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ABSTRACT 

In this paper it is shown that if   )(xn  is a set of orthogonal polynomials with the weight function 

w  x in the finite interval (a, b), and if we assume that the derivatives  )(xn  also form a set of 

orthogonal polynomials in a certain interval (c, d) (finite or infinite), with a non-negative weight 

function q  x , where (c,d)   (a,b), then  )(xn is  a set of Jacobi polynomials. 
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INTRODUCTION 
A set   0 1( )x  ,  1( )x ,  2 ( )x , … of 

polynomials of degrees 0, 1, 2, … is called a set 

of orthogonal polynomials  if they satisfy 

 


b

a
xdxnxm )()()(  = 0,  

b

a
xd 0)(  (m≠n)

                     (1.1) 

 

where  ( )x is a non-decreasing function of 

bounded variation (Azari and Muller, 1992). 

 

It has been shown in Szego (1975) that if the 

derivatives also form a set of orthogonal 

polynomials, then the original set were Jacobi, 

Hermite, or Laguerre polynomials. His method 

consisted in showing that the polynomials satisfy 

a differential equation of the type 

 

 

    02  nnncxdncxbxa  . 

   (1.2) 

 

From this it follows that the set were Jacobi, 

Hermite, or Laguerre polynomials.   

 

Here we propose to give a new proof of this 

result, our point of view being to answer the 

question:  What condition on the weight function 

results from assuming that both  )(xn  and 

 )(xn  are sets of orthogonal polynomials?  

However, we shall assume that (a, b) is a finite 

interval and dxxwxd )()(  , where the 

weight function is L-integrable. 

 

A Relation for the Weight Function Q(X) 

Let the set  )(xn  be orthogonal in the interval 

(c, d), finite or infinite, with the weight function 

q( x ), that is,  

 

dxxmxnx
d

c
q )()()(    = 0, (m≠n).       (2.1) 

 

Okolo and Bamiduro (2001 and 2004) 

documented that the polynomials )(xn ,

 )(xn  satisfy the recurrence relations, 
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( 0n ; nC  , n , n  are constants).  

 

Differentiating both sides of (2.2) and 

eliminating the term containing  x , by means of 

(2.3), we get 
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 ( nnC   ,  are constants). 

 

Remembering that )(xn with the weight 

function q  x , is orthogonal to any polynomial 

of degree ≤ (n-2), we get 

 

d

c
dxx

n
Gx

n
xq )(

2
)(

1
)(   = 0, (2.5) 

 

where Gn  x  is an arbitrary polynomial of degree 

≤ n. 

Wilf (1962) and Elhay et. al. (1991) showed that 

if Q  x  be non-negative in (c, d), such that the 

numbers  


d

c
dxkxxQ

k
)( , (k=0,1,…..), (2.6)  

exist, and for a certain positive integer  r 

 

d

c
dxx

rn
GxnxQ )(

1
)()(   = 0, (2.7) 

(n = r + 1, r + 2, … ). 

 

Then almost everywhere 

Q  x  =      Pr  x w  x   in (a, b) 

    0     elsewhere,  (2.8) 

 

where Pr(x)  is  a polynomial of degree ≤ r. 

Consider the function 
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We determine the  iu  so that  

  dxixx
b

a
R   =   dxixx

d

c
Q    (2.10) 

(i = 0, 1, ….., r); 

 

That is, the iu  satisfy the equations 

ruruu   ........
1100

 =
0

 ,

ru
r

uu
1

........
1201 

   = 
1
 ,  (2.11) 

- - - - - - - - - - - - - - - -  - -  - - - - 

rrrr 
2

........
110




  = r , 

 

where 

k
 =  

b

a
dxxwkx )(  .       (2.12) 

 

Now, as a special case, take in (2.7), n = r + i; 

that is,  

 dxx
i

Gxirx
d

c
Q )(

1
)()(

   =  0, 

then take 1)(
1




x
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It follows that 

0 =  dxxirx
b

a
R )()(    = dxxirx

d

c
Q )()(  

(2.13) 

(i = 1, 2, --------). 

And then 

 dxixx
b
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d
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(i = 0, 1, 2, ……..). 
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Let 

Q )(x  - R )(x    in 
1 , the points where (a, b) and (c, d) overlap, 

         )(xf  =                  - R )(x    in 
2 , the remainder of (a, b), 

               Q )(x   in 3 , the remainder of (c, d).    (2.14) 

 

 

Then 

dxxxf i

EEE

)(

321




 = 0,   (2.15) 

 

(i = 0, 1, 2, ………). 

 

From the above definition of )(xf , we conclude 

that R )(x , hence w )(x ,   0 almost everywhere 

in 3 , so that both intervals (a, b) and (c, d) may 

be reduced to their common part 
1 ; in other 

words, here we may take (c, d)   (a, b). 

It follows from (2.5) that 

 

)()2()( xwtsxrxxq    (2.16) 

 

and we may take c = a,   d = b. 

 

 
EXISTENCE OF )(xq  

Consider the function 

 
b

a
dxxwlxkxS )()()( ,  (3.1) 

where k and l  are such that S(b) = 0,  
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An integration by parts applied to 
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   gives  
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  = 0,    (n ≥ 1),   (3.2) 

 

since S(a) = S(b) = 0. 

 

But q(x) is the weight function for the orthogonal 

polynomials )(xn , hence 
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This and the relation   
b

a

b

a
dxxqdxxS )()(   

gives     

 
b

a

b

a
dxnxxqdxnxxS )()( ,   (n ≥ 0),       (3.4) 

 

and then q  x  = S  x  almost everywhere. Since 

S  x  has a derivative almost everywhere, q  x  

has a derivative almost everywhere and  

 

)()()( xwlxkxq  ,   q a q b( ) ( ) .  0   (3.5) 

 

 

DISCUSSION OF q(x) and w(x) 

Dividing (3.5) by (2.16), we get 
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(4.1) 

  

We proceed to show that  (i) tsxrx 2
 has 

real zeros,  (ii) r  0. 

 

(i) Assume  tsxrx 2
 has imaginary 

zeros. Integrating the differential 

equation (4.1), we get 
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)arctan()2()(   yxetsxrxkxq , 

where , , , , k are constants > 0. 

 

This is incompatible with q(a) = q(b) = 0. 

 

(ii) Assume first r = s = 0.  Equation (4.1) 

becomes  

 

)()2()( xqaxxq  ,  
xax
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(, , k are constants),   (4.3) 

 

which is not zero at a and b. 

 

Next, suppose r = 0, s ≠ 0.  Equation (4.1) gives  
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axetsxkxq


)()(  ,  (, , k are constants). 

 

This cannot vanish at both end points, x = a and 

x  = b. 

 

Having thus proved (i) and (ii), we set 

 

))((2 hxgxrtsxrx  ,     (r  o, g, h 

real), (4.5) 

 

and rewrite (4.1) as follows: 
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hence 

 )()()( hxgxkxq  , where k, α,  are 

constants > 0. 

 

 

The conditions q(a) = q(b) = 0 demand that g = a, 

h = b, so that (disregarding  constant factors) 

 

 )()()( xbaxrxq  .   (4.7) 

 

And then from (2.16) 
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 xbaxxw ,  (4.8) 

 

and we can see that α and β are both > 0. 

 

CONCLUSION 

The equation in (4.8) is the weight function for 

Jacobi polynomials.  An overriding advantage of 

our proof over the conventional one is that it is 

quite explicit.  While the conventional proof 

requires the application of a second order 

differential equation, see equation (1.2), the one 

being reported employs a first order as seen in 

equations (2.2) and (2.3).  Under the condition that 

the weight function is L-integrable, the proof 

reported should be preferable to the conventional 

one. 
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