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ABSTRACT 

In studying individual parameters and the predicted response in regression analysis, three important 

properties are usually distinguished.  These are bias, variance and mean-square error. The choice of a 

predicted response has to be made on a balance of these properties and computational simplicity. To 

avoid over fitting, along with the obvious advantage of having a simpler equation, it is shown that the 

addition of a variable to a regression equation does not reduce the variance of a predicted response. 
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INTRODUCTION 

There is now a variety of estimation methods 

which are applicable to a single equation in a 

model and those which deal with the complete 

model in regression analysis; Schall (1991) and 

Fellner (1986). When planning to use a linear 

regression equation to predict a response, we are 

faced with the problem of selecting an adequate 

set of independent variables to include in the 

equation (Cantoni et al, 2005; Healy, 1990 and 

Bring, 1984).  A reasonable objective is the 

selection of a set which minimizes the variance of 

a predicted response plus possible biases in the 

estimates of the parameters of the regression 

equation.   

Draper and Smith (1998), Miller (1990) 

and Williams (1959) have given deserved 

attention to the problem of estimator bias in their 

texts.  Gunst and Mason (1976) and Trenkler 

(1980) have compared several regression 

estimators with respect to the generalized mean 

squared error criterion. Peixoto (1990) has 

provided additional motivation for the use of 

variable selection algorithms that restrict search to 

well-formulated models. Sakallioglue et al (2001) 

have compared biased estimator constructed as 

alternatives to the least squares estimators when 

multicollinearity is present. However, it is not 

mentioned explicitly that the addition of a variable 

to a regression equation can never reduce (and in 

fact usually increases) the variance of a predicted 

response. It seems that this is worth mentioning 

for the sake of understanding.  A convenient way 

to present the idea follows. 

 

MATERIALS AND METHODS 

Regression Estimates 

We define y to be an (n x 1) vector of observation, 

x to be an (n x p) matrix of independent variables, 

β to be a (p x 1) vector of parameters to be 

estimated and ϵ to be an (n x 1) vector of errors.   
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Then the model under consideration can be 

written in the form  

 y = xβ + ε          (1) 

 

 where E(ε) = 0 and var(ε) = σ
2
Ι, so that the 

elements of ε are uncorrelated. Consider these 

prediction equations: 

 ixy 111
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and 
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where the least squares parameter estimates in 

these two cases are given by: 

   yxxx 1

1

111
ˆ 


            (4) 

 

and  

 

 

 
1

~
   

11xx  
21xx   

-1
    yx1

          
11C   

12C      yx1
             yxCyxC 212111

   

        =                                         =                  =                      (5) 

 
2

~
  

12 xx  
22 xx        yx2

           
21C   

22C    yx2
             yxCyxC 222121

   

 

 

Here C11, C12, C21 and C22 are sub-matrices which, 

according to Searle (1982), are given by 
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          (5d) 

 

Let the vector  2,1 UU   represent a point in the 

space of the independent variables, the two 

estimates of the response for equations (2) and (3) 

are given by: 
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and  
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Using the identities (5a)  - (5d) for the inverse of a 

partitioned matrix we find: 
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Therefore, 

 E     22211 )()( yEyyEy   

= Var   1y  + Var  2y  – 2Cov  21, yy  
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= Var  2y  – Var  1y ,  

and since this expression is non-negative, we 

have: 

  Var  2y      Var  1y .          (9) 

 

According to Searle (1982) equality holds in the 

above expression only if 
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Since C22 is positive definite (Graybill, 1971), this 

implies only if 

 02

1
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or equivalently, according to (5b), only if 
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will equality hold. When 021 xx , equality holds 

only if the elements of 
2U  are particular linear 

combinations of the elements of 
1U , and when 

021 xx , the variances of the two estimates of 

the response are equal only if 
2U  = 0.   

 

These results apply to estimated regression 

coefficients as well as to predicted responses since 

the variance of a given coefficient corresponds to 

a particular choice of the vector  21,UU  . 

An intuitive argument can be given by 

remembering that an estimator of the response 

having zero variance would be provided by 

selecting an arbitrary constant and agreeing to 

always predict the response to be this value.  

Although it could be quite inaccurate, no other 

estimator could provide better precision. On the 

other hand, estimating one or more regression 

coefficients would introduce variability and 

provide a less precise, but hopefully, more 

accurate estimator. 

 

RESULTS AND DISCUSSION 

Below are two simple examples to illustrate most 

of the points made. 

 

Numerical Example 1 

Consider the hypothetical data in Table 1.

 

 

Table 1:  Hypothetical Data 

iX  iY  

1 

2 

3 

4 

5 

6 

5 

7 

7 

10 

16 

20 
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Let 
Lŷ  and Qŷ  be the prediction equations 

developed from the hypothetical data,  

where 

 Liŷ  = 
ix1̂  , 

and  

 Qiŷ   = ix1

~
  + 

2

2

~
ix  

For this data we obtain the least squares fits: 

 Liŷ  = (91)
-1

 (280 ix ), 

and 

 

Qiŷ   = (12,544)
-1

  (30,184 ix  +  1,736
2

ix ). 

 

The standardized variances of the two predicted 

responses and their ratio at each observed x-value 

are given in Table 2. 

 

Table 2:  Variance of Predicted Responses for Hypothetical Data 

iX  
2  Var Liŷ  

2  Var Qiŷ  Var Qiŷ  / Var Liŷ  

1 

2 

3 

4 

5 

6 

0.0110 

0.0440 

0.0989 

0.1758 

0.2747 

0.3956 

0.1183 

0.2790 

0.3214 

0.2589 

0.2790 

0.7433 

10.75 

6.34 

3.25 

1.47 

1.02 

1.88 

 

Numerical Example 2 

The data in Table 3 were taken from Draper and 

Smith (1998).  It contains the results of the 

experimental study to investigate the relation 

between the number of self-service coffee 

dispensers ( X ) in a cafeteria line and sales of 

coffee (Y ) measured in hundreds of gallons of 

coffee. 

 

Table 3:  Data for Cafeteria Coffee Sales 

Cafeteria 

I 

Number of Dispensers 

iX  

Coffee Sales 

iY  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

0 

0 

1 

1 

2 

2 

4 

4 

5 

5 

6 

6 

7 

508.1 

498.4 

568.2 

577.3 

651.7 

657.0 

755.3 

758.9 

787.6 

792.1 

841.4 

831.8 

854.7 
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14 7 871.4 

 

Consider the prediction equations 

Liŷ  =  0̂   +  
ix1̂   

and  

 Qiŷ   =  0

~
   +  ix1

~
  +  

2

2

~
ix  . 

For this cafeteria coffee sales data, we obtain the 

least squares fits: 

 Liŷ  =   527.326  + 51.427 ix  

and 

 Qiŷ   =  503.346  + 78.941 ix   -  3.969
2

ix . 

The variances of the predicted responses and their 

ratio at each observed x-value are given in Table 

4. 

 

Table 4: Variances of Predicted Responses for Cafeteria Coffee Sales Example 

iX  
2  Var Liŷ  

2  Var Qiŷ  Var Qiŷ  / Var Liŷ  

1 

2 

3 

4 

5 

6 

7 

0.1507 

0.101 

0.0753 

0.0736 

0.0959 

0.1421 

0.2123 

0.1507 

0.1535 

0.1942 

0.1896 

0.1420 

0.1426 

0.3647 

1.00 

1.52 

2.58 

2.58 

1.48 

1.00 

1.72 

 

In example 1, we observe from Table 2 that, over 

the set of points at which data was taken, use of 

the second degree term can increase the variance 

of the predicted response to more than ten times 

its value when the simpler equation is used. The 

increase in the variance of the predicted response, 

when the second degree term is used, is also 

observed from Table 4 of example 2 to be more 

than two times its value when the simpler 

equation is used. However, this is quite apart from 

any consideration of which, if either, of the two 

equations is correct. That is, estimates from both 

equations may be biased in amounts depending on 

the nature of the true model. 

It follows that adding a variable to the 

equation can never improve the precision but only 

remove possible biases from the various estimates 

obtained from the regression analysis. 

Simultaneous reduction of both variance and bias 

may be achieved only by the substitution of a new 

variable for one already in the equation.   

 

CONCLUSION 

In many regression and scientific studies, there is 

an ambition to compare the relative importance of 

different variables.  We are faced with situations 

where we fit one model (e.g., a straight line) but 

we fear that this model may be somewhat 

inadequate (e.g., there may in fact be a little 

quadratic curvature). 

We can talk in terms of the fitted model 

and the true model but it is better to think in terms 

of the fitted model and the feared model 

alternative.  Interest should be on what might be 

wrong with the model fitted if some specified 

alternative were true.  It has been shown in this 
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paper that the addition of a variable to a 

regression equation increases the variance of a 

predicted response. 
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