74

Scientia Africana, Vol. 14 (No.2), December 2015. Pp 74-81

© College of Natural and Applied Sciences, University of Port Harcourt, Printed in Nigeria

ISSN 1118 — 1931

CONVERGENCE OF HYBRID METHODS FOR SOLVING NON-LINEAR
PARTIAL DIFFERENTIAL EQUATIONS.

F. E. Bazuaye

Department of Mathematics and Statistics,
University of Portharcourt,
Portharcourt, Rivers State.

Email: febazuaye@yahoo.com.

Tel: +2348025605623.

Received: 15-06-15
Accepted:13-10-15

ABSTRACT

This paper is concerned with the numerical solution and convergence analysis of non-linear
partial differential equations using a hybrid method. The solution technique involves
discretizing the non-linear system of PDE to obtain a corresponding non-linear system of
algebraic difference equations to be solved at each time level. Several values of mesh size
chosen, the results show that the numerical results approach the exact solution as the mesh
size tends to zero; which confirmed convergence of the scheme.

INTRODUCTION

The scheme developed in this project is
applied to solving megnetogydrodynamic
(MHD) non-linear system of partial
differential equations. The methodology is
applied to discretize and solve the system.

According to Chaudhary et al (2013), an
MHD model governing an unsteady free
convection flow of an incompressible fluid
through a vertical channel formed by two
parallel plates moving with equal velocity
but in opposite directions is given by

ou  au . ou v B ’u
— =V, —=gpB(T-T,)+ C-C,)+Vv— ——u-c—
a oy gB(T-T,)+ 9B’ (C-Cy) 5 K,
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Kk _pdo ot
ot oy oy oy

where g, 8, 8, D, S, D, p, V,, o, andC,
are all known values (constants), for this
particuar system of equations. T,,and C,

are temperature and concentration of plate at
distance y =d, respectively.

Mathematical Formulation

Originally, the system is to

boundary conditions

subject

U=U+ L 20T =Ty e (T, T, 0=Cyr € (Co~Cy)e™ aty =0,
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u=—U+L1(’i—3;,T=Td c=C,, aty=d;

where L(z r_nmlJL; L is the mean free path, and m, is Maxwell’s reflection coefficient.
1
after non-dimensionalization by Chaudary et al (2013), the governing equations transform to

2 2
WM _N _erag+Geac+ LY A M7,

Aot oy Aoy® Kk k

2

i oy Py
woC oC_ 1 d'u, S, 0%

A ot ay_smay 2 oy?

with corresponding boundary conditions
u :1+m%, f=1+ree",C=1l+ee" aty=0

u=—1+hl%u, 6=6, C=0 at y=1

From the governing equations, this defines a AV 1

one-dimensional MHD flow. Y= n+1

Q={y0<y<ZIjare of three subsets for this particular system, since non-
—j=L1l<j<n,j=n. dimensionalized length =1.

Let At= time step, and Ay = mesh length
(stencil size). Suppose we choose n discrete ~ MATERIALS AND METHODS

nodes internally, the mesh length is defined ~ Following Bazuaye and Tamuno (2015) the
by discretization is obtained as follows;

UI-+1—UI- UI-+1—UI-+1 UI. —UI-
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Moving everything to the LHS, this gives
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( ) and equate the resultant finite difference scheme to F,
=( U ) U U g~ e (07 +0))+
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Moving everything to the LHS, this gives
ﬂ[ejﬂ—e} J_ 1(0}3 o' N 6, — 9}1J_ 1 1(9}1&29'“9'“ . 0., +20 —e}lJ_
A

At 2l 2y 2Ay Pz 2 (Ay)? (Ay)?
asi(e+0)=0
2
Let o :—Lz, and o, =— ASAL and equate the resultant finite difference scheme
2WP 7 (Ay) 2WAA

to F,,
F,=(0" -6 )+a (0 -6 +6 -

0, +20 -0\, )+a, (6 + 9,.)

O, )+ a6 +261 o1 +

Discretizing third equation;

wlc=ci] | C'jill—C'ﬁJrC',-ﬂ—C'j_l 1 1(ci+2ct e 1+ ¢\, +2c—c!_ N
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Moving everything to the LHS, this gives

wlcit=ci) | C'jﬁll—C'jﬂ+C',-+1—C'j,l 1 e+~ ;fﬁ+c]+l+2c Cja)
Al At 2l 2ay 2Ay ScA 2 (Ay)? (Ay)?

So1l 9}11+20'+1 H}j 6?1'+1+29}—0}71 B

A2 (Ay)* (Ay)®

Let agz—Lz, and a9=—SO—At2 and equate the resultant finite difference
2wSc(Ay) 2W(AA)

scheme to F;,

F=(Cl" -0 )+a(cit-clteC! —C! )+a(clt+2c! —Cli

Cl +2C—C! J+a,(0 +201 —0"1 16! +20! -0 ,)

Hence, the discretization to the system of partial differential equations are

1+1 1+1 1+1 | 1+1 |
Fl—(u u)+0¢1(uj+1 u 1+uJ+1 u_l):az(ej +¢9])+
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1+1 | 1+1 I+1 I+l | | 1+1
053(Cj +Cj)+a4( +2uS™ —ul +ul,, +2u) —u jl)+0¢5(u +u)

j+l j+l
F,=(0" -6 )+ a0 - 0'+1+9,+1 0!, )= (o1 +20 — 61 +
0, +20 -0, )+a, (61" +0!)
F3:(C'-+1—C'-)+a1(C:ﬁ—C'+l+C:+1 Cl,)=g(Clt+2C!*—Clt 4
Cl +2C—C! J+a,(0'+201 -0+ 6!, +20' -0 )

To implement the Newton-Raphson iterative  respect to u}™, ;" andC}™, since these are
algorithm, we obtain the Jacobian matrix
J(j) for each jth node by finding the first

partial derivatives of F, F,andF, with

the nodal values we seek to obtain from a
current time level, 1.

. oF,
J1:(] )_ + _1+20‘4+a’5’ J())= 1% 13(]):—120‘3
a | 1 el 1 aHJl 1
Jn(] )_F 0, Jun(] )—W—1+2a6 a;, d(]) = ae}ﬂ
31( ) ae|+1 O’ 32( ) 89|+1 97 33(]) 9:+1 _1+2a8
Therefore Jacobian matrix for jth node is
Jin(1) (1) Ii5(0) 1+2a, +a; @, ;3
(1) =] 31(1) 3,,(0) I()) |= 0 1+ 205 + o 0
Jsl(j) J32(j) ‘]33(j) 0 2059 1+ 20{8
Applying boundary condition ¢, and ¢, boundary conditions simultaneously. These

Form the boundary conditions, this system  conditions are applied to the difference
is subject to Neumann boundary conditions, ~ equations  for the boundary  nodes,
Dirichlet boundary conditions and Cauchy ~ J=1and j=n.

Node j=1; Subject boundary condition ¢,
Fu™ =D+, (U™ = &3 u(0) +uy — Sou(0) + o, (67 +0)) + a, (C +C) +
a, (uy™ +2u™ — £ u(0) +uj + 2u) — £au(0)) + org (U, ™ +uy)
F, = (6" —6))+ (6"~ &5"0(0) + 6, — ,60(0)) + 5 (65 + 26, — £576(0) +
01+260, - £0(0) +a, (G +6))
F=(C" ~C)+a(C;" = ¢,"C(0) +C; —¢,C(0)) +5 (C; " +2C, " — £, "C(0) +
C1+2C, —£5C(0) + o (6, +20,™ — £70(0) + 01 + 26, — £,6(0))

Since the jth Jacobian matrix has constant entries, the Jacobin matrix remains the same.
That is
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Ju (1) J(3) Ius(h)
J(l): J21(j) Jzz(j) st(j) =
Ja1 (1) Ja2() Iss(h)

1+2a,+a;, «, oy
0 1+ 20, + 0
0 20, 1+ 2¢,

Node j =n; Subject boundary condition ¢,

R =) + e (6 u® —ugy

+ 4;“(1) _url1—1) t+a, (6’r|1+l + Hrll) + as(crlm+l + Crl1) +

a, (&M u@ +2ult +2ult + Su@) - 20! —u!  + o (Ul +ul)

F (6" —6) + (8100 — 6,1 +£160) - 6, + s (6, 6(1) +
201 — 0 4 £H01) + 26! — 6! ) + o, (07 + 6Y)

F=(C"-C)+a(s"C@)-Ch

2C|+1

n—

_CHi + QMC(]-) + 2Cr|1 _Crl1—1) + 059( 1

+ élllc(l) - Crll—l) t+ g (é/lmc(l) +
o) +20 -

01 +¢100) +20,-0,.)

NUMERICAL ILLUSTRATIONS AND
ANALYSIS OF RESULTS

In this work, four numerical illustrations are
considered. These numerical examples are
drawn from examples treated by earlier
researchers  published in  reputable
international journals. This is to ascertain
the validity of the results obtained from the
scheme in comparison with others.
Perspective views of the solution domains
are shown, besides the numerical results, to
enhance visualization. Besides global errors
associated with the scheme for individual
problems are plotted to ascertain the
convergence of the scheme.

Numerical Ilustration
Consider the two-dimensional coupled non-
linear Bursger’s equations,

ou ou ou 1(d*u d
—tHU— V= —+—
ot ox oy Relox™ oy
N ov  ov 1 (o o
—HU—+V—=—| —+—
ot ox oy Relox® oy

with a solution domain
Q={(x,y);0<x<050<y<0.5}
Subject to initial conditions

u(x,y,0)=sinzx+coszy; Vv(x,y,0)=x+y
and boundary conditions
u(0,y,t) =coszny;
u(0.5,y,t) =1+cosny
v(O,y,t)=y;
v(0.5,y,t)=05+y
u(x,0,t) =1+sin zx;
u(x,0.5,t) =sin zx
v(x,0,t) =X;
u(x0.5,t) =x+0.5
We are obtain solutions to the governing
equations at time t = 0.625 and Reynolds
number Re =50 and 500.

Numerical Solution Using the Proposed
Scheme

For this problem, the solution domain
Q={(x,y);0<x<050<y<0.5} is
discretized uniformly using 20x20grids.
That is, suppose mand n are the internal

nodes in the Xx—andy-—directions
respectively; then m=n=19.Since the
computational domain

Q={(x,y);0<x<050<y<0.5} defines a
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square geometry such that L =L, =0.5,
the uniform mesh size Axx Ay is defined by
AX=Ay = L, : :%:0.025
m+1 20
A time step, At=0.0001 is used. Therefore
time levels required to obtain numerical
solutions of the system at time t =0.625 is
0.625 0.625 _ 6250 time

At 0.0001

14 0625 —

levels
The 20x20grids discretization results in
361 internal nodes, as obtained in section

4.1, with total number of nodes in and on
boundary of solution domain = 441. The
boundary conditions for this problem are all
Cauchy.

In other to effectively solve the resulting
7220 x 722 nonlinear  system of finite
difference equations, which are to be solved
for each of the 6250 time level to obtain
results for time t=0.625with a time step
At =0.0001, MATLAB program is written
to implement the scheme.

Table (5.2a) Numerical solutions; Re=50,Ax =Ay =0.05,At =0.0001att =0.625

u(x,y,0.625); Re=50

(x,Y) Jain and Bahadir A.  Srivastava et Project
Holla . al Result

(0.1,0.2) 0.97258 0.96688 0.97146 0.97146
(0.3,0.1) 1.16214 1.14827 1.15280 1.15282
(0.2,0.2) 0.86281 0.85911 0.86307 0.86307
(0.4,0.2) 0.96483 0.97637 0.97981 0.97982
(0.1,0.3) 0.66318 0.66019 0.67316 0.66316
(0.3,0.3) 0.77030 0.76932 0.77230 0.77230
(0.2,0.4) 0.58070 0.57966 0.58180 0.58180
(0.4,0.4) 0.74435 0.75678 0.75856 0.75856

v(X,Y,0.625); Re=50

(x,y) Jain and Bahadir A.  Srivastava et Project
Holla . al Result

(0.1,0.2) 0.09773 0.09824 0.09869 0.09869
(0.3,0.1) 0.14039 0.14112 0.14158 0.14159
(0.2,0.2) 0.16660 0.16681 0.16754 0.16755
(0.4,0.2) 0.17397 0.17065 0.17110 0.17113
(0.1,0.3) 0.26294 0.26261 0.26378 0.26378
(0.3,0.3) 0.22463 0.22576 0.22654 0.22657
(0.2,0.4) 0.32402 0.32745 0.32851 0.32852
(0.4,0.4) 0.31822 0.32441 0.32500 0.32506
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Table (5.2b) Numerical solutions; Re =500, Ax = Ay =0.05, At =0.0001 att =0.625
u(x,y,0.625); Re =500

(x,Y) Jain and Holla Bahadir A. R. Srivastava et al Project Result
(0.150.1) 0.95691 0.96650 0.96870 0.96870
(0.3,0.1) 0.95616 1.02970 1.03200 1.03202
(0.10.2) 0.84257 0.84449 0.86178 0.84619
(0.2.0.2) 0.86399 0.87631 0.87814 0.87814
(0.1,0.3) 0.67667 0.67809 0.67920 0.67920
(0.3,0.3) 0.76876 0.79792 0.79947 0.79947
(0.15.0.4) 0.54408 0.54601 0.66036 0.54674
(0.2,0.4) 0.58778 0.58874 0.58959 0.58959

v(x,y,0.625); Re =500

(x,y) Jain and Holla Bahadir A. R. Srivastava et al Project Result
(0.150.1) 0.10177 0.09202 0.09043 0.09043
(0.3,0.1) 0.13287 0.10690 0.10728 0.10727
(0.10.2) 0.18503 0.17972 0.17295 0.18010
(0.2.0.2) 0.18169 0.16777 0.16816 0.16816
(0.1,0.3) 0.26560 0.26222 0.26268 0.26268
(0.3,0.3) 0.25142 0.23497 0.23550 0.23550
(0.15.0.4) 0.32084 0.31753 0.29019 0.31799
(0.2,0.4) 0.30927 0.30371 0.30419 0.30419

Numerical Study of Convergence with the exact solution given by Srivastava
Using the Berger’s equations in numerical  etal (2011) as

illustration 1, different values of mesh sizes 5 1

are used for a  fixed time ux,y.)=2- 4(L+ gty nI32y

t=0.5 At=0.001, Re=50. The average 1

global errors are computed in comparison v(xy.) =3+ A(L+ e x0Ty

Table (4.3a) Mean global errors and mesh sizes

Global Error
Mesh size u v

0.250000 0.001304 0.001303
0.166667 0.000709 0.000707
0.125000 0.000431 0.000428
0.100000 0.000289 0.000286
0.083333 0.000208 0.000205
0.071429 0.000158 0.000155
0.062500 0.000125 0.000122
0.555556 0.000102 0.000101
0.045455 0.000086 0.000086
0.041667 0.000074 0.000076
0.038462 0.000058 0.000069
0.035714 0.000052 0.000066
0.033333 0.000048 0.000069
0.031250 0.000045 0.000074
0.029412 0.000042 0.000083
0.027778 0.000040 0.000095
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To study the convergence behaviour of the
scheme from the time step perspective,
different  values of  time  steps

h=0.1, Re=50 at time t=0.5, numerical

illustration 1. Table (5.3b) and Fig. (5.3b)
show the results.

Table (5.3b) Mean global errors and time step sizes

Global Error
Mesh size u v

0.016667 0.000532 0.000693
0.008333 0.000350 0.000332
0.005556 0.000310 0.000321
0.004167 0.000297 0.000003
0.003333 0.000306 0.000296
0.002778 0.000289 0.000296
0.002381 0.000287 0.000296
0.002083 0.000287 0.000283
0.001852 0.000286 0.000282
0.001667 0.000286 0.000281
0.001515 0.000292 0.000281
0.001389 0.000285 0.000288
0.001282 0.000285 0.000281
0.001190 0.000284 0.000281
0.001111 0.000290 0.000281
0.001042 0.000284 0.000286
0.000980 0.000284 0.000281

This paper has investigated the numerical
solution and convergence analysis of non-
linear partial differential equations using
hybrid method. The solution technique
involves discretizing the nonlinear system
of the PDE to obtain a corresponding
nonlinear algebraic difference equation to
be solved at each time level. Several values
of meshsizes are chosen, the results show
that the numerical result approach the exact
solution as the meshsize tends to zero,
which confirmed the convergence of the
scheme. It also show that the new scheme is
superior in terms of convergence to the
work of Allen (2005) and Strivastava et al
(2011)
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