
82

Scientia Africana, Vol. 14 (No.2), December 2015. Pp 82-98

© College of Natural and Applied Sciences, University of Port Harcourt, Printed in Nigeria ISSN 1118 – 1931

AN EMPIRICAL TIME COMPLEXITY ANALYSIS FOR A CLASS OF GRAPH

ROUTE PROBLEMS

U. A. Okengwu
1
 and M. O. Musa

2

1
Department of Computer Science,

University of Port Harcourt, Port Harcourt, Nigeria

Email: ugodepaker@yahoo.com
2
Department of Computer Science,

University of Port Harcourt, Port Harcourt, Nigeria

Email: marthaozy@yahoo.com

Received: 10-07-15

Accepted: 14-10-15

ABSTRACT

In this paper, we investigate Empirical Time Complexity of a Modified Dijkstra algorithm for

the multi-source to multi-destination problem. We use the Netbeans profiler tool in Java

language to perform several runs on an experimental data-set derived with GPS and

processed with Arc-Map Software. From the means plot of the runs, it was

observed that the model has an experimental linear time complexity with a slightly better

running time than Standard Dijkstra Algorithm.

Key-words: Empirical Time Complexity, Modified Dijkstra-Algorithm, Multi-Source to

Multi-Destination

INTRODUCTION

Shortest-path algorithms are a class of

computational intensive routines that

basically seek to minimize the path to reach

a destination from a given source point. One

of the most popular algorithms for such

class of problems is the Dijkstra Algorithm

of which several variants exist. Some of

these algorithms are dependent on the

cardinality of the input-output for which we

have the Multi-pairs Wang et al (2005), and

some recent hierarchical approaches

(Geisberger et al, 2010), Schultes et al

(2008), Okengwu et al (2015). These

approaches seek to minimize the cost of

path discovery in very large datasets.

However, very little studies have been done

in the area of empirical time complexity of a

Modified Dijkstra Algorithm for Multi-

Sources and Multi-Destinations. In this

paper, ETC studies will be performed on a

Modified Dijkstra Algorithm developed

specifically for Multi-Source to Multi-

Destination problem. The aim of this

research is to carry out an Empirical Time

Complexity (ETC) analysis on a modified

version of Dijkstra’s Algorithm and verify if

there are slight improvements over the

standard algorithm. The study shall focus on

a Multiple-Source to Multiple-Destination

shortest path problem using a real time data

set.

MATERIALS AND METHODS

Dijkstra algorithm shown in algorithm 1

below was conceived by computer scientist

Edsger Dijkstra in 1956 and published in

1959, is a graph search algorithm that solves

the single-source shortest path problem for a

graph with non-negative edge path costs,

producing a shortest path tree. This

Algorithm is often used in routing and as

subroutine in other graph algorithm.

mailto:ugodepaker@yahoo.com
mailto:marthaozy@yahoo.com

83

Okengwu U.A and Musa M.O: An Empirical Time Complexity Analysis for a Class of Graph Route Problems

The Dijkstra Algoritm

 function Dijkstra (Graph, source):

 for each vertex v in Graph: // Initializations

 dist[v]:= infinity; // Unknown distance function from

 // source to v

 previous[v]:= undefined; // Previous node in optimal path

 end for // from source

 dist[source] := 0 ; // Distance from source to source

 Q: = the set of all nodes in Graph; // All nodes in the graph are

 // unoptimized – thus are in Q

 while Q is not empty: // The main loop

 u: = vertex in Q with smallest distance in dist[] ; // Source node in first case

 remove u from Q ;

 if dist[u] = infinity:

 break ; // all remaining vertices are

 end if // inaccessible from source

 for each neighbor v of u: // where v has not yet been removed from Q

 alt := dist[u] + dist_between(u, v) ;

 if alt < dist[v]: // Relax (u,v,a)

 dist[v] := alt ;

 previous[v] := u ;

 decrease-key v in Q; // Reorder v in the Queue

 end if

 end for

 end while

 return dist;

 end function

 Algorithm 1: Dijsktra Algorithm (Source: Melissa, 2012)

For a given source vertex (node) in the

graph, the algorithm finds the path with

lowest cost (i.e. the shortest path) between

that vertex and every other vertex. It can

also be used for finding costs of shortest

paths from a single vertex to a single

destination vertex by stopping the algorithm

once the shortest path to the destination

vertex has been determined. For example, if

the vertices of the graph represent cities and

edge path costs represent driving distances

between pairs of cities connected by a direct

road, Dijkstra's algorithm can be used to

find the shortest route between one city and

all other cities. As a result, the shortest path

first is widely used in network routing

protocols.

In the algorithm 1 above, the code u: =

vertex in Q with smallest dist[], searches for

the vertex u in the vertex set Q that has the

least dist[u] value. That vertex is removed

from the priority queue Q and returned to

the user. dist_between (u, v) calculates the

length between the two neighbour-

84

Scientia Africana, Vol. 14 (No.2), December 2015. Pp 82-98

© College of Natural and Applied Sciences, University of Port Harcourt, Printed in Nigeria ISSN 1118 – 1931

nodes u and v. The variable alt on lines 18

& 20 is the length of the path from the root

node to the neighbour node v if it were to go

through u. If this path is shorter than the

current shortest path recorded for v, that

current path is replaced with this alt path.

The previous array is populated with a

pointer to the "next-hop" node on the source

graph to get the shortest route to the source.

Suppose you would like to find the shortest

path between two intersections on a city

map, a starting point and a destination. The

order is conceptually simple: to start, mark

the distance to every intersection on the map

with infinity. This is done not to imply there

is an infinite distance, but to note that

intersection has not yet been visited; some

variants of this method simply leave the

intersection unlabeled. Now at each

iteration, select a current intersection. For

the first iteration, the current intersection

will be the starting point and the distance to

it (the intersection's label) will be zero. For

subsequent iterations (after the first), the

current intersection will be the closest

unvisited intersection to the starting point—

this will be easy to find.

From the current intersection, update the

distance to every unvisited intersection that

is directly connected to it. This is done by

determining the sum of the distance between

an unvisited intersection and the value of

the current intersection, and relabeling the

unvisited intersection with this value if it is

less than its current value. In effect, the

intersection is relabeled if the path to it

through the current intersection is shorter

than the previously known paths. To

facilitate shortest path identification, in

pencil, mark the road with an arrow pointing

to the relabeled intersection if you label or

relabel it, and erase all others pointing to it.

After you have updated the distances to

each neighboring intersection, mark the

current intersection as visited and select the

unvisited intersection with lowest distance

(from the starting point) – or the lowest

label—as the current intersection. Nodes

marked as visited are labeled with the

shortest path from the starting point to it and

will not be revisited or returned to. Continue

this process of updating the neighboring

intersections with the shortest distances,

then marking the current intersection as

visited and moving onto the closest

unvisited intersection until you have marked

the destination as visited. Once you have

marked the destination as visited (as is the

case with any visited intersection) you have

determined the shortest path to it, from the

starting point, and can trace your way back,

following the arrows in reverse. Note that

this algorithm makes no attempt to direct

"exploration" towards the destination as one

might expect. Rather, the sole consideration

in determining the next "current"

intersection is its distance from the starting

point. This algorithm, therefore "expands

outward" from the starting point,

interactively considering every node that is

closer in terms of shortest path distance

until it reaches the destination. When

understood in this way, it is clear how the

algorithm necessarily finds the shortest

path; however, it may also reveal one of the

algorithm's weaknesses: its relative

slowness in some topologies.

The Modified Dijkstra Algorithm:

PROCEDURE Parallel-Dijkstra Graph,

Source-Vertices

 //M
n
:= all possible Queues holding the set

of all nodes (V) in the Graph (G) ∉ Source-

Vertices

For each Vertex (V) in the Graph (G) ∉

Source -Vertices (SV);

 //V: = Hospitals in Rivers State, SV:

= Communities, Towns all in Rivers

State

85

Okengwu U.A and Musa M.O: An Empirical Time Complexity Analysis for a Class of Graph Route Problems

 Dist [V
n
]:= ∞; // Unknown distance

for all non- source vertices in the graph

 Previous [V
n
]: = Undefined;

End for

IN PARALLEL DO

BEGIN

 Dist [SV
n
] := 0 // No previous nodes with

optimal path from SV
n

 M
n
: = All Queues holding the set of all

nodes (V) in the Graph (G) ∉ Source-

Vertices (SV
n
)

 While M
n
 ≠ empty:

 Y
n
:= Vertices in M

n
 with Shortest distance

in Dist [V];

Remove Y
n
 from M

n;

If Dist[Y
n
]:=∞//Unknown distance from

neighboring nodes of Y
n

in the Graph;

Break;

End if;

For each neighboring V of Y
n

with Dist

[V
1
,V

2
,V

3
…V

n
]

K
n
:=neighboring Vertices (V) of Y

n

K
n
:= Dist_between [SV

n
,Y

n
]

+ Dist_between

[Y,K]

If K
n
[Dist]< Dist[V

1
,V

2
,V

3
…V

n
]

Dist[V
n
]:=K

n

Previous (V
n
):=Y

n

Decrease-Key Y
n
 in M

n

While M
n
 = empty

End if

End For

End while

END

Algorithm 2: Modified Dijkstra Algorithm

The Modified Dijkstra Algorithm illustrated

in Algorithm 2 above handles multiple-

source to multiple-destination starts with

initialization of parameters, where M
n

represents queues of all nodes. Source

vertices are specified as SV and other

vertices as V.

Dist [V] represents hospital locations which

are initialized as infinity (because distance

to a particular hospital is not known yet.

Previous [V] is undefined, the communities

are represented as SV
n
, Dist SV

n
=0 shows

the multiple source our algorithm is

addressing. Dist SV
n
 is assigned zero

because no optimal paths have been

previously assigned to those communities.

IN PARALLEL DO will concurrently

initiate separate threads that will handle

each queue in M
n
. M

n
refers to all possible

queues holding set of all nodes in the graph

represented by V.

While M
n
 is not empty means that as long as

all the queues in M
n
 still have nodes to

consider then select Y
n
, which should be the

shortest paths from communities to

hospitals. Then remove Y
n

from M
n
, since

they have been identified as shortest paths.

If the Dist(Y
n
) assigned infinity while

considering neighbouring nodes that are

inaccessible, the algorithm breaks. That is,

the system will keep searching until it finds

out that, there is no unknown distance from

neighboring nodes that exists. The first

shortest nodes (Y
n
) have neighbouring

nodes V that have not been removed from

M
n
. K

n
 are neighbouring vertices V

n
 to the

first nearest nodes Y
n
. The value of K

n
 is

the distance of the first shortest path plus the

distance from Y
n
 to the new vertice K for

the queues in M
n
. If K

n
 is less than V

n
 then

remove K
n
 from M

n
, then reorder Y

n
 in the

queues. While M
n
 is empty, the search ends.

Time Complexity Analysis using BIG-O

Notation

In the time complexity analysis of an

Algorithm, the Big-O notation, a theoretical

time complexity notation is routinely

employed. This may be in the best case,

worst case or average case. In every

instance where the variable “n” is used it

represents the size of the operation’s input.

86

Scientia Africana, Vol. 14 (No.2), December 2015. Pp 82-98

© College of Natural and Applied Sciences, University of Port Harcourt, Printed in Nigeria ISSN 1118 – 1931

Table 1 shows illustrations of BIG-O

notations. A useful guide may also be

obtained from [Big-O Cheat sheet, 200].

Table 1: Illustrations of Big-O notations

However, one major drawback of Big-O

notation is the manual restriction in its

interpretation. Also, it is not entirely clear

how well this translates into practice as

there might be some algorithmic dependent

factors not seen in the algorithm but will

appear in the simulations. Thus, there is yet

to be a universally agreed approach to the

theoretical approach. An alternative to Big-

O is the Empirical Time Complexity (ETC)

which is gradually gaining grounds with the

improvement in processing power of

modern PC’s.

The materials employed include the

hardware, software part for running the

simulations and the test field data.

The Hardware part includes:

i. A Samsung R60 (GPS) plus PC

ii. Processor Speed – 1.5Ghz

iii. Ram – 2GB

iv. Hard disk- 100Gb

The Software tools used for Simulations

study include:

i. Netbeans IDE for Java Code

Development

ii. Microsoft Excel for further Graph

Plots

Data Source and Data Collection

The test field data was obtained using GPS

and processed with ArcMap GIS Tool,

ArcMap (2015) using fly-distance measures.

A sample map of this extraction process is

shown in Figure 1. The distance matrix for

four source communities to several target

hospitals was obtained as shown in Table 2.

In figure 1 below shows Graph transverse

for Modified Dijkstra Algorithm, the

evaluation of the hospital route (for

instance, the route to the nearest hospital in

cases of emergency) involves the

assessment of the graphical network

produced by the targeted hospital locations

and communities where the hospitals are

situated. An edge of the graph of the

network represents the distance or road

network between hospitals whereas the

S/N Specific Command

Operation

Big-O

Notation

Sample Operations

1 Constant-Time Operation O (1) Variable declarations, if-else, while

2 Linear Operation O (n) Single for-loop

3 Quadratic Operation O (n
2
) Single for-loop with one inner for-loop, bubble

sort, quick sort (worst case).

4 Log Operation O (logn) Input operations cut-down by half or a factor

during loop processing. E.g. by using break, if-

else command and probably some stopping/ and

or an alternate logical transfer criterion.

5 Log-linear Operation O (n*logn) Single loops cut down by n* (half or a factor of)

the operations e.g. as in Heap sort functions.

87

Okengwu U.A and Musa M.O: An Empirical Time Complexity Analysis for a Class of Graph Route Problems

vertices represent the target hospitals, all in

Rivers State. The edge is weighted by the

cost incurred from multiple sources to

multiple destinations. Input to the algorithm

is in the form of a digraph, D={V,E} where

V represents the nodes (communities or

hospitals) and E represents the edges

(distance between the communities or

hospitals).

The data for the study area collected

through personal interviews, administration

of questionnaires and field survey using

GPS (Global positioning system). A GPS is

a tool in GIS for data acquisition. It can

acquire data on the location of hospitals in

geographic x, y, and z co-ordinates. The

GPS is a constellation of 27 NAVSTAR

satellites orbiting the earth at a height of

12,600miles; it has 5 monitoring stations

and individual receivers. By reading the

radio signals broadcast from as few as three

of these satellites simultaneously (a process

known as triangulation), a receiver on earth

can pin point its exact location on the

ground. This location is expressed in

latitude and longitude co-ordinates or UTM

(Universal Traverse Mercator) as the case

may be. Using the GPS, the exact location

of hospitals in Port Harcourt city can be

identified and mapped in a GIS environment

like Arcview 3.2, ArcGIS 9.1, and ArcMap.

Figure21below shows the fly distances from

assumed points within Ogbunabali,

Rumuogbai, Woji and Rumuomasi

communities to hospitals in these areas,

considering GPS coordinates of these

hospitals acquired using hand held GPS of

accuracy3-4meters. These hospital

distances as shown in table 2 were derived

by plotting the GPS coordinates using

ArcMap Software to generate maps for the

communities as shown in figure 2, figure 3,

figure 4, figure 5 respectively.

Fig 1: illustration of GraphTranverse from multiple-source to multiple-destination (shortest

path)

88

Scientia Africana, Vol. 14 (No.2), December 2015. Pp 82-98

© College of Natural and Applied Sciences, University of Port Harcourt, Printed in Nigeria ISSN 1118 – 1931

Fig 2: Fly distance of hospitals in Ogbunabali using ArcMap software

89

Okengwu U.A and Musa M.O: An Empirical Time Complexity Analysis for a Class of Graph Route Problems

Fig 3: Fly distance of hospitals in Rumuogba using ArcMap software

90

Scientia Africana, Vol. 14 (No.2), December 2015. Pp 82-98

© College of Natural and Applied Sciences, University of Port Harcourt, Printed in Nigeria ISSN 1118 – 1931

Fig 4: Fly distance of hospitals in Woji using ArcMap software

91

Okengwu U.A and Musa M.O: An Empirical Time Complexity Analysis for a Class of Graph Route Problems

Fig 5: Fly distance of hospitals in Rumuomasi using ArcMap software

92

Scientia Africana, Vol. 14 (No.2), December 2015. Pp 82-98

© College of Natural and Applied Sciences, University of Port Harcourt, Printed in Nigeria ISSN 1118 – 1931

Table 2: Distance of Hospitals from centre of the communities

In order to characterize the time complexity

effects in a Multi-Source to Multi-

Destination environment, adequate

methodologies need to be deployed. For an

ETC simulation study, the following steps

were performed:

i. Incremental modification of field

data size in orders of 2 and this is

done for 3-steps (see Appendix

I)

ii. Time simulation runs using

Modified Dijkstra program (see

Appendix II). The simulations

are done using the Netbeans

Profiler Tool. For a total of 12

runs, the snapshot image is saved

and recorded.

iii. In data collation stage, all

running times are merged and

tabulated for further analysis

S/N Communities Hospitals Distance

1. RUMUOMASI eddy medical centre 0.227km

 cresthill medical centre 0.312km

 mercy clinic 0.771km

 paragon clinic and imaging centre 1.184km

 opticare eye clinic 1.202km

2. RUMUOGBA pamo clinics 0.374km

 sapiens clinic 0.382km

 rivon clinic 0.277km

 sophia clinic 0.803km

 kenor clinic and maternity 0.513km

 morning star hospital 0.392km

3 WOJI precision imaging & ultrasound consultant 0.966km

 cumi medical centre 0.472km

 st. marys hospital 0.245km

 woji cottage hospital 1.342km

 alphonso hospital 1.526km

4 OGBUNABALI olivet clinic 0.384km

 halten clinic 0.438km

 charis optical 0.673km

 st patricks hospital 0.675km

 marina hospital 0.792km

93

Okengwu U.A and Musa M.O: An Empirical Time Complexity Analysis for a Class of Graph Route Problems

iv. Mean computation of tabulated

readings

v. Graphical Analysis of the

tabulated readings

The software design procedure will

typically include the following:

i. Launching the Netbeans IDE

Interface

ii. Creating the Main Application

Java Project and copying the

program to space (See Appendix

II for program listing)

iii. Creating required Inf.java class

to handle distance updates (see

Appendix III)

iv. Running the Program from the

Java Projects Tree.

RESULTS

 Table 3 below illustrates the time

complexity analysis results of both Dijkstra

Algorithm for Single-Source to Single-

Destination (SS-SD) approach and Modified

Dijkstra Algorithm for Multiple-Source to

Multiple-Destination (MS-MD) approach

using JAVA Netbeans Profiler. These two

algorithms where subjected to the same data

(fly distances of the hospitals from

communities in Rivers State) in three Test

Cases. The results show that it takes less

time for Modified Dijkstra Algorithm for

MS-MD to derive shortest paths from

multiple-source than the time it takes

Dijkstra Algorithm for SS-SD to derive

shortest path from single-source. While

figure 6 shows snapshots of the Netbeans

Profiler Dijkstra Algorithm for Test Case 1.

94

Scientia Africana, Vol. 14 (No.2), December 2015. Pp 82-98

© College of Natural and Applied Sciences, University of Port Harcourt, Printed in Nigeria ISSN 1118 – 1931

Fig 6: Snapshots of the Netbeans profiler DIJKSTRA ALGORITHM (Test1)

95

Okengwu U.A and Musa M.O: An Empirical Time Complexity Analysis for a Class of Graph Route Problems

Table 3: Results of run time as obtained from the Netbeans Profiler

S/N TEST1 TEST2 TEST3

 MS-MD SS-SD MS-MD SS-SD MS-MD SS-SD

(ms) (ms) (ms) (ms) (ms) (ms)

1 723 719 984 986 962 986

2 646 630 995 997 1046 1011

3 717 724 955 959 1053 1082

4 731 712 970 990 954 979

5 718 611 983 979 984 998

6 760 651 974 978 999 1005

7 632 748 990 993 988 1000

8 726 756 983 989 1021 1025

9 770 887 986 997 1012 1018

10 645 782 999 999 1128 1165

11 644 744 952 994 1033 1037

12 775 761 1026 1079 992 1009

M
ea

n
x

 707 729 983 995 1014 1026

Fig 7: Graph showing results for MS-MD AND SS-SD Algorithms in Test 1

500

550

600

650

700

750

800

850

900

950

1 2 3 4 5 6 7 8 9 10 11 12

R
u

n
ti

m
e

 in
 M

ill
i S

e
cs

No. of Runs

MS-MDTEST1

SS-SDTEST1

96

Scientia Africana, Vol. 14 (No.2), December 2015. Pp 82-98

© College of Natural and Applied Sciences, University of Port Harcourt, Printed in Nigeria ISSN 1118 – 1931

Fig 8: Graph showing results for MS-MD AND SS-SD Algorithims in Test 2

Fig 9: Graph showing results for MS-MD AND SS-SD Algorithims in Test 3

900

950

1000

1050

1100

1 2 3 4 5 6 7 8 9 10 11 12

R
u

n
ti

m
e

 in
 M

ill
i s

e
cs

No. of Runs

MS-MDTEST2

SS-SDTEST2

900

1000

1100

1200

1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
 C

o
m

p
le

xi
ty

Runs

MS-MDTEST3

SS-SDTEST3

97

Okengwu U.A and Musa M.O: An Empirical Time Complexity Analysis for a Class of Graph Route Problems

Fig10: Graph showing results from combined three Test cases

Figure 7 Test Case1 illustrates graphical

representation of both algorithms time

complexity results. Comparing the run time

of Multiple-Source to Multiple-Destination

and Single-Source to Single-Destination, we

can infer that on the first iteration both

algorithms start off with almost the same

running time (MS-MD at 723ms) and (SS-

SD at 719ms). As the number of iterations

increases precisely at the fifth iteration, the

SS-SD is shown to have the least running

time after that, there is an increase in the

running time of the SS-SD, conclusively the

SS-SD running time is more

computationally expensive relative to the

MS-MD.

Figure 8 Test Case2 illustrates graphical

representation of both algorithms time

complexity results, it can be seen that at the

initial iteration, the run time for the MS-MD

is lower relative to the SS-SD but as the

iteration progresses, the running time for the

MS-MD becomes better compared with the

SS-SD. conclusively the SS-SD running

time is more computationally expensive

relative to the MS-MD.

Figure 9 Test Case3 illustrates graphical

representation of both algorithms time

complexity results, it can be inferred that the

MS-MD has a lower run time than the SS-

SD which implies that the Modified Dijkstra

Algorithm is more efficient compared to

Dijkstra Algorithm when both algorithms

are subjected to the same data set.

Combining the three Test cases, it is

observed in figure 10 that MS-MD has the

lowest running time while SS-SD has the

highest running time, considering the fact

that the MS-MD algorithm performs

concurrent operations unlike the SS-SD

algorithm that handles single operation at a

time. This difference is clearly visible as the

number of iterations increases.

Conclusively, the MS-MD does not perform

poorly given the fact that it performs more

operations than the SS-SD algorithm.

500

600

700

800

900

1000

1100

1200

1 2 3 4 5 6 7 8 9 10 11 12

R
u

n
ti

m
e

 in
 M

ill
i S

e
cs

No of Runs

MS-MDTEST1

SS-SDTEST1

MS-MDTEST2

SS-SDTEST2

MS-MDTEST3

SS-SDTEST3

98

Scientia Africana, Vol. 14 (No.2), December 2015. Pp 82-98

© College of Natural and Applied Sciences, University of Port Harcourt, Printed in Nigeria ISSN 1118 – 1931

DISCUSSION

Dijkstra algorithm is a useful shortest path

optimisation routine when dealing with

datasets that are small in size. However, the

larger sizes of data, modifications of

Dijkstra algorithm are necessary. This paper

has performed empirical time complexity

(ETC) studies using Netbeans Profiler Tool

on a Modified Dijkstra Algorithm for multi-

source to multi-destinations with better

running times for the modified case. Thus,

performance of Dijkstra Algorithm and

modifications can be studied empirically. In

future, we would like to automate ETC tasks

for carrying out ETC studies on different

versions of the Dijkstra algorithm. The

shortest path problem is the problem of

finding the paths in a graph for which a

given traversal is a minimum. We also

conclude that given any number of vertices

N, the time complexity for the Modified

Dijkstra Algorithm is O(N
2
) and time

complexity for Dijkstra Algorithm is also

O(V
2
) where V is the number of vertices.

Hence the multiple-source to multiple-

destination implementation of the Modified

Dijkstra Algorithm yields the same time

complexity as the single source to single

destination implementation of Dijkstra

Algorithm knowing that for Modified

Dijkstra Algorithm more vertices are

considered while for Dijkstra Algorithm

considers one vertice.

 REFERENCES

Wang, I.L., Johnson E.l., and Sokol J.S.,

(2005). A Multiple Pairs Shortest

Path Algorithm. Journal of

Transportation Science, Vol. 39,

No.4, pp. 465-476.

Geisberger, R., Sanders, P., Schultes, D.,

and delling, D., (2008). Contraction

Hierachies: faster and Simpler

Hierarchical Routing in Road

networks. In: 7
th

 Workshop on

Experimental Algorithms. Springer-

Verlag, pp. 319-333.

Bast, H., Funke, S., Matijevic, D., Sanders,

P., and Schultes, D., (2007, January).

In Transit to Constant Time

Shortest-Path Queries in Road

Networks. In ALENEX.

OKENGWU, U. A., Nwachukwu E.O., and

Osegi, E. N., (2015). Modified

Dijkstra Algorithm with Invention

Hierarchies Applied to a Conic

Graph. arXiv preprint arXiv:

1503.02517.

Big-O Cheat sheet. Retrieved October 06,

2014 from http://bigocheatsheet.com

ArcGIS version 10.3 [Computer Software]

(1999-2014). Redlands, CA:

Enviromental Systems Research

Institute.

NetBeans IDE version 7.1.2 [Computer

Software] (2009-2010). Redwood

City, CA: Oracle Incorporation.

Melissa Y. (2012), Shortest part Algorithm,

retrieved from math.mit.edu/~roth,

May 2013.

http://bigocheatsheet.com/

