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Abstract

The novel human coronavirus disease, COVID-19, was first identified in China

in 2019 and has since spread throughout the world becoming a global pandemic of

great concern. High daily new cases have brought a heavy burden on health facil-

ities and health workers helping patients and fighting the spread of this pandemic.

Understanding the behavior of extreme cases of COVID-19 and associated factors

is crucial to devise strategies to flatten the pandemic curve. This study used gen-

eralized additive modeling and extreme value theory approaches to analyze weekly

maximum positive cases of COVID-19 together with three climate covariates (tem-

perature, rainfall, and solar radiation) with the purpose to evaluate the predictive

power of climate factors on extreme COVID-19 cases. According to the findings,

a Generalized Extreme Value distribution with a constant location parameter, a
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linear model for the shape parameter with rainfall as a predictor, and a non-linear

model for the scale parameter with temperature and rainfall as predictors fits the

weekly maximum positive cases the best. As a result, both temperature and rain-

fall have a significant effect on the spread of the COVID-19 pandemic. The findings

of this study make a significant contribution to the existing knowledge about the

COVID-19 pandemic.

Keywords: COVID-19, Climate factors, Extreme positive cases, Vector Generalized

Linear models

1 Introduction

Since the appearance of its first new case in Wuhan (Chine), the entire globe is preoccu-

pied with finding and making decisions about measures to fight against the COVID-19

pandemic. The control of the pandemic at different times has an important impact on the

spread of the disease. Communities all over the world have been doing their best to pro-

tect their respective population applying various measures such as the social distancing in

public and cleaning hands regularly, wearing face masks, stopping local and international

transport, locking down cities, quarantine of contacts and banning gatherings [1–3]. In ad-

dition, depending on how the pandemic is spreading, Governments increase the Intensive

Care Units for treatment of patients [4].

To aid medical practitioners, policymakers, and governing bodies in conducting inter-

vention steps to manage the pandemic, modeling techniques have been widely used to

anticipate COVID-19 spread. Due to the aforementioned continuing alarming situation,

it is necessary to study the dynamics of COVID-19 to identify various factors related

particularly to extreme positive cases. Particularly, in order to take appropriate measures

of controlling the pandemic in situations where we observe extreme new cases, there is a

need to analyze the main causes of these situations and associated determinants including,

but not limited to climate factors, treatment the facility, chronic diseases, and existing

Government preventive measures.

Several studies have investigated the effect of environmental factors on the spread

of COVID-19, most of which focused on temperature. For instance, Briz-Redón and

Serranon-Aroca [6] made a comprehensive review of recent reseaches on how climate affects

COVID-19’s global spread. Their findings revealed that 33 out of 61 articles suggested

a negative correlation between COVID-19 and temperature. Few studies reviewed by

Briz-Redón and Serranon-Aroca [6] explored the effect of other meteorological factors on

COVID-19 such as rainfall, solar radiation and wind speed. One paper out of six found

a negative association between solar radiation and COVID-19 transmission; four articles

out of eleven suggested a positive association between rainfall and the spread of COVID-

19. Endeshaw et al.[7], in their study which examined how the climate factors affect
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the spread of COVID-19 pandemic in Addis Ababa, Ethiopia, found that factors such as

humidity, rainfall, and wind speed have an influence on COVID-19 transmission.

Sera et al.[8] estimated weather-dependent signatures while accounting for socio-

economic variables and non-pharmaceutical interventions, in the early stages of the COVID-

19 pandemic. In 409 cities across 26 nations, they found a weak non-linear association

between mean temperature and the effective reproduction number. They indicated that

early interventions have a bigger impact on the reproduction number with a decrease of

0.285 They did mention a little amount of evidence suggesting that local epidemics may

have been affected by meteorological conditions in their early stages, but they came to

the conclusion that population behavior and government initiatives are the main factors

influencing transmission.

Fontal et al.[9] showed, for COVID-19 cases, that there are strong consistent nega-

tive impacts of both temperature and absolute humidity at broad regional scales using

a statistical method designed to detect transitory associations. They found evidence of

strong disease responses in the first two waves, indicating distinct temperature and ab-

solute humidity ranges that are comparable to those previously mentioned for seasonal

influenza. For COVID-19, a process-based model that includes a temperature-dependent

transmission rate outperforms baseline formulations without a driver or sinusoidal sea-

sonality in all examined locations and pandemic waves. They identified COVID-19 as a

seasonal low-temperature disease and assert that the airborne pathway had a significant

role in the spread of SARS-CoV-2, which has implications for preventative strategies.

Various studies have utilized various mathematical and statistical models to predict the

transmission and intervention consequences. Some researchers have used mathematical

models such as deterministic and stochastic models to investigate the dynamics, predic-

tion, prevention, and impact of control measures on the COVID-19 pandemic [10, 11].

Moreover, time series and regression models were also used for predicting and monitoring

COVID-19 [12, 13]. For instance, by using the long-term time-dependent epidemiological

models SIRD and SEIRD, Manik and Signh [25] explored how temperature and humidity

affect the transmission of the virus in several Indian states. In order to determine whether

there is any relationship between the effective reproduction number and the temperature,

relative humidity, and absolute humidity, they utilized a linear regression approach. In

most Indian states, the effective reproduction number has a statistically significant nega-

tive connection with both relative and absolute humidity according to their findings.

Data analysis in many different disciplines, including the social, behavioral, and health

sciences is associated with the use of General Linear Model (GLM). There are a num-

ber of extensions to the GLM, but two main extensions, that are particularly useful in

developing a more flexible statistical framework for fixed-effects regression modeling, are

the Vector Generalized Additive Models (VGAMs) and the Vector Generalized Linear

Models (VGLMs). The VGLM and VGAM framework maintains the benefits of GLMs
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while also smoothing to a much greater extent.In contrast to the long-held belief that

common and routine regression modeling in applied statistics has been hindered by a lack

of a common framework, the VGAM now includes over 150 family functions, allowing

users to freely change model components within a large, flexible framework[5]. General-

ized additive models, which are a non-parametric extension of GLMs provide a powerful

class of models for data-driven exploratory data analysis [14]. In particular, the classes

of VGLMs and VGAMs offer adaptive smoothing within a unified framework, which has

significant benefits for extreme value data analysis. Using this class of models, all extreme

value distribution parameters can be modeled as smooth or linear functions of covariates

[15–17]. More details about VGLMs and VGAMs can be found in [18].

The goal of this article is to highlight the benefit gained from taking into account the

classes VGAM and Generalized Extreme Value models (GEV) in the context of extreme

value analysis. The aim of this study is to determine and analyse the distribution of

extreme weekly cases of COVID-19 in Rwanda during the period of 14th March 2020 to

1st September 2021 and analyze the effect of climate factors on extreme daily cases of

COVID-19. The climate factors considered in this paper are weekly average temperature,

weekly average solar radiation, and weekly total rainfall from several locations in Rwanda.

Apart from the introductive section that provides the backgroud of the study , this

paper is oganized as follows. The methodology is described in Section 2 and comprises

the data description, the statistical method of analysis, and the method of parameter

estimation. The presentation and interpretation of the findings for both the exploratory

analysis and the use of the Generalized Extreme Value and Vector Generalized Additive

Models are covered in the third section. The results are discussed in Section 4, followed

by a summary conclusion in Section 5, and acknowledgment in Section 6.

2 Materials and Methods

2.1 Description of data

This study analysed the weekly maximum new cases together with the climate data as

covariates. These are secondary data obtained from Rwanda Biomedical Center (RBC)

and Rwanda Meteorological Agency respectively. The raw data for the covariates were

recorded as daily maximum and minimum temperature, total daily rainfall and daily

solar radiation for different stations across the country while the response variable data

were recorded as daily new infections cases from March 2020 to September 2021. This

study considered temperature, rainfall and solar radiation as the only covariates based on

fact that they were proven to have effect on predicting the transmission of COVID-19 as

reported by some authors [6, 7]. The obtained raw data were cleaned and transformed for

further analysis. The covariates have been transformed into weekly average temperature
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(measured in degrees Celcius), weekly total rainfall (measured in millimeters) and weekly

average solar radiation (measured in Watt per square metter), respectively whereas the

response variable considered is the weekly maximum new cases. Therefore, the sample

size used is equal to 78 observations which amounts to the number of weeks spanning

the time period considered in this study. The weekly maximum new cases constitute the

response variable and the three covariates are the predictors in the model.

2.2 Statistical methods for analysis

This section reviews a few details about Vector Generalized Linear Models (VGLMs) and

Vector Generalized Additive Models (VGAMs).

2.2.1 The extreme value theory and Generalized Extreme Value (GEV) dis-

tribution

Let y1, y2, ..., yn, be i.i.d. random sample of size n drawn from a distribution F , and

let Mn = max(y1, y2, ..., yn). According to Coles [20], the extreme value theory specifies

that as n → ∞ the class of non-degenerate limiting distributions for Mn, under linear

normalization, is the GEV distribution

G(z) = exp

{
−
[
1 + ζ

(
z − µ

σ

)]−1/ζ
}
. (1)

There are three parameters in equation (1), namely

• location parameter, −∞ < µ < ∞, which is the center of the GEV distribution.

• scale parameter, σ > 0, which determines the size of deviations of µ, and

• shape parameter, −∞ < ζ < ∞, shows how rapidly the upper tail decays.

G(z) is defined on set
{
z : 1 + ζ

(
z−µ
σ

)}
.

In this formula, positive ζ implies a heavy tail while negative one implies a bounded

tail and the limit of ζ → 0 implies an exponential tail [20].

2.2.2 Linear and additive models

Yee and Stephenson [19] defined the Vector Generalized Linear Models (VGLMs) as a

model for which the conditional distribution of y given exploratory (covariates) x is of

the form

f(y|x;B) = h(y, η1, . . . , ηM),
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for some known function h(.), where B = (β1, . . . ,βM ) is a p × M matrix of unknown

regression coefficients, and the jth linear predictor is

ηj(x) = βT
j x =

p∑
k=1

β(j)kxk, j = 1, . . . ,M, (2)

where x = (x1, . . . , xp)
T , y is an observed response vector, M is the number of parameters

to be estimated in the extreme value models, and p is the number of covariates.

For simple extreme value model like stationary GEV and General Pareto (GP), M = 3

or M = 2 for example. The VGLMs are thus like GLMs but allow for multiple linear

predictors, and they encompass models outside the limited confines of the exponential

family. Yee and Stephenson [19] proposed that the ηj of VGLMs may be applied directly

to parameters of a distribution rather than just to means as for GLMs. A simple example

is a univariate distribution with a location parameter µ and a scale parameter σ > 0,

where we may take η1 = µ and η2 = log σ. Yee, Yee and Stephenson [18, 19] provided

that the VGAMs are the additive-model extensions to VGLMs, that is, equation (2) is

generalized to

ηj(x) = β(j)k +

p∑
k=1

f(j)k(xk), (3)

a sum of smooth non-linear functions f(j)k(xk) of the individual covariates.

Simon et al. [21] showed that the model smoothness f(j)k(xk) is transformed into a

linear model via basis expansions of modest rank (Dk) as follows

f(j)k(xk) =

Dk∑
d=1

βkdbkd(x), (4)

where βkd represent the unknown coefficients and bkd represents the known basis func-

tions such as splines, usually chosen to have good approximation theoretic properties.

Substitute equation (4) in equation (3), we get

η∗(x) = β0 +

p∑
k=1

Dk∑
d=1

βkdbkd(x).

The basis representations can be written in matrix notations as follows

η∗ = xTB,

where xT is a row of a design matrix X which has elements determined by the choice of

bkd basis functions and 1+
∑p

k=1Dk columns, each of which corresponds to an element of
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B. For the GEV, µ(x) = ηµ(x), log σ(x) = ησ(x) and ζ(x) = ηζ(x), see [19].

2.2.3 Parameters estimation

This subsection describes the method of estimation of parameter for GEV-VGAM model.

Consider a model for an n− vector of observations, y, constructed in terms of unknown

parameters θ(x) = (µ(x)), σ(x), η(x), and some unknown function ηj defined in equation

(3), of covariates, xj. Youngman [22] proposed that the estimation of GEV corresponds

to the estimation of basis coefficients. That is,the likelihood function for model (3) can

be denoted by L(ηj(x),Y ) = L(B) with log-likelihood l(B).

Authors in [19, 21, 22] and [23] proposed the penalty log-likelihood function as follows

L(Bλ,λ) = l(Bλ)−
1

2
B′SλB, (5)

where λ = (λ1, λ2, . . . , λk) is a smoothing parameter, Sλ is a penalty matrix with elements

determined by the chosen bkd basis functions with Sλ =
∑K

k=1 λkSk.

The estimation of parameter can be estimated by maximizing the penalty log-likelihood

function defines in equation (5). That is,

(̂B) = argmax(B)L(Bλ,λ).

The GEV-VGAM model of the research problem was formulated using the data de-

scribed in section (2.1), where the response variable is the weekly infected new cases and

the three considered covariates are total weekly rainfall, average weekly solar radiation and

average weekly temperature. In practice we may wish to constrain the effect of a co-variate

to be the same for some of the ηj with j = 1, 2, 3 and to have no effect for others. For

example, for VGAMs we may wish to take

η1 = β10 + f(1)1(x1) + f(1)2(x2) + f(1)3(x3);

η2 = β20 + f(2)1(x1) + f(2)2(x2) + f(2)3(x3);

η3 = β30 + f(3)1(x1) + f(3)2(x2) + f(3)3(x3).

We will relate the ηj, j = 1, 2, 3 with the model parameters after fitting the GEV-VGAM

models in the next section.

3 Results

This section describes the exploratory data analysis of the response variable with their

covariates and the Generalized Extreme Value and Vector Generalized Additive Model

(GEV-VGAM). The exploratory data analysis deals with the descriptive statistics of
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weekly maximum infected new cases and covariates, time series plot of the weekly max-

imum infected new cases versus weeks, and the scatter plots of the weekly maximum

infected new cases versus the covariates. The estimation of parameters and the fitted

model are reviewed in GEV-VGAM sub-section.

3.1 Exploratory data analysis

The descriptive statistics of weekly maximum infected new cases of COVID-19 with their

climate variables and time series plot of the weekly maximum infected new cases and the

climate variables versus weeks are presented in Table 1 and Figure 1 respectively. The

used data are collected from the week of 8-14/03/2020 to the week of 1-4/9/2021 (week

78).

Table 1: Weekly maximum new cases of COVID-19 and climate variables

Variables Minimum Maximum Mean SD

Weekly maximum new cases (number) 1 3072 257 531.47

Weekly average temperature (oC) 18.66 21.6 19.95 0.59

Weekly average solar radiation (W/m2) 59.81 89.11 76.32 7.26

Weekly total rainfall (mm) 0.001 13.6 3.08 3.18

* SD: Standard Deviation

Within this period, the total number of 20722 cases of weekly maximum number of

infections of COVID-19 were recorded in this study in which the mean of weekly maximum

number of confirmed cases was 257 (maximum =3072), during which the weekly average

temperature ranged from 18.660C to 21.60C with the overall mean equal to 19.950C. The

overall mean of weekly average solar radiation and weekly total rainfall were 3.08mm

(maximum = 13.6mm) and 76.32W/m2 (maximum=89.11W/m2), respectively.

Figure 1 shows the time series plot of weekly maximum number of confirmed cases of

COVID-19, weekly average temperature, weekly total rainfall and weekly average solar

radiation. It is seen that the weekly maximum number of confirmed cases of COVID-

19 increased slowly in the first twenty weeks. This increment might have due to the

measures adopted by the Government of Rwanda like wearing mask, physical social dis-

tancing, public lock-down, quarantine, etc. This Figure also reveals that from week 67

(13-19/06/2021) up to week 74 (8-14/08/2021), the weekly maximum number of confirmed

cases of COVID-19 increased rapidly due to the new variant of COVID-19 called Delta.

This variant spread rapidly and it is more contagious than the other variants. The weekly

maximum of confirmed COVID-19 infections dramatically decreased after week 74 as a

result of the Rwandan government’s decision to vaccinate every Rwandan starting with
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the eldest. In addition, Figure 1 shows that the peaks in the weekly maximum number of

confirmed cases of COVID-19 against the climate variables are correlated.

Figure 1: Time series plots of weekly maximum new cases and climate factors

The following figures represent the scatter plots of weekly maximum new cases of

COVID-19 against climate variables.

Figure 2 shows that a higher temperature is likely to reduce the number of new infec-

tion cases of COVID-19 and a lower solar radiation increases the number of new infection

cases of COVID-19, see Figure 4. Figure 3 reveals that an increase in rainfall may reduce

the weekly maximum new cases of COVID-19 due to the case that too much rain could

generate incentives to stay indoors. Therefore, a negative relationship between weekly

maximum new cases of COVID-19 and our climate variables was identified.
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http://dx.doi.org/10.4314/rjeste.v7i1.8


Rwanda Journal of Engineering, Science, Technology and Environment, Volume 7, Issue1, March 2025
eISSN: 2617-233X |print ISSN: 2617-2321

Figure 2: Scatter plot of weekly maximum new cases against weekly average
temperature(oC)

Figure 3: Scatter plot of weekly maximum new cases against weekly total rainfall(mm)
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Figure 4: Scatter plot of weekly maximum new cases against weekly average solar
radiation(W/m2)

3.2 Generalized Extreme Value and Vector Generalized Addi-

tive Model (GEV-VGAM)

In this subsection, the GEV-VGAM fitted with COVID-19 and climate data is described.

3.2.1 GEV-VGAM parameter estimates

The GEV-VGAM was fitted to weekly maximum new infections and covariates. The

results are presented in Table (2).
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Table 2: Results of the fitted GEV-VGAM for aall considered climate factors

Parametric terms

Parameter Estimate Stand.Error t-value P-value

location 97.39 0 60631.54 <2e-16

logscale 4.7 0.06 80.86 <2e-16

shape 0.56 0.07 0 7.9 <1.41e-15

Smooth terms

Location

Smooth spline Effective df Max.df Chi.sq P-value

s(Temperature) 0 9 53.79 <2.23e-13

s(Rainfall) 0 9 5.72 0.0168

s(Solar-radiation) 0 9 6.83 0.00894

logscale

s(Temperature) 2.63 9 11.15 0.0418

s(Rainfall) 2.85 9 18.98 0.000148

s(Solar-radiation) 2.04 9 0.98 0.508

shape

s(Temperature) 0.99 9 0.54 0.462

s(Rainfall) 0.83 9 16.58 <4.66e-05

s(Solar-radiation) 1.05 9 0.11 0.601
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Figure 5: GEV-VGAM fitted to weekly maximum new cases for all climate
factors

The results show that the effective degrees of freedom (edf) for location are zero,

which means that the location of the GEV distribution is not predicted by the considered

covariates. For the scale, the edf show high non-linear relationship (edf > 2 ) with all

three covariates, and the smoothing spline terms are significant except for solar radiation

(p-value= 0.508). For the shape, the edf are close to one indicating a linear relationship.

However, the effects of both temperature and solar radiation on the shape of the GEV are

not significant. These results suggest a GEV model with a constant location parameter,

a linear model of the shape with rainfall as a predictor, and a non-linear model of the

scale with temperature and rainfall as predictors is more appropriate and its results is

presented in Table (3) and the fitted smooth is presented in Figure (6)
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Table 3: Results of the fitted GEV-VGAM for significant climate factors

Parametric terms

Parameter Estimate Stand.Error t-value P-value

location

(intercept) 53.26 0.11 478.37 <2e-16

logscale

(intercept) 5.23 0.04 119.34 <2e-16

shape

(intercept) 6.07 0.07 89.02 <1.41e-15

(intercept) 0.07 0.01 10.21 <1.41e-15

Smooth terms

Location

Smooth spline Effective df Max.df Chi.sq P-value

s(Temperature) 8.95 9 397030490 <2e-13

s(Rainfall) 9 9 13187619 <2e-13

Figure 6: GEV-VGAM fitted to weekly maximum new cases for significant
climate factors
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4 Discussion

The findings indicate that an increase in solar radiation and the high temperature may

decrease the weekly maximum number of new COVID-19 infections. Some previous stud-

ies have looked at the impact of climate environment factors on the spread of COVID-19.

For example Patwary et al. [24] looked into the effects of socio-demographic and en-

vironmental factors on COVID-19 transmission. The results of rainfall varied between

investigations. Population density, educational attainment, and income were identified as

potential contributors to the coronavirus outbreak among the non-climatic variables. A

substantial link between climatic and sociodemographic parameters and the COVID-19

outbreak was observed. In similar studies, Endeshaw et al.[7] found that the number of

COVID-19 cases showed seasonal variation, with the rainy season seeing the highest num-

ber of cases reported and the dry season reporting the lowest. Using articles and data that

analyzed and investigated the climatic and environmental factors of COVID-19 in African

countries, Mwiinde et al. [26] made a systematic review that explored the climatic and

environmental factors influencing COVID-19 transmission in Africa. The results showed

that there is evidence suggesting the influence of climatic and environmental factors on

the spread of COVID-19 in Africa; however, the evidence requires further investigation

in all six regions of Africa and at the country level to comprehend the role of weather

patterns and environmental factors in the transmission of COVID-19.

The results show that GEV-VGAM model with climate factors is reliable to predict

extreme values of new infections of COVID-19 in Rwanda. The findings show a linear

relationship of the shape and nonlinear relationship of the scale with climate factors,

while the location parameter is constant. However, there are non significant effects of

both temperature and solar radiation on the shape parameter of the GEV, which means

that an increase on temperature and solar radiation does not imply an increase of new

infections of COVID-19. In similar studies, Sezer et al. [27] used generalized additive

models for location, scale, and form factors to explain the nonlinear relationship between

the daily quantity of intense rainfall and relevant predictor variables. The model’s ap-

proximated mean function converges to the real mean function, according to their results.

In their study, Utami et al. [28] used the VGAM to examine data on extreme rainfall

in Indramayu, Indonesia (VGAM). The findings showed that the VGAM with General

Pareto Distribution is capable of reliably forecasting extreme rainfall data.

5 Conclusion

Since the COVID-19 pandemic first emerged in 2020, there have been concerns regarding

how to control it and prevent it from spreading. In order to guide health care providers,

policymakers, and governing bodies for interventions, it is crucial to examine the dynamics

of COVID-19 and identify various factors, especially those linked to extreme positive
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cases. The objective of this paper was to examine the distribution of COVID-19 extreme

weekly cases in Rwanda for the period of 14-th March 2020 to 1st September 2021 as

well as the impact of climate conditions on COVID-19 extreme daily infection cases. This

study analyzed weekly maximum positive COVID-19 cases together with three climate

covariates (temperature, rainfall, and solar radiation) to examine the predictive effect

of climate factors on extreme COVID-19 cases. The findings showed that using climate

factors as covariates, Generalized Additive Extreme Value Models are useful for predicting

determinant parameters of COVID-19 transmission in Rwanda such as daily infection

cases. According to the results, a Generalized Extreme Value distribution with a constant

location parameter, a linear model for the shape parameter with rainfall as a predictor,

and a non-linear model for the scale parameter with temperature and rainfall as predictors

fit the weekly maximum positive cases the best. Thus, the dynamics of the COVID-19

pandemic are significantly influenced by the weather, particularly the temperature and

rainfall. However, according to Schuster Arthur [29], periodicity and volatility are the

inherent features of weather factors, particularly temperature, hence the present results

should not be viewed as a generalization. The results from this research may be used to

enhance COVID-19 spread prediction and plan for interventions in Rwanda, specifically

for extreme cases of infection. In future studies, one can analyse the effect of climate

factors on extreme COVID-19 death, the effect of control measures and vaccination on the

spread of COVID-19. Future research might also focus on how human behavior influences

the transmission of COVID-19, as well as how travel habits and governmental control

measures influence the spread of this pandemic. Using autocorrelation concepts like the

Hurst exponent or the Entropy, one can also compare the roughness of epidemiological

data with that of meteorological data.
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