + aρchp∇̃awchp + ∇̃apG

]
. (52)

In the following section, we present the perturbation equations for two different cases of the
considered chaplygin gas with their respective numerical solutions.

4 Results and Discussion

In this section, we consider two different forms of chaplygin gas model to check its implications
on large scale structure formation.

4.1 Perturbation equations for generalised modified chaplygin gas
model

Time derivative of eq. (44)–(49) and the application of scalar and harmonic decomposition
techniques yield the linear scalar perturbation equations for the stiff fluid, generalised modified
chaplygin gas and Gauss-Bonnet energy densities. Using a functional form of f(G) model given
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by f(G) = cGβ, the linear perturbation equations obtained are represented in redshift space as

∆′s =
1

(1 + z)H

(
2 +

2

(1 + wt)ρt

G
(
− (1 + z)H)

)
G′

θ2

)
Z − 1

(1 + z)H

2

(1 + wt)

ρs
ρt
θ∆s

+
1

(1 + z)H
(1 + (1 +B)(α + 1)A)

2

(1 + wt)ρt
wchpρchp∆chp +

2

(1 + wt)ρt

cβ(β − 1)Gβ−1

θ
G

− 1

(1 + z)H

2

(1 + wt)ρt

(1

2
(G− cβ2Gβ)(1 + z)HG′cβ(β − 1)(β − 2)Gβ−3

−(1 + z)HG′cβ(β − 1)Gβ−4
)
G, (53)

Z ′ = − 1

(1 + z)H

[
− 1

2

(
4ρs −

(1

3
θ2 +

1

2
(1 + 3wt)ρt

)) ρs
(1 + wt)ρt

− ρs
(1 + wt)ρt

k2

a2

]
∆s

− 1

(1 + z)H

[ρch(wch + (1 +B)(1 + α)A
)

(1 + wt)ρt

(
k2 +

θ2

3
+

1

2
(1 + wt)ρt

)
+
(

2 + 3wch

)
ρch

]
∆chp

− 1

(1 + z)H

[
1− 3cβ(β − 1)Gβ−2 − 12H3b1cβ(β − 1)(β − 2)(β − 3)Gβ−4

+12H
(
H(b2c(β)(β − 1)(β − 2)Gβ−3 +

b3
b1
c(β)(β − 1)Gβ−2 + b21c(β)(β − 1)(β − 2)(β − 3)Gβ−4)

+2H3c(β)(β − 1)Gβ−2
)

+
(1

3
θ2 +

1

2
(1 + 3wt)ρt

) 1

(1 + wt)ρt

(1

2
(1− c(β)Gβ−1 −Gc(β)Gβ−1

−Gc(β)(β − 1)Gβ−2) +Gb1c(β)(β − 1)(β − 2)Gβ−3 + b1c(β)(β − 1)Gβ−4
)

− 1

(1 + wt)ρt

k2

a2

(1

2
(1− c(β)Gβ−1 − c(β)(β − 1)Gβ−1) + b1c(β)(β − 1)(β − 2)Gβ−2

+b1c(β)(β − 1)Gβ−4
)]
G − 1

(1 + z)H

(
24b1c(β)(β − 1)(β − 2)Gβ−3 − 12H3c(β)(β − 1)(β − 2)Gβ−3

+
(1

3
θ2 +

1

2
(1 + 3wt)ρt

)c(β)(β − 1)Gβ−1

θ(1 + wt)ρt
− 1

(1 + wt)ρt

k2

a2
c(β)(β − 1)Gβ−1

θ

)
G

− 1

(1 + z)H

[
8H
(
c(β)(β − 1)Gβ−2b2 + c(β)(β − 1)(β − 2)Gβ−3b21 + 3Hc(β)Gβ−1

−3

2
c(β)(β − 1)(β − 2)Gβ−3Hb1

)
− 2

3
θ −

(1

3
θ2 +

1

2
(1 + 3wt)ρt

) Gb1
θ2(1 + wt)ρt

+
k2

a2(1 + wt)ρt

Gb1
θ2

]
Z, (54)
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G ′ = − 1

(1 + z)H

(
1− b1c(β)(β − 1)Gβ−1

(1 + wt)ρtθ

)
G− 1

(1 + z)H

b21G

(1 + wt)ρtθ2
Z

+
1

(1 + z)H

b1ρs∆s

(1 + wt)ρt
− 1

(1 + z)H

b1ρch
(1 + wt)ρt

(
wch + (1 +B)(1 + α)A

)
∆chp

+
( 1

2(1 + z)H

b1
(1 + wt)ρt

(
c(β)Gβ−1 + c(β)(β − 1)Gβ−1 − 1

)
+

1

2(1 + z)H

b21
(1 + wt)ρt

(
c(β)(β − 1)Gβ−1 +

c(β)(β − 1)Gβ−2

θ2

))
G, (55)

G′ = − 1

(1 + z)H

(b3
b1
− b1c(β)(β − 1)Gβ−1

(1 + wt)ρtθ

)
G +

[ 1

(1 + z)H

b2b1G

(1 + wt)ρtθ2

]
Z

+
[ 1

(1 + z)H

b2
(1 + wt)ρt

ρs

]
∆s −

[ 1

(1 + z)H

b2ρch
(1 + wt)ρt

(
wch + (1 +B)(1 + α)A

)]
∆ch

− 1

(1 + z)H

[ b2
2(1 + wt)ρt

(c(β)Gβ−1 + c(β)(β − 1)Gβ−1 − 1)− b2b1
(1 + wt)ρt

(c(β)(β − 1)Gβ−1

+
c(β)(β − 1)Gβ−2

θ2
)
]
G (56)

∆′G = − 1

(1 + z)H

[
− 4Hθ

ρG

(
2Hb1c(β)(β − 1)(β − 2)Gβ−3 + (2c1 − 2H2)c(β)(β − 1)Gβ−2

)
+θ
(

4H2c(β)(β − 1)Gβ−2b2 + 4H(2c1 −H2)c(β)(β − 1)Gβ−2b1

)(c(β)(β − 1)Gβ−1

θ(1 + wt)ρtρG

)]
G

− 1

(1 + z)H

[
4H
(
H(b2c(β)(β − 1)(β − 2)Gβ−3 +

c(β)(β − 1)Gβ−2b2
b2

+ b22c(β)(β − 1)(β − 2)Gβ−3)

+(2c1 −H2)c(β)(β − 1)Gβ−2
)

+ θ
(

4H2(c(β)(β − 1)Gβ−2b2 + c(β)(β − 1)(β − 2)Gβ−3b21))

+4H(2c1 −H2)c(β)(β − 1)Gβ−2b1

( 1
2

+ b1c(β)(β − 1)Gβ−1 + b1c(β)(β−1)(β−2)Gβ−3

θ2

(1 + wt)ρtρG

)]
G

− 1

3((1 + z)H)ρG

[(
2H(c(β)(β − 1)Gβ−2b2 + c(β)(β − 1)(β − 2)Gβ−3b21)

−8Hc(β)(β − 1)Gβ−2b1(
G

12H3
+ 3H) + (2c1 −H2)c(β)(β − 1)Gβ−2b1 − 3

(
4H2(c(β)(β − 1)Gβ−2b2

+c(β)(β − 1)(β − 2)Gβ−3b21) + 4H(2c1 −H2)c(β)(β − 1)Gβ−2b1

)
+ θ(4H2(c(β)(β − 1)Gβ−2b2

+c(β)(β − 1)(β − 2)Gβ−3b21)− 4H(2c1 −H2)c(β)(β − 1)Gβ−2b1)(
Gb1θ

2

(1 + wt)ρtρG
)
)

+3θ(4H2(c(β)(β − 1)Gβ−2b2 + c(β)(β − 1)(β − 2)Gβ−3b21)

+4H(2c1 −H2)c(β)(β − 1)Gβ−2b1)
((1− (2 + β)c(β)Gβb1

θ2(1 + wt)ρt

)]
Z

− 3

(1 + z)ρG

(
4H2(c(β)(β − 1)Gβ−2b2 + c(β)(β − 1)(β − 2)Gβ−3b21) + 4H(2c1 −H2)f ′′b1

)
∆G

− 3

(1 + z)

(
− 4H2(c(β)(β − 1)Gβ−2b2 + c(β)(β − 1)(β − 2)Gβ−3b21)

+4H(2c1 −H2)c(β)(β − 1)Gβ−2b1

)ρs(1− c(β)Gβ−1 − c(β)(β − 1)Gβ−1)

(1 + wtρtρG)
∆s

+
3

(1 + z)

(
4H2(c(β)(β − 1)Gβ−2b2 + c(β)(β − 1)(β − 2)Gβ−3b21)

+4H(2c1 −H2)c(β)(β − 1)Gβ−2b1

)( wchρch
(1 + wt)ρtρG

)(
(1 +B)(1 + α)A

)
∆chp, (57)
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∆
′

ch =
1

(1 + z)H
[1 +

Gb1
θ(1 + wt)ρt

](1 + wch)Z −
1

(1 + z)H

θ(1 + wch)

(1 + wt)ρt
ρs∆s

− 3

(1 + z)

[
(1 + ρch)

(1 + wch)

(1 + wt)ρt
wchρch −

(
1 + (1 +B)(α + 1)A

)
θ
]
∆ch

− θ(1 + wch)

(1 + z)(1 + wt)Hρt

[1

2
(1− c(β)Gβ−1 − c(β)(β − 1)Gβ−1) + b1c(β)(β − 1)Gβ−1

+
b1c(β)(β − 1)(β − 2)Gβ−3

θ2

]
G − θ(1 + wch)c(β)(β − 1)Gβ−1

(1 + z)(1 + wt)Hρt
G , (58)

where k = 2πa
λ

, k being the wave number and λ, the wavelength of perturbations. The
equations eq. (53–58) represent the evolution of the energy density of the stiff fluid, the volume
expansion, the Gauss-Bonnet fluid, Gauss-Bonnet momentum, the energy density resulting
from the Gauss-Bonnet fluid and the energy density of the generalised modified chaplygin gas,
respectively. The parameters b1, b2, b3 represent the first, second and third derivatives of the
Gauss-Bonnet parameter G, respectively. In GR limit, with normal form of matter, one can
obtain a closed system of first-order perturbation equations which is easier to find the analytical
solutions. However, the linear perturbation equations presented in this work (eq. (53)–(58)) are
coupled system of first -order equations for the density fluctuations of stiff-, modified-chaplygin
gas and Gauss-Bonnet fluids which are more complicated to find the analytical solutions. To
numerically solve our perturbation equations, and check how the results compare with the
GR or ΛCDM model, we have considered short wavelength ( k2

a2H2 � 1) and long wavelength

( k2

a2H2 � 1) limits of the perturbation to analyse the large scale structure implications of the
numerical results using different initial conditions. In the following, we analyse the evolution
of the perturbation equations in both long-wavelength and short-wavelength regimes by only
considering that the universe is mainly dominated by stiff- generalised modified chaplygin
gas-Gauss-Bonnet fluids mixture. First let us consider the case where the universe is mainly
dominated by only stiff-fluid.

4.1.1 Matter density fluctuations in GR limits

In this part, we analyse the behavior of energy overdensity fluctuations for stiff fluid in GR
limits for the case f(G) = G and no contribution from any form of the considered chaplygin
gas models. We also define the normalised energy density contrast as

δ(z) =
∆k
s(z)

∆(z0)
, (59)

where ∆(z0) is the matter energy density at the initial redshift, hereafter z0 = 4. If we assume
that the Universe is dominated mainly by stiff fluid, the equation of state parameter becomes
w = 1. Consequently eq. (53) through to eq. (58) reduce to

∆′s =
2

(1 + z)H
Z − 3

(1 + z)
∆s, (60)

Z ′ =
1

2(1 + z)H

[θ2
6
− ρs −

(
1 + z

)2
k2
]
∆′s −

2

(1 + z)
Z, (61)

which (eq. (60)–(61)) admit the numerical solutions presented in figure. (1). In what follows,
figure. (1) shows the evolution of the stiff fluid model in redshift space. As expected, figure.
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Figure 1: Plot of energy density contrast vs redshift of eq. (60) and eq. (61) using k = 0.01.
During the numerical computation, we used the initial conditions ∆s(zin = 4) = 10−5 and
Z(zin = 4) = 10−5. It is clear that ∆s and Z couple, therefore once one gets the solution of ∆s,
it is possible to predict how the Z evolves. This plot shows that the energy density of the stiff
fluid decays with redshift.

Figure 2: Plot of energy density contrast vs redshift of equations Eq. (53)–(Eq. 58), using
k = 0.000001, long wavelength limit. During numerical integration, we considered different
constant parameters to see whether there is any effect on the energy density contrast or not
whereas ∆s(zin = 4) = 10−5, Z(zin = 4) = 10−5, G(zin = 4) = 10−5, G(zin = 4) = 10−5,
∆chp(zin = 4) = 10−5 were used as initial conditions. From the plots, for different parameter
m, we depict that the energy overdensity contrast decay with redshift and as m changes, the
behavior of the curves changes.
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Figure 3: Plot of energy density contrast vs redshift of equations Eq. (53)–(Eq. 58), using
k = 0.01 and α = 0.8 in the long wavelength limit. During numerical integration, we considered
different constant parameters to see whether there is any effect on the energy density contrast
or not whereas ∆s(zin = 4) = 10−5, Z(zin = 4) = 10−5, G(zin = 4) = 10−5, G(zin = 4) = 10−5,
∆chp(zin = 4) = 10−5 were used as initial conditions. From the plots, for different parameter
m, we depict that the energy overdensity contrast decay with redshift and as m changes, the
behavior of the curves changes.

Figure 4: Plot of energy density contrast vs redshift of equations Eq. (53)–(Eq. 58), using
k = 100, short wavelength limit. During numerical integration, we considered different constant
parameters to see whether there is any effect on the energy density contrast or not whereas
∆s(zin = 4) = 10−5, Z(zin = 4) = 10−5, G(zin = 4) = 10−5, G(zin = 4) = 10−5, ∆chp(zin =
4) = 10−5 were used as initial conditions. From the plots, for different parameter m, we depict
that the energy overdensity contrast decay with redshift and as m changes, the behavior of the
curves changes.
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Figure 5: Plot of energy density contrast vs redshift of equations Eq. (53)–(Eq. 58), using k =
1000, short wavelength limit. During numerical integration, we considered different constant
parameters to see whether there is any effect on the energy density contrast or not whereas
∆s(zin = 4) = 10−5, Z(zin = 4) = 10−5, G(zin = 4) = 10−5, G(zin = 4) = 10−5, ∆chp(zin =
4) = 10−5 were used as initial conditions. From the plots, for different parameter m, we depict
that the energy overdensity contrast decay with redshift and as m changes, the behavior of the
curves changes.

(1) shows that δ(z) decay with redshift (z) (normalised to 0 today). Throughout all the plots,
we rescaled the δ(z) to make it readable. By looking at the figures (2) and (3) in the long
wavelength mode, the energy density contrast (δ(z)) decays with increase in redshift, but as
z increases, the δ(z) seems to converge as we change the values of parameter m. Changing
m affects both the amplitudes and the behavior of the curves. But in the short wavelength
mode, as depicted in figures (4) and (5), the energy density contrast decays monotonically with
redshift for different values of parameter m and similarly changing the values of m affects the
amplitudes of the δ(z).

4.2 Perturbation equations for modified chaplygin Gas in the con-
text of modified Gauss-Bonnet gravity

Considering the modified chaplygin gas model given by [56, 16]

pch = Aρ− B

ρα
; (62)

ρchap =
[ A

B + 1
+ ca−3(α+1)(B+1)

] 1
α+1

, (63)

where the vector term a5̃awchp provides its scalar part as a5̃awchp = B(α+1)

ρα+1
chp

∆ch. Using this

modified chaplygin gas and make time derivative of the scalar gradient variables defined in eq.
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(44)–(49), the perturbation equations in redshift space are presented as

∆′s =
1

(1 + z)H

(
2 +

2

(1 + wt)ρt

G
(
− (1 + z)H)

)
G′

θ2

)
Z

− 1

(1 + z)H

2

(1 + wt)

ρs
ρt
θ∆s +

1

(1 + z)H

(
1 +

B(α + 1)

ρα+1
chp

) 2

(1 + wt)ρt
wchpρchp∆chp

+
2

(1 + wt)ρt

cβ(β − 1)Gβ−1

θ
G− 1

(1 + z)H

2

(1 + wt)ρt

(1

2
(G− cβ2Gβ)(1 + z)HG′cβ(β − 1)×

(β − 2)Gβ−3 − (1 + z)HG′cβ(β − 1)Gβ−4
)
G

Z ′ = − 1

(1 + z)H

[
− 1

2
(4ρs −

(1

3
θ2 +

1

2
(1 + 3wt)ρt

) ρs
(1 + wt)ρt

− ρs
(1 + wt)ρt

k2

a2

]
∆s

− 1

(1 + z)H

[ρch(wch + B(α+1)

ρα+1
chp

)
(1 + wt)ρt

(
k2 +

θ2

3
+

1

2
(1 + wt)ρt

)
+
(

2 + 3wch

)
ρch

]
∆chp

− 1

(1 + z)H

[
1− 3cβ(β − 1)Gβ−2 − 12H3b1cβ(β − 1)(β − 2)(β − 3)Gβ−4

+12H
(
H(b2c(β)(β − 1)(β − 2)Gβ−3 +

b3
b1
c(β)(β − 1)Gβ−2 + b21c(β)(β − 1)(β − 2)(β − 3)Gβ−4)

+2H3c(β)(β − 1)Gβ−2
)

+
(1

3
θ2 +

1

2
(1 + 3wt)ρt

) 1

(1 + wt)ρt

(1

2
(1− c(β)Gβ−1 −Gc(β)Gβ−1

−Gc(β)(β − 1)Gβ−2) +Gb1c(β)(β − 1)(β − 2)Gβ−3 + b1c(β)(β − 1)Gβ−4
)

− 1

(1 + wt)ρt

k2

a2

(1

2
(1− c(β)Gβ−1 − c(β)(β − 1)Gβ−1) + b1c(β)(β − 1)(β − 2)Gβ−2

+b1c(β)(β − 1)Gβ−4
)]
G − 1

(1 + z)H

(
24b1c(β)(β − 1)(β − 2)Gβ−3 − 12H3c(β)(β − 1)(β − 2)Gβ−3

+
(1

3
θ2 +

1

2
(1 + 3wt)ρt

)c(β)(β − 1)Gβ−1

θ(1 + wt)ρt
− 1

(1 + wt)ρt

k2

a2
c(β)(β − 1)Gβ−1

θ

)
G

− 1

(1 + z)H

[
8H
(
c(β)(β − 1)Gβ−2b2 + c(β)(β − 1)(β − 2)Gβ−3b21 + 3Hc(β)Gβ−1

−3

2
c(β)(β − 1)(β − 2)Gβ−3Hb1

)
− 2

3
θ −

(1

3
θ2 +

1

2
(1 + 3wt)ρt

) Gb1
θ2(1 + wt)ρt

+
k2

a2(1 + wt)ρt

Gb1
θ2

]
Z (64)

G ′ = − 1

(1 + z)H

(
1− b1c(β)(β − 1)Gβ−1

(1 + wt)ρtθ

)
G− 1

(1 + z)H

b21G

(1 + wt)ρtθ2
Z +

1

(1 + z)H

b1ρs∆s

(1 + wt)ρt

− 1

(1 + z)H

b1ρch
(1 + wt)ρt

(
wch +

B(α + 1)

ρα+1
chp

)
∆ch +

( 1

2(1 + z)H

b1
(1 + wt)ρt

(
c(β)Gβ−1

+c(β)(β − 1)Gβ−1 − 1
)

+
1

2(1 + z)H

b21
(1 + wt)ρt

(
c(β)(β − 1)Gβ−1 +

c(β)(β − 1)Gβ−2

θ2

))
G (65)
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G′ = − 1

(1 + z)H

(b3
b1
− b1c(β)(β − 1)Gβ−1

(1 + wt)ρtθ

)
G +

[ 1

(1 + z)H

b2b1G

(1 + wt)ρtθ2

]
Z

+
[ 1

(1 + z)H

b2
(1 + wt)ρt

ρs

]
∆s −

[ 1

(1 + z)H

b2ρch
(1 + wt)ρt

(
wch +

B(α + 1)

ρα+1
chp

)]
∆ch

− 1

(1 + z)H

[ b2
2(1 + wt)ρt

(c(β)Gβ−1 + c(β)(β − 1)Gβ−1 − 1)− b2b1
(1 + wt)ρt

(c(β)(β − 1)Gβ−1

+
c(β)(β − 1)Gβ−2

θ2
)
]
G (66)

∆′G = − 1

(1 + z)H

[
− 4Hθ

ρG

(
2Hb1c(β)(β − 1)(β − 2)Gβ−3 + (2c1 − 2H2)c(β)(β − 1)Gβ−2

)
+θ
(

4H2c(β)(β − 1)Gβ−2b2 + 4H(2c1 −H2)c(β)(β − 1)Gβ−2b1
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G

− 1
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4H
(
H(b2c(β)(β − 1)(β − 2)Gβ−3 +
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)
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(
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( 1
2
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− 1
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G

12H3
+ 3H) + (2c1 −H2)c(β)(β − 1)Gβ−2b1 − 3

(
4H2(c(β)(β − 1)Gβ−2b2 + c(β)(β − 1)×
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Gb1θ

2

(1 + wt)ρtρG
)
)

+3θ(4H2(c(β)(β − 1)Gβ−2b2 + c(β)(β − 1)(β − 2)Gβ−3b21) + 4H(2c1 −H2)c(β)(β − 1)Gβ−2b1)×((1− (2 + β)c(β)Gβb1
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3
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(1 + wtρtρG)
∆s

+
3

(1 + z)

(
4H2(c(β)(β − 1)Gβ−2b2 + c(β)(β − 1)(β − 2)Gβ−3b21)
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∆chp (67)
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Figure 6: Plot of energy density contrast vs redshift of equations Eq. (64)–(Eq. 68), using
k = 0.000001, long wavelength limit. During numerical integration, we considered different
constant parameters to see whether there is any effect on the energy density contrast or not
whereas ∆s(zin = 4) = 10−5, Z(zin = 4) = 10−5, G(zin = 4) = 10−5, G(zin = 4) = 10−5,
∆chp(zin = 4) = 10−5 were used as initial conditions. From the plots, for different parameter
m, we depict that the energy overdensity contrast decay with redshift and as m changes, the
behavior of the curves changes.

∆
′

ch =
1

(1 + z)H
[1 +

Gb1
θ(1 + wt)ρt

](1 + wch)Z −
1

(1 + z)H

θ(1 + wch)

(1 + wt)ρt
ρs∆s

− 3

(1 + z)

[
(1 + ρch)

(1 + wch)

(1 + wt)ρt
wchρch −

(
1 +

B(α + 1)

ρα+1
chp

)
θ
]
∆ch

− θ(1 + wch)

(1 + z)(1 + wt)Hρt

[1

2
(1− c(β)Gβ−1 − c(β)(β − 1)Gβ−1) + b1c(β)(β − 1)Gβ−1

+
b1c(β)(β − 1)(β − 2)Gβ−3

θ2

]
G − θ(1 + wch)c(β)(β − 1)Gβ−1

(1 + z)(1 + wt)Hρt
G . (68)

The equations eq. (64–68) represent the evolution of the energy density of the stiff fluid,
the volume expansion, the Gauss-Bonnet fluid, Gauss-Bonnet momentum, the energy density
resulting from the Gauss-Bonnet fluid and the energy density of the modified chaplygin gas,
respectively. The perturbation equations in redshift space presented in this work (eq. (64)–(68))
are coupled system of first-order ordinary differential equations for the density fluctuations of
stiff-, modified-chaplygin gas and Gauss-Bonnet fluids, which are more complicated to find the
analytical solutions. We have considered short wavelength ( k2

a2H2 � 1) and long wavelength

( k2

a2H2 � 1) limits of the perturbation to numerically integrate the perturbation equations and
to analyse the large scale structure implications of the numerical results using different initial
conditions. In the following, by considering that the universe is mainly dominated by stiff-
modified chaplygin gas-Gauss-Bonnet fluids mixture, the numerical results are presented in
fig. (6) and fig. (7) for long wavelength modes whereas figs. (8) and (9) contain the results
of the perturbation equations in the short wavelength mode. During numerical integration,
we considered different constant parameters to see whether there is any effect on the energy
density contrast or not, whereas ∆s(zin = 4) = 10−5, Z(zin = 4) = 10−5, G(zin = 4) = 10−5,

https://dx.doi.org/10.4314/rjeste.v7i1.1



Rwanda Journal of Engineering, Science, Technology and Environment, Volume 7, Issue 1, Month 2025
eISSN: 2617-233X — print ISSN: 2617-2321

Figure 7: Plot of energy density contrast vs redshift of equations Eq. (64)–(Eq. 68), using
k = 0.01, long wavelength limit. During numerical integration, we considered different constant
parameters to see whether there is any effect on the energy density contrast or not whereas
∆s(zin = 4) = 10−5, Z(zin = 4) = 10−5, G(zin = 4) = 10−5, G(zin = 4) = 10−5, ∆chp(zin =
4) = 10−5 were used as initial conditions. From the plots, for different parameter m, we depict
that the energy overdensity contrast decay with redshift and as m changes, the behavior of the
curves changes.

G(zin = 4) = 10−5, ∆chp(zin = 4) = 10−5 were used as initial conditions. From the plots, for
different parameter m, we depict that the energy overdensity contrast decay with redshift and
as m changes, the behavior of the curves changes. By looking at the figures (6) and (7) in
the long wavelength mode, the energy density contrast (δ(z)) decays with redshift. Changing
m affects both the amplitudes and does not affect the behavior of the curves. In the short
wavelength mode, as can be depicted in fig. (8) and fig. (9), the energy density contrast decays
with redshift for different values of parameter m and similarly changing the values of m affects
the amplitudes of the δ(z).
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Figure 8: Plot of energy density contrast vs redshift of equations Eq. (64)–(Eq. 68), using
k = 100, short wavelength limit. During numerical integration, we considered different constant
parameters to see whether there is any effect on the energy density contrast or not whereas
∆s(zin = 4) = 10−5, Z(zin = 4) = 10−5, G(zin = 4) = 10−5, G(zin = 4) = 10−5, ∆chp(zin =
4) = 10−5 were used as initial conditions. From the plots, for different parameter m, we depict
that the energy overdensity contrast decay with redshift and as m changes, the behavior of the
curves changes.

Figure 9: Plot of energy density contrast vs redshift of equations Eq. (64)–(Eq. 68), using k =
1000, short wavelength limit. During numerical integration, we considered different constant
parameters to see whether there is any effect on the energy density contrast or not whereas
∆s(zin = 4) = 10−5, Z(zin = 4) = 10−5, G(zin = 4) = 10−5, G(zin = 4) = 10−5, ∆chp(zin =
4) = 10−5 were used as initial conditions. From the plots, for different parameter m, we depict
that the energy overdensity contrast decay with redshift and as m changes, the behavior of the
curves changes.
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5 Conclusion

In this work, the treatment of the 1 + 3 covariant perturbations is made in the context of
stiff-Gauss-Bonnet fluids mixture using two different forms of chaplygin gas model, namely
generalised modified chaplygin gas and modified chaplygin gas. This study aimed to investigate
the validity and broader implications of the f(G) gravity with a focus on the multifluid system.
The theoretical foundation of this fluids mixture was explored in section (1) and expanded in sec.
(2), where the contribution of stiff fluid, generalised modified chaplygin gas and Gauss-Bonnet
fluid was integrated into the effective energy density and pressure. Using scalar decomposition,
harmonic decomposition methods together with redshift transformation technique presented in
eqs. (23)–(25), the time derivative of eqs. (44)–(49), incorporating spatial gradient variables of
the stiff fluid and the volume expansion and Gauge-Invariant variables defining the fluctuations
of the energy density and momentum of the Gauss-Bonnet and chaplygin gas model, yields the
perturbation equations of the stiff fluid-chaplygin gas-Gauss-Bonnet fluid mixture in redshift
space presented in eqs. (53)–(58) for the generalised modified chaplygin gas model and eqs.
(64)–(68) for the modified chaplygin gas. In order to solve the already obtained perturbation
equations, the energy density contrast (δ(z)) was formulated to understand the formation and
evolution of large scale structures in the Universe. The analysis wa conducted in both long
and short wavelength modes and presented the numerical results by considering three different
cases, namely: the case where the universe is only dominated by the stiff fluid thereafter GR or
ΛCDM model, the case where the evolution of the universe is driven by the fluid mixture of stiff
fluid-generalised modified chaplygin gas and the mixture of stiff fluid-modified chaplygin gas in
the context of modified Gauss-Bonnet gravity. The results of the stiff fluid case is presented in
fig. (1), those of stiff fluid-generalised modified chaplygin gas mixture are presented in figs. (2)
and (3) for long wavelength modes and in figs. (4) and (5) for short wavelength mode, whereas
the results orginating from the mixture of stiff fluid-modified chaplygin gas are presented in
figs. (6) and (7) for long wavelength modes and in figs. (8) and (9) for short wavelength mode.
Following the definition of the δ(z), firstly without considering the chaplygin gas and Gauss-
Bonnet fluid, we note that from fig. (1), δ(z) decays monotonically with redshift. In terms of
decaying of δ(z), the stiff fluid-modified chaplygin gas mixture performed the best for every
values of parameter m changed in both long and short wavelength modes, but the stiff fluid-
generalised modified chaplygin gas mixture do not decay monotonically as the case of stiff
fluid consideration as m changes, especially in the long wavelength mode. Over all, from the
numerical results, as far as large scale structure formation is concerned, we note that there
is no real difference on the effects of using different chaplygin gas models in short wavelength
mode while in the long wavelength mode, only the stiff fluid-generalised modified chaplygin
gas mixture shows a slightly small difference in the behavior of the curves. Furthermore, the
fluid mixtures considered may be considered as viable models for studying the formation and
evolution of large scale structures in the Universe relative to GR model. Interestingly, we note
that the stiff fluid-modified chaplygin gas mixture in the context of f(G) gravity presents a
faster grow of structures ( higher amplitude of perturbations) than predicted in the GR or
ΛCDM model, which requires further research and testing against observational data using
different toy f(G) models. This will be done elsewhere.
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