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ABSTRACT

This study uses scoping review and bibliometric analysis; ScoRBA, to comprehensively highlight 
the recurrent themes linked to machine learning (ML) applications in genetic data analytics. 
Using relevant documents and the VOSviewer software, co-occurrence keywords analysis was 
performed. The important domains identified are Cancer Genomics, Bioinformatics, Precision 
Medicine, Disease Biomarkers, and Genetic Algorithms. These domains benefit from ML's data-
driven insights, which have the potential to revolutionize healthcare and biomedical research.  
The study reveals a surge in research publications and citations in recent years, indicating the 
growing importance of ML in genetic data analysis. It identifies research gaps and challenges 
within each domain, offering recommendations for future investigations. This review emphasizes 
the potential for personalized, data-driven healthcare by highlighting the power of ML and 
advanced computational methods. By addressing the identified research gaps and following the 
proposed recommendations, these interdisciplinary fields promise to improve disease diagnosis, 
prognosis, and treatment, while deepening our understanding of human biology. In conclusion, 
this study provides an overview of the application of ML in genetic data analysis, highlighting its 
pattern, advances, gaps and future directions.
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INTRODUCTION

In recent years, due to technological advancements 
and the explosion of large-scale genomic data, 
the field of genetics have undergone through 
a transformative evolution. Enabling the 

successful development of pipelines and tools 
for preprocessing and analyzing raw genetic 
data, significantly improving accessibility for 
research and analysis [1]. Significantly, advanced 
computational techniques, including generative 
models like generative adversarial networks (GANs) 
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and restricted Boltzmann machines (RBMs), have 
been employed to construct synthetic genomes. 
This approach facilitates the exploration of varied 
genomic datasets while adhering to ethical 
considerations [2].
Computational tools such as TelFinder can now 
detect telomeric motif sequences, shedding light on 
telomere composition and evolution [3]. Artificial 
Neural Networks (ANNs) have been employed 
to classify and scrutinize J-domain proteins 
(JDPs), revealing coevolution patterns between 
J-domains and their Hsp70 partners for specific 
cellular functions [4]. Statistical methodologies, 
exemplified by Cloud Infrastructure for Microbial 
Bioinformatics (CLIMB), parse genomic data to 
pinpoint condition-specific patterns, enhancing 
our understanding of tissue specificity and cell 
differentiation [5]. Furthermore, machine learning 
(ML) applications have proven invaluable in gene 
expression data analysis, genetic analysis of 
complex phenotypes, and single-cell omics data 
analysis [6,7]. ML methods play a pivotal role in 
genome-wide association studies (GWAS) [8], copy 
number variation (CNV), single nucleotide variant 
(SNV) calling [9], and epigenome-wide association 
studies (EWAS) [10]. Therefore, ML applications 
have been developed for post-GWAS prioritization 
[11]. For instance, a tree-based ML method might 
supplement the disease-related SNV acquired 
from other population genomic techniques such 
as GWAS, with a crucial layer of knowledge [12]. 
EWAS, on the other hand, uses array-based assays 
to test whether DNA methylation (DNAm) at 
particular CpG sites is associated with a disease 
[13]. Because of technical limitations [14] and 
limited CpGs tested with EWAS, ML is used to 
identify additional CpGs on a genome-wide scale 
[15]. CNVs from exome sequencing are becoming 
a common method for genetic testing [16-20], 
even though the clinical efficacy of microarrays 
has not decreased [21]. CNVs require the expertise 
of qualified clinical specialists to interpret in a 
clinically sophisticated manner. To avoid looking 
through enormous genomic databases, several 
ML techniques and general guidelines have been 
put out for the accurate detection of CNVs from 
exome sequencing [22]. ML is also instrumental 
in high-throughput chromosome conformation 
capture (Hi-C) data analysis, transcription factor 
binding site inference, and single-cell RNA-seq 
data analysis [23]. These approaches exhibit great 
potential for biomarker identification, disease 

outcome prediction, and advancing precision 
medicine. 
The incorporation of ML techniques into genetic 
research effectively identifies genetic markers and 
predicts disease susceptibility [24]. Deep learning 
algorithms and ML methods are applied across 
multiple facets of genomics, offering insights 
into rare hereditary immune diseases [25]. The 
marriage of ML with genetics and genomics holds 
the promise of revolutionizing our understanding 
of human genetic variation and disease causation 
[26]. While these advancements have reshaped 
genetics research, a comprehensive analysis or 
review is urgently needed to map the existing 
research terrain and identify gaps in the utilization 
of ML methodologies in genetic data analysis. 
Though ML techniques have revolutionized various 
genomics aspects [6-10], there remains a lack of 
systematic exploration in this dynamic field.  To 
bridge the existing gap and provide a comprehensive 
overview of this rapidly evolving research domain, 
this study proposes a meticulous scoping review 
and bibliometric analysis, denoted as ScoRBA 
[27]. This approach aims to systematically outline 
prevailing themes related to ML applications in 
genetic data analyses, contributing to a deeper 
understanding of the research landscape and 
guiding future investigations in this promising field.

METHODS

In this study, a ScoRBA procedure that closely 
adheres to the five-step scoping review protocol 
established by Arksey and O'Malley was 
performed [28]. The research commenced with 
the formulation of a primary inquiry aimed at 
exploring the landscape of literature concerning 
genetic data and ML.
On September 18, 2023, a comprehensive 
literature search was conducted utilizing Scopus’ 
database. Given Scopus' extensive coverage of 
academic publications, it was selected as the 
primary data source [29,30]. The study’s search 
queries incorporated the following terms: TITLE 
("machine learning algorithm" OR "deep learning" 
OR "artificial intelligence") AND TITLE (gene 
OR genetic OR genom* OR exome). To ensure 
precision, the search field was restricted to 
"Title" only while still including all articles without 
limitations, ensuring the inclusion of all relevant 
research. The search yielded 1045 documents 
related to "machine learning" and "genetic data."  

Zakaria et al. Machine Learning in Genetic Data Analysis 
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The search strategy and data collection procedures 
used in this study are modified from the PRISMA 
flow diagram as shown in Figure 1 [31].
The exported metadata, encompassing publication 
details and keywords, in Comma-Separated Values 
(.csv) format. This dataset was subjected to co-
occurrence keyword analysis using VOSviewer 
version 1.6.17 to unveil prevalent patterns and 
themes [32]. Using VOSViewer's clustering 
algorithms, the resultant visualization map shows 
the terms or keywords. The term occurrence 
in visualization map shows the frequency of 
occurrence of specific keywords. The keywords 
are shown as different-sized nodes based on the 
frequency records for each keyword. Furthermore, 
the map displays how frequently the keywords 
occur close to each other. The formation of text 
clusters is significantly influenced by the co-
occurrence of keywords within a text network 
as shown in the result section. The analysis 
involved summarizing and collating information 
about the selected articles and the ML models 

employed in genetic data analysis, organized 
under discerned clusters or themes. Additionally, 
the study examined publication trends to gauge 
the broader growth and impact of research within 
this field. This involved analyzing the number 
of annual publications and citations in the area. 
By quantifying these trends, the study aims to 
highlight the expanding influence and evolving 
focus within the research area.

RESULTS

Trends in publications and citations: The dataset 
reveals a compelling temporal evolution of events 
in the domain of ML applied to genetic data 
analysis. Notably, the years from 2014 to 2022 
witnessed a remarkable surge in these events, with 
a staggering increase from 4 documents in 2014 to 
256 documents in 2022. This exponential growth 
signifies the increasing significance and interest in 
the intersection of ML and genetics, possibly driven 
by advances in technology and data availability. 

Figure 1: PRISMA flow diagram of the search strategy and data collection steps [31]
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Table 1: Results of the PAGER analysis of the ML and genetic research [35]

Figure 2: Publication trends and citations in the domain of ML applied to genetic data analysis
Total Publication (TP) and Total Citation (TC)

Pattern Advances Research Gaps Evidence for 
Practice

Research 
Recommendations

Cancer 
Genomics

Predicting treatment 
responses, early 
cancer diagnosis, 
treatment, and 
personalized 
medicine

Follow-up studies on 
metastatic cancer, 
detecting driver 
mutations, integration 
into clinical practice, and 
method reliability

ML’s potential, 
databases like 
CancerSysDB, ML’s 
role in genomic 
classification, and 
predicting cancer 
phenotypes

	Explore robust 
methods for data 
analysis 

	Integrate with big 
data mining

	Explore ML in cancer 
genomics classifica-
tion

	Address data-related 
questions

Bioinformatics Understanding 
transposable 
elements, identifying 
disease biomarkers, 
cancer research, 
and multi-faceted 
analyses

Effectiveness of 
Anderson Acceleration 
(AA), lack of 
standardized big data 
tools, and unable to 
predict the biological 
activity of natural 
products

ML’s role in 
analyzing biological 
data, multi-modal 
data analysis, 
and translational 
bioinformatics

	Advance ML tech-
niques for disease 
prediction 

	Explore ML in bio-
logical data analysis, 

	Integrate with omics 
technologies 

	Address data man-
agement challenges

Precision 
Medicine

Analyzing complex 
biological data, 
personalized 
treatments, and 
disease subtype 
identification

Dependence on 
experimentally 
determined 
structures, biomarkers 
identification, deep 
learning datasets, as 
well as security/privacy 
concerns

Impact of ML in 
diagnostics, data-
driven diagnostics, 
and challenges to 
address

	Improve ML models’ 
transparency

	Enhance deep learn-
ing datasets 

	Address biomarker 
identification, and 
security/privacy con-
cerns

Disease 
Biomarkers

Identifying disease-
specific biomarkers, 
early detection, and 
patient care

Limited neuropsychiatric 
symptoms (NPS) 
analysis, novel 
biomarkers, 
interpretable ML 
models, and quality 
metabolomics data

ML for complex 
pattern detection, 
predictive models 
for diagnosis, and 
molecular biomarker 
identification

	Address NPS analysis 
	Explore new bio-

markers 
	Develop interpre-

table ML models 
	Improve metabolo-

mics data quality

Genetic 
Algorithms

Supervised and 
unsupervised 
learning in 
healthcare, and 
optimization 
problems

Relationships between 
solution size, operator 
complexity, variance 
error, combinatorial 
problems, and 
optimization problems

Applications in 
radiology, drug 
development, 
and function 
optimization

	Develop new recom-
mendation systems 

	Improve GAs for 
function optimiza-
tion

	Explore hybrid algo-
rithms

	Enhance genetic op-
erators’ integration
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The year 2017 stands out as a pivotal point, with 
a sudden jump to 28 documents, indicating a 
significant shift in the field. This surge suggests a 
substantial shift and growing interest in integrating 
ML techniques with genetic and genomic 
data. Several factors contributed to this shift. 
Technological advancements, such as continuous 
improvements in high-throughput genomic 
technologies and computational power, made it 
feasible to handle and analyze large-scale genetic 
data more efficiently [33]. Researchers increasingly 
applied ML methods to tackle complex problems in 
genetics, such as predicting rare genetic disorders 
and analyzing noncoding regions of the genome, 
thereby enhancing diagnostic yields and research 
outcomes [34]. Additionally, the accumulation 
and availability of abundant genetic and genomic 
data facilitated more extensive research and 
exploration, enabling scientists to develop and 
refine ML models tailored to genetic data. These 
factors collectively contributed to the notable 
increase in research output, highlighting 2017 as 
a transformative year in this interdisciplinary field. 
However, the most recent data for 2023 shows a 
slight decline to 195 documents due to incomplete 
years. 
Similarly, the total number of citations was 109 in 
2014 and showed a gradual increase over the years 
with only a slight drop in 2016. A notable increase 
occurred from 2017 onwards, with total citations 
reaching 2719 in 2018 and 3582 in 2019. This 
suggests a significant expansion in this dimension 
of the domain, possibly indicating increased 
complexity, coverage, or engagement.
Keyword co-occurrence analysis: The co-
occurrence keywords analysis using VOSviewer 

software identified five clusters. Figure 3 shows all 
the five clusters: Cancer Genomics, Bioinformatics, 
Precision Medicine, Disease Biomarkers, and 
Genetic Algorithms (GAs). These clusters highlight 
the integration of advanced technologies and 
analytical methods to enhance our understanding 
and treatment of diseases. These clusters 
(patterns) were later used as a basis for further 
discussion.

DISCUSSION

This discussion delves into the pattern, advances, 
research gaps, evidence for practice, and research 
recommendations (PAGER) in the domains of 
Cancer Genomics, Bioinformatics, Precision 
Medicine, Disease Biomarkers, and Genetic 
Algorithms (GAs) (Table 1). 
The intersection of cancer genomics and 
machine learning (ML) has ushered in a new 
era in cancer research and clinical practices, 
offering transformative potential in diagnosis, 
prognosis, and treatment prediction [36,37]. 
AI and ML algorithms now play crucial roles 
in predicting treatment responses, facilitating 
early cancer detection, and enhancing prognosis 
accuracy. This progress is further fueled by open-
source healthcare datasets and next-generation 
sequencing technology, enabling detailed genomic 
analysis, including microRNA and RNA-seq profiling 
[38]. 
ML techniques, such as Support Vector Machine 
classifiers, exhibit promise in accurately classifying 
cancer types and predicting clinical metrics [39]. 
Computational methods aid in somatic mutation 
detection, thereby improving cancer prognosis and 
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guiding targeted therapy decision [40]. However, 
despite these advancements, critical research gaps 
persist, highlighting for further investigation.
Research must delve into metastatic cancer 
with symmetrically handled data, enabling 
a comprehensive understanding of disease 
progression and treatment responses. Additionally, 
precise detection of driver mutations, for tailoring 
treatments to individual patients, emphasizing the 
importance of integrating academic insights into 
clinical practice.  Moreover, questions regarding 
the nature of data, method efficacy, tool reliability, 
and economic feasibility must be addressed to 
ensure the practicality and efficacy of ML-driven 
cancer genomics applications [41-45].
While  ML and AI's hold tremendous promise in cancer 
genomics, several challenges must be overcome 
before widespread clinical implementation [46]. 
Understanding the theoretical foundations of 
deep learning, addressing algorithmic opacity, and 
ensuring the quality of medical data used for ML 
model training are crucial steps in this process 
[47]. Databases like CancerSysDB provide valuable 
resources for accessing cancer-related data, while 
ML techniques combined with topological analysis 
of genomic data offer new avenues for predicting 
cancer phenotypes [48].	
Looking ahead, future research in cancer genomics 
and ML should prioritize robust methods for 
analyzing vast genomic data, integrating big data 
mining approaches, and exploring ML algorithms 
for classification and subtyping. Additionally, 
improving understanding of cancer biology and 
drug discovery through ML-driven research efforts 
will further advance personalized medicine and 
precision oncology [49,50].
Addressing these research gaps is paramount for 
realizing the full potential of cancer genomics 
and ML in improving patient outcomes, guiding 
treatment decisions, and advancing our 
understanding of cancer biology. By leveraging 
ML-driven approaches and interdisciplinary 
collaboration, progress towards a more effective 
cancer prevention, diagnosis, and treatment 
strategies can be made.
The fusion of bioinformatics and ML has not only 
reshaped biology and healthcare paradigms but 
also revolutionized our understanding of complex 
biological processes [51]. ML algorithms play a 
crucial role in analyzing biological data, aiding in 
disease identification, and unraveling intricate 
aspects such as transposable elements and 

their regulatory mechanisms. This contribution 
extends to genome evolution, development, 
diseases, and drug resistance, enriching our 
comprehension of these critical areas [52]. The 
synergy between bioinformatics and ML enables 
systematic cancer analysis, fostering data-driven 
research and innovative approaches in prognosis, 
prediction, and treatment [53]. However, several 
research gaps persist, including the assessment of 
Anderson Acceleration in classical ML classifiers, 
the lack of standardized big data architectures 
for bioinformatics challenges, and the need for 
ML methods predicting biological activity based 
on biosynthetic gene clusters [54-56]. Anderson 
Acceleration, renowned for enhancing the 
convergence of gradient descent algorithms, 
exhibits potential in training bioinformatic-based 
ML [54].
The integration of bioinformatics and ML into 
clinical settings is essential for evidence-based 
practice [57]. ML's application in bioinformatics 
spans various domains such as microarrays, 
genomics, proteomics, and text mining, facilitating 
high-throughput biological data analysis and data-
driven predictions [58]. Future research endeavors 
should prioritize ML techniques for predicting 
obesity and chronic diseases [59], delve deeper 
into ML algorithms for bioinformatics analysis, 
integrate computational methods in cancer 
biology, and address challenges associated with 
data management and storage in ML algorithms 
[60,61].
Addressing these research gaps is paramount 
for advancing personalized medicine, precision 
diagnostics, and targeted therapeutics. Enhancing 
ML algorithms' capabilities in analyzing biological 
data not only enhances our understanding 
of disease mechanisms but also paves the 
way for novel interventions and treatment 
strategies. Standardizing big data architectures in 
bioinformatics can streamline research efforts and 
foster collaboration across disciplines, leading to 
more robust and reproducible findings. Moreover, 
integrating ML into clinical practice empowers 
healthcare professionals with data-driven insights, 
enabling more accurate diagnoses, personalized 
treatments, and improved patient outcomes. 
By bridging these gaps, the full potential 
of bioinformatics and ML in revolutionizing 
healthcare delivery and the future of medicine can 
be realized.
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The synergy between precision medicine and 
ML has propelled significant advancements,  
particularly in the analysis of complex biological 
data, thereby impacting structural biology and 
precision medicine research [62]. However, 
challenges persists, such as accurately predicting 
complex protein structures, reliance on 
experimentally determined structures, and 
concerns regarding security and privacy [63]. 
Precision medicine endeavors to tailor treatment 
based on genetic and environmental factors, 
laveraging ML for data-driven diagnostics [64]. Yet, 
challenges remain in identifying biomarkers for 
heterogeneous diseases, enhancing deep learning 
datasets and exploring ML’s potential in clinical 
trial design [65,66].
Practical evidence underscores ML's capacity to 
deliver personalized treatments and improve 
diagnostics [67]. Nonetheless, challenges such as 
comprehending deep learning theory, addressing 
algorithmic opacity, and ensuring data quality 
must be resolved to successful integrate ML into 
clinical settings [68-70]. The fusion of precision 
medicine with ML offers promising prospects for 
personalized treatments, refined diagnoses, and 
enhanced disease prevention and management 
[71-73].
Addressing these challenges is paramount for 
realizing the full potential of precision medicine 
and ML. Accurate prediction of complex protein 
structures and the identification of biomarkers for 
heterogeneous diseases are critical for advancing 
personalized treatments and diagnostics. 
Moreover, overcoming algorithmic opacity and 
ensuring data quality are essential for establishing 
trust in ML-driven clinical decision-making. By 
addressing these gaps, it unlock the transformative 
potential of precision medicine and ML to usher 
in a new era of personalized healthcare tailored to 
individual patients' needs and characteristics.

Advancements in disease biomarkers and ML 
have opened up avenues for personalized 
medicine with profound implications for patient 
care. ML, coupled with high-throughput assays 
and computational techniques,  has empowered 
the identification of tumor-specific signatures, 
offering insights into patient responses and aiding 
in tailored therapies [74]. Moreover, ML excels 
in predicting neurodegenerative diseases by 
laveraging clinical and genetic biomarkers for early 
detection and personalized treatment strategies 

[75]. However, several challenges persist, including 
limited analysis of neuropsychiatric symptoms, the 
necessity for novel biomarkers, and the demand 
for interpretable ML models to navigate complex 
metabolomics data [76-78].
While ML techniques excel in discerning complex 
patterns within disease biomarkers, transparency 
remains an issue [79]. Explainable AI (XAI) methods 
offer a promising solution by providing insights into 
ML algorithms, enhancing their applicable [80]. 
In the realm of disease biomarkers, XAI methods 
such as Layer-wise relevance propagation (LRP), 
VGG-16, and CNN [81] can analyze and interpret 
results obtained from ML algorithms, shedding 
light on decision making processes [81]. LRP, for 
instance, operates by propagating the prediction 
backwards in the neural network using specialized 
propagation rules, offering valuable insights into 
model prediction across various data modalities 
[82,83].
ML approaches have significantly contributed 
to disease biomarker identification, paving the 
way for personalized medicine and diagnostics 
[84,85]. However, challenges such as opacity 
in decision-making and data quality must be 
addressed to seamlessly integrate ML into clinical 
practice [86]. By tackling these challenges and 
enhancing transparency in ML models, healthcare 
practitioners can leverage the full potential of ML 
in disease biomarker identification, ultimately 
improving patient outcomes and revolutionizing 
personalized medicine.

Advancements in Genetic Algorithms (GAs) and 
ML have transformed medicine, offering solutions 
and predictive models with significant impacts on 
patient care [87]. ML applications in healthcare 
range from risk prediction models to discovery 
of unknown disease subtypes [88,89]. However, 
crucial research gaps persist, such as the need for 
a broader vision of GAs, understanding Genetic 
Programming (GP) relationships, and addressing 
problems in combinatorial and optimization 
challenges [90]. 
GAs  have already shown promise in optimizing 
drug therapy decisions and contributing to drug 
development [91], but expanding their applications 
could revolutionize treatment protocols and 
resource allocation in healthcare. Additionally, 
improving our understanding of GP relationships 
can refine GAs for medical imaging analysis and 
drug discovery. 
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Addressing combinatorial and optimization 
challenges is essential for streamlining healthcare 
processes and resource utilization. Practical 
applications of GAs and ML, such as personalized 
dietary recommendations [92], medical check-
up processes [93] and patient assignments [94], 
highlight their real-world impact.
Future research should focus on developing 
personalized recommendation systems, improving 
function optimization in GAs, exploring hybrid 
algorithms, and enhancing genetic operators' 
integration [95,96]. By addressing these gaps, it 
can drive innovation in healthcare delivery and 
improve patient outcomes.

CONCLUSION 

This review study comprehensively examines cancer 
genomics, bioinformatics, precision medicine, 
disease biomarkers, and GAs, revealing significant 
advances, critical research gaps, and forward-
looking recommendations in each area. These 
findings collectively underscore the transformative 
potential of interdisciplinary approaches rooted 
in ML and advanced computational methods, 
offering personalized, data-driven healthcare 
solutions. By addressing identified gaps, such as 
the need for precise driver mutation detection 
and interpretable ML models, the study hopes to 
overcome current challenges in the field and propel 
advancements in disease diagnosis, prognosis, 
and treatment. Looking ahead, future research 
should prioritize robust methods for genomic data 
analysis, enhance algorithmic transparency, and 
integrate computational approaches into clinical 
practice to drive further progress in improving 
patient outcomes.
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