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ABSTRACT.  

The aim of this study is to stabilize the unstable steady-state solutions of a mathematical model of 

competition with reference to the stock market dynamics in the Niger Delta. 

 
INTRODUCTION 

Our first study in the mathematical modelling of 

stock market population involves analyzing two 

populations of investors interacting 

mutualistically (Nafo and Ekaka-a., 2011a). Our 

second paper in this context concerns the 

bifurcation analysis of two populations of 

investors undergoing competition (Nafo and 

Ekaka-a., 2011b). 

It is very clear from our previous 

analyses that we have not attempted stabilizing a 

mathematical model for stock market population 

system. Following the most current 

mathematical formulation and stabilization of a 

Komogrove system of equations (Yan and 

Ekaka-a, 2011), we propose to extend this 

important idea to stabilize a mathematical model 

of stock market population system. We are 

particularly interested to investigate whether the 

concept of constructing a feedback control with 

which to stabilize an unstable steady-state as 

proposed in the work of Yan and Ekaka-a, 

(2011) is applicable to stabilize the unstable 

steady-state solution of stock market population 

system. 

 

What extra contribution does it make to stabilize 

a trivial steady-state solution in the context of a 

stock market population system? 

When a trivial steady-state solution is unstable, 

it means that the two populations of investors 

will go into extinction. In terms of business and 

economics implication, it means that these two 

populations over a trading period will be driven 

into an unexpected economic risk of extinction. 

Experts in economics, business and 

Mathematics are concerned about this 

unpredictable event in the stock market (Nafo 

and Ekaka-a, 2011b).Therefore in this study, we 

will attempt for the first time to construct a 

feedback controller which if successful will be 

used to stabilize the trivial steady-state solution. 

Next, when the first population of 

investors goes to extinction and the second 

population of investors survives at its carrying 

capacity, this familiar conclusion does not 

provide adequate insights about the stabilization 

of this unstable steady-state solution. This 

outcome of competition only favours the second 

population of investors. For this unstable steady-

state solution to provide further insights into 

economic     and     business   planning,    it      is  
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appropriate to investigate the extent and 

prospects of stabilizing this first boarder steady-

state solution. 

Our comment for the first boarder 

steady-state solution are similar to the second 

boarder steady-state solution where the first 

population of the investors benefit and the 

second population of investors does not. 

Therefore it is our primary aim in this important 

study to stabilize a mathematical model of a 

stock market system using our previous 

estimated stock market population parameters 

(Ekaka-a and Nafo, 2011). 

 

STOCK MARKET INTERACTION 

MODEL EQUATIONS 

Following (Ekaka-a and Nafo, 2011; Nafo and 

Ekaka-a, 2011a), we will consider the following 

systems of first ordinary differential equations. 
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where y(0) = y0 > 0, z(0) = 0. Here ia , bi , ci , i = 

1, 2 are positive constants. 

The steady states (ye , ze) satisfy 
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How do we stabilize (ye ,ze) if (ye , ze) is 

unstable? 

 

 

LINEARISED SYSTEM ABOUT (ye , ze) 

Following Yan and Ekaka-a, 2011, denote 
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Consider the system 
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Taylor expansion about (ye. ze), 
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The linearized systems about (ye , ze) are 
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Substituting y – ye and z – ze by Y and Z 

separately and denoting  
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The linearized system about (ye , ze) is 

  

 ,)0(, ouuAu
dt

du
  

where 

  .
0

0

0 













e

e

zz

yy
u  

 

 

 

 

       

         
        + higher-order-terms 

 

  + higher-order-terms 



94 
 

Scientia Africana, Vol. 11 (No.1), June 2012. pp 92-97 

© Faculty of Science, University of Port Harcourt, Printed in Nigeria               ISSN 1118 – 1931 

 

 

 

STABILITY OF THE STEADY STATES 

Lemma 3.1 (Yan and Ekaka-a, 2011). Assume 

that all the eigenvalues of A are negative, then 

the solution of equation (9) tends to the steady  

 

state (ye ,ze) as t   for some suitable initial 

value  u0 = (y0 – ye, z0 - ze). 

 If A has a positive eigenvalue, 

then the steady state (ye , ze) is 

not stable. 

 We will use the feedback 

control to stabilize the unstable 

steady state. 

 

 

STABILIZATION FOR THE LINEARISED 

SYSTEM 

Theorem 4.1. (Yan and Ekaka-a, 2011). 

Assume that (ye , ze) is unstable, then there 

exists V: [0, )  R
2
 such that 

 ,)0(, 0uuBVAu
dt

du
  

is exponentially stable at (ye , ze), where 

   .*1 uBRV  
 

 

Here II satisfies the Riccati equation 
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STABILIZATION FOR THE NONLINEAR 

SYSTEM 

Theorem 5.1 (Yan and Ekaka-a, 2011). Assume 
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will stabilize exponentially the nonlinear system 

 

(6.1) 
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NUMERICAL APPROXIMATION 

Consider 
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Substituting y - ye and z - ze by Y and Z, we got 

 

 

)(
,(

,(
tBV

zZyYG

zZyYF

Z

Y

dt

d

ee

ee






















 

where 

   







 

Z

Y
BRV *1

 



95 
 

Ekaka-a E. N. and Nafo N. M.; Stabilizing a Mathematical Model of Stock Market Population System.  

 

 

 

Denote 
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The feedback control system is 
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The backward Euler method, U
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ERROR ESTIMATES 

For the purpose of this study, we will consider 

the following criteria (Yan and Ekaka-a, 2011):  

 Global Lipschitz condition 
2

1 ,,)()( RvuvuCvFuF   

 Linear growth condition 

  uCuF 2  

Theorem 7.1 (Yan and Ekaka-a, 2011): Let T > 

0. Assume that F satisfies the global Lipschitz 

condition and growth condition. Then there 

exists a constant C(T) such that, for any  

 > 0, 

0

1)()( ukTCtuu n

n   

Proof: The detail proof of this result can be 

found in the works of Yan et al. (2008) and Yan 

and Ekaka-a (2011). 

 

EXAMPLE  

In this study, we will consider an example 

which relates directly with stock market 

interacting systems (Nafo and Ekaka-a, 2011a) 

This example concerns the dynamics of two 

interacting stock market population based on  

 

 

 

 

Abia State stock exchange time series data 

(Okoroafor and Osu, 2009). 
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with N1(0) = 10 in thousands of naira, N2(0) = 

15 in thousands of naira  

 

This system of model equations is characterized 

by three realistic steady-state solutions namely 

(0, 0), (120, 0) and (0, 60). 

The trivial steady-state solution is 

unstable because it has two positive eigenvalues 

0.03 and 0.168. The second steady-state solution 

(120, 0) is stable because it has two negative 

eigenvalues -0.168 and -0.078. The third stead-

state solution (0, 60) is unstable because it has 

two eigenvalues of opposite signs -0.03 and 

0.138. 

It is interesting to find out how we can 

stabilize the unstable steady state solutions. Our 

results which are represented below concern 

how we have constructed appropriate optimal 

controller which we have used to stabilize the 

unstable steady state solutions. 
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Figure 1. Uncontrolled and Controlled Solution Trajectories of Trivial Steady State (0,0) 

 

Here, we have used final trading period of 100 days and starting trading values of 10,000 naira and 

15,000 naira. Other trading periods can similarly be used which provide similar results for the same 

starting trading values. 
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Figure 2. Uncontrolled and Controlled Solution Trajectories of Trivial Steady State (0,60) 
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Here, we have used final trading period of 400 

days and starting trading values of 30,000 naira 

and 12,000 naira. This unstable steady-state can 

similarly be stabilized when the trading periods 

are 200 days, 300 days, and 365 days, at the 

same starting trading values. However, for 

shorter trading periods such as 20 days, 50 days, 

60 days, 80 days, and 100 days, this unstable 

steady-state solution is indicating slow 

convergence. The business and economic 

implications of these observations are yet to be 

clearly deduced. 

 

DISCUSSION  

In this study, we have used feedback control to 

construct a controller with which the two 

unstable steady-states of two interacting stock 

market populations have been stabilized. These 

results are short-term numerical simulations 

which are capable of providing some insights 

about the profit behaviour of Nigeria stock 

market systems.  

 

The technique of implementing a feedback 

controller to stabilize unstable steady-state 

solutions can be extended to tackle other stock 

market interacting populations such as 

mutualism, commensalism, and predation. 
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