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ABSTRACT 

A practical scheme is here presented for the numerical calculation of the tail of the direct 

correlation function. The procedure is shown to lead to accurate values for all the rooted 

cluster integrals in the tail function which are proportional to 3
. The derived expressions 

are shown to be correct and reliable at all temperatures by comparison with the known 

analytical results for the Gaussian potential function and certain irreducible cluster 

diagrams that occur in the 5th virial coefficient.  

 

INTRODUCTION 

Integral-equation methods are analytical 

theories of fluid structure which offer 

prescriptions for the quantitative 

determination of spatial correlation 

functions. These methods have well-

founded theoretical bases but unlike the 

virial equation of state lead to useful, if not 

accurate, results at liquid densities and 

unlike computer simulation methods require 

modest computation to implement.  

 

Of the integral-equations that are based on 

the Ornstein-Zernike (OZ) equation, there 

are two modern paths by which these 

methods can be extended to higher density 

states. The first, the “unique functionality” 

approximation is empirical and is motivated 

by the observation that many integral-

equation theories in the OZ class 

approximate their bridge function, E(r), or 

equivalently the tail function, d(r), by a 

simple function of the cavity function, y(r) 

(Duh and Henderson, 1996; Varlet, 1980). 

Results from computer simulation show that 

the unique functionality approximation is 

better fulfilled in predominantly repulsive 

potentials and less so in potentials with 

attractive sections. However, it turns out 

that for realistic potentials, a new function, 

s(r), defined by: 

 

kTrcrhrs a)()()(                    (1) 

 

may be postulated which approximately 

obeys the unique functionality assumption 

(Duh and Haymet, 1995). In equation (1), 

h(r) and c(r) are, respectively, the total and 

direct correlation functions; a is a function 

which is related to the attractive section of a 

realistic potential, T is the thermodynamic 

temperature and k is the Boltzmann 

constant. For the present purpose, it should 

be noted that the unique functionality 

approximation is not exact at low gas 

densities.  

An alternative path to higher order 

approximations uses inhomogeneous fluid  
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theory. This approach assumes the presence 

of a fluid particle at the origin, identical 

with the rest of the other particles in a one-

component fluid, which is the source of 

inhomogeneity (Henderson, 1992; Attard, 

1989; Duh and Henderson, 1997). The usual 

equations in the integral-equation 

methodology for a homogeneous fluid are 

now applied to this system, except that one 

uses the local density instead of that in the 

bulk. An extra equation is now also required 

which relates the inhomogeneous pair 

correlation function to the homogeneous 

analogue. The resulting approximation is 

exact up to the additive fourth virial 

coefficient and, in that respect, is equivalent 

to the older, cumbersome PY2 and HNC2 

methods of Varlet (1980) and Wertheim 

(1967), but without the disadvantages of 

either. However, all three methods suffer 

from the disadvantage that considerable 

computational resources are required to 

implement them. 

 

The functions d(r) and E(r) may be 

represented as power series in density the 

coefficients of which, in the case of an 

additive interaction, are well-known. Hence, 

an alternative path to extended theories is to 

replace the unknown function d(r) (or, 

alternatively, E(r)) with their first few 

calculable coefficients in its power series 

expansion in density. 

  

There have been other attempts to calculate 

the graphs in E(r) which are proportional to 

3
. Kim et al. (1967; 1969) first derived 

integrated expressions for the graphs, but 

their implementation particularly of the 

complete, rooted five-molecule graph for a 

Lennard-Jones potentials led to inaccurate  

 

 

 

results at low temperature. More recently, 

Attard and Patey (1990) derived integrated 

expressions for the graphs in E(r) correct to 

the third-order in density but provided no 

numerical values for any of the graphs. 

 

Theory 

We are interested in a theory of non-ionic 

fluids which is exact at low gas densities 

and so a suitable starting point is the OZ 

integral-equation which in terms of the 

chain function, (r), is given by 

(Rushbrooke, 1968; Hansen and 

MacDonald, 1976; Lee, 1988; Rowlinson 

and Swinton, 1982; Reed and Gubbins, 

1973). 

 

       323131312 )( rdrcrcrr    ; (2) 

 

Where, (r12) {= h(r12) – C(r12)} is the chain 

function,  is the particle number density 

and h(r12) is the total correlation function. 

Equation (2) is exact but intractable; 

therefore, to calculate (r12) and C(r12), the 

OZ equation must be supplemented by a 

closure which relates (r12) and C(r12). An 

exact but, again, intractable relationship 

between the two functions which is well 

suited for a discussion of the hypernetted 

chain (HNC) theory is 

 

     rErry  ln ; (3) 

 

Where, in the above we have employed the 

short-hand, (r12) = (r), etc. Equation (3) is 

not the most convenient route to the Percus-

Yerick (PY) theory; for the latter one should 

write instead 

 

       )()(1 rdrerfrrc   ;          (4) 
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Where, in Eq. (4), e(r){ = exp(-(r))} is 

the Boltzmann factor, {= kT1  } is the 

reciprocal temperature, f(r) { = e(r) – 1) is 

the Mayer function. 

 

While in the first-order HNC theory, E(r) in 

equation (3) is set identically equal to zero; 

in first-order PY theory it is d(r) in equation 

(4) that is discarded. Our basic approach is 

to replace E(r) in equation (3) with its first 

two accessible terms in the power series 

expansion of the function in density to 

obtain an extended HNC (or EHNC) 

approximation. Similarly, d(r) is replaced 

with the first two accessible terms in its  

 

infinite series in density for an extended PY 

(or EPY) theory. Consequently, one obtains 

the following closures  

 

EHNC:      rErry (3)ln        (5) 

EPY:         rdrerrc (3)1      (6) 

Where, for a LJ fluid 

 

     rErErE
3

3

2

2(3)                 (7) 

     rdrdrd
3

3

2

2(3)                  (8) 

 

The graphs in E
(3)

(r) are a subset of those in 

)()3( rd  and these are displayed in Fgs 1 

and 2, respectively. 
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Fig.2: Cluster diagrams that contribute to )(
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Composite Graphs 

Following Attard and Patey (1990), the 

tedium in calculating the graphs in )()3( rd  

can be reduced considerably by forming 

composite graphs. Using this procedure, the 

graphs that one needs to evaluate to 

determine )()3( rd  are given in Fig. 3 

(Monago, 1997). 

 

Hence,  

   

             

       3

93
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13
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3
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3
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2
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13

2

2

bacb
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DDDD

DDDDDrd




   (9) 
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Fig. 3:  The composite graphs in d
(3)

(r).  In these graphs, each solid 

line represents an f-bond and a dotted line denotes an e-bond. 
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Integration of Graphs in )()3( rd  

The method we use to expand and simplify 

the volume integrals represented by the 

graphs in Fig. 3 was that first employed by 

Barker and Monaghan (1996) and 

subsequently by several others (Henderson 

and Oden, 1996; Haymet and Rice, 1981). 

In that method, Mayer functions, which  

 

 

depend on the angles of integration in 

spherical polar co-ordinates, are expanded 

in Legendre polynomials. In what follows, 

we derive the computational expression for 

the complete rooted five-molecule graph 

and quote the results for the other graphs in 

table 1. Further details concerning the 

integration of the other graphs are given by 

Monago (1997). 

 

                             

 

1 

5 

3 

2 

4 

23   
24   

 

 

Fig. 4: Coordinate system for the rooted 

complete graph  3

9bD . 34 is the angle 

between the planes 123 and 124; 35 is that 

between 123 and 125. 

 

In terms of the variables shown in Fig. 4: 

.

x2

2

0
35

2

0
34

1

1
25

1

1
24

0

1

1
2315

2

15
0

14

2

14
0

13

2

13543



  













  



 

dddx

dxdxdrrdrrdrrddd rrr

(10) 

Where, 23
x = 23

cos ; 24
x  and 25

x  are 

similarly defined. By definition, 

 
 

453534252423151413543

3

9 fffffffffdddD b rrr

.                   (11) 

From equation (10) and (11) one obtains 

 

  

.

x2

453534

2

0
35

2

0
34

1

1
2525

1

1
2424

1

1
2323

0
1515

2

15
0

1414

2

14
0

1313

2

13

33

9

fffdddxfdxf

dxfdrfrdrfrdrfrrD b













  



 

 (12) 

 

It is convenient, in simplifying equation 

(12), to break the expression on the right-

hand side into factors which will be 

considered sequentially. Let 

 

453534

2

0
35

2

0
343 fffddF 

  

 .         (13)          

 

The Mayer functions in the above integral 

can be expanded in Legendre polynomials 

(Monago, 1997); we use f34 to fix ideas 

 

   341413

0

343434 ,),( xPrrarf l

l

l




 ,     (14)              
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with 

   



1

1 3434341413
2

12
, dxxPf

l
rra

ll
.     (15)         

Hence, 

     

xcos)()(),(

x,,,

1

11

1 34124231

0,,

151415131413

2

0
35

2

0
343



















l

s

s

l

s

ls

mnl

mnl

sxPxPsl

rrarrarraddF




  

 

      xcos,
2

22

2 35225232 









n

s

s

n

s

ns sxPxPsn   

      









m

s

s

m

s

ms sxPxPsm
3

33

3 45325243 cos,  .  (16)            

 

In equation (16), 
s

l
P  is the associated 

Legendre polynomial and the following 

short-hand was used.  

 

 
 
 !

!
,

1

1
1

s

s
s









 ; 

and  

 









0,2

0,1

1

1

1 s

s
s  

 

32
and ), ,( ), ,(

s32 s
smsn   are similarly 

defined. In equation (16), the integration of 

products of Legendre polynomials over 2  

give zero unless ssss 
321  in which 

case the result is   (Barker et al., 1996). 

Therefore, 

 

         

           .

x,,,,,,

252524242323

),,min(

0

151415131413

0,,

3

xPxPxPxPxPxP

snsmslrrarrarraF

s

m

s

n

s

m

s

l

s

n

s

ls

nml

s

mn

mnl

l












    (17) 

 

 

 

Where, min(l,m,n) denotes the smallest of 

the integers l,m, and n. 

 

Next, let 

 


1

1 253

1

1 2424

1

1 23232
dxFdxfdxfF .     (18)       

 

Equation (18) may be simplified, after 

substituting for F3, if one uses the 

orthogonality property of the associated 

Legendre functions 

 

   
 

;
12

,21

1 lm

s

m

s

l
l

sl
dxxPxP 





          (19) 

where, 
1),(),(  slsl  and lm is the Kronecker 

delta defined in the usual way. The result is 

 

       x,,,2 15141513

0,,

1413

2

2 rrarrarraF mn

nml

l




  

 

 
 

     x,,,,
0

1312

,,min

0




 i

s

ilnis

nml

s

Wrrasnsmsl   

   






 0

1512

0

1412 ,,
k

s

knmk

j

s

ilmj WrraWrra .   (20)      

 

In equation (20) 

 

     
232323

1

1 23
dxxPxPxPW s

n

s

li

s

iln       (21) 

 
s

jlm
W  and 

s

knm
W  are similarly defined if 24

x  

and 25
x  are substituted for 23

x , 

respectively. Use of equation (20) in (12) 

gives the final result; namely 

      x2
15150

2

1514140

2

141313
0,,,,,

0

2

13

33

9
drfrdrfrdrfrrD

kjinml
b  








  

 

       
 

   x,,,,,,
,,min

0
151415131413 s

nml

s
mnl

snsmslrrarrarra 

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      s

knm

s

jlm

s

ilnkji WWWrrarrarra 151215121312 ,,, .   (22)                 

 

The corresponding expressions for the other 

five-molecule graphs in )()3( rd  are 

displayed in Table 1. 

 

Numerical Computation of )()3( rd . 

The cluster integrals in )()3( rd  were 

computed as part of a scheme that solved 

the OZ integral-equation; consequently, the 

integrals represented by the cluster diagrams 

were evaluated with various quadrature 

rules designed to achieve a compromise 

between speed and accuracy of the 

computation scheme. 

 

For the four-molecule graphs, since we 

considered one-component systems, it was 

possible to reduce the computational effort 

by a factor of ½ by imposing the restriction 

13
r  14

r . The projection coefficients al were 

evaluated from equation (15) according to 

the following scheme: first, the range of 

integration was divided into 7 equal panels, 

then each panel integration was performed 

by an 11-point Gaussian quadrature. In all 

cases, including the computation of five-

molecule graphs, values of al were set equal 

to zero when l  11. The semi-infinite 

integrals over 13
r  (or 14

r ) was truncated at r 

= 9, the integration itself was performed 

by Simpson’s rule with N=200. The 

resulting numerical tabulation of )(5 rD(2)  

was on a coarse grid of spacing r = 9/200 

which was not adequate for use in 

calculating derived thermodynamic       

properties. To obtain adequate tabulation, a 

four-point Lagrange interpolation was 

performed on the coarse grid to obtain a fine 

one with the desired spacing (usually 

0.015). 
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Table 1: Computational expressions for some five-molecule cluster integrals 

 
                 Integral                 Computational expression  

                    
   rD 3

5         1424
0

1411 Λ2 drrrhrh 
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Radial integrations for all the five-molecule 

graphs were truncated at rmax = 3.84 and 

performed using Simpson’s rule with 60 

equal quadrature points. The graphs 
(3)

6

(3)

6

(3)

5
and,

ba
DDD  were computed as 

written. For the rest of the five-molecule 

graphs, the projection coefficients al were 

tabulated as described above for the four-

molecule graphs. The graphs 
(3)

7

(3)

7
and

ba
DD  

were computed as written except that in the 

case of 
(3)

7a
D  the computational effort was 

reduced by ½ as described for )((2)

5
rD

above. 

 

To evaluate the graph )((3)

7c
rD , observe that 

{i, j, l, m} may assume integer values only 

and that s

ilmW  is zero unless i l+m  and 

the sum, {i+l+m}, is even. Similarly, 
s

jlm
W  

is zero unless j l+m and the sum, (j+l+m), 

is even (Arfken and Weber, 1997). A sum in 

which either of the two restrictions above is 

violated is zero and need not be considered 

at all. If one examines all possible integer 

values in the set {i,j,l,m} having integer 

values between 0 and 11, a table of allowed 

sets {i,j,l,m} which make non-zero 

contributions to )((3)

7
rD

c  is easily prepared 

(Monago, 1997); a great deal of 

computational effort is saved by so doing. 

 

It is even more imperative that one identifies 

the integer sets {l,m,n,i,j,k} that contribute 

finite sums to the cluster integrals )((3)

9
rD

a  

and )((3)

9
rD

b . The following conditions are 

fulfilled in a valid set: 

(a) i l+n and the sum (i+l+n) is even; 

(b) i l+m and the sum (i+l+m) is even and 

(c) kn+m and the sum (k+n+m) is even. 

 

 

 

More details, including a table of allowed 

values, may be found by Monago (1997). 

 

Validation of the Computation Scheme 

Analytical expressions for the magnitudes of 

the five-molecule graphs )((3)

7
rD

c  and 

)((3)

9
rD

b  for the Gaussian potential model 

are available from the work of Uhlenbeck 

and Ford (1962); those for the composite 

graphs )((3)

7
rD

b  and )((3)

9
rD

a  may be 

deduced from others listed in that 

publication. These are summarized in Table 

2 below for convenience. The Gaussian 

potential is usually defined by its Mayer 

function 

 

                  2exp rrf  ;        (23) 

 

where,  
68

273    . 

 

Fig. 4 compares the magnitudes of four 

cluster integrals   obtained from the present 

work against values from the analytical 

expressions for the Gaussian potential 

model given in table 2 
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Table 2:  Analytical values of some five-molecule graphs for the gaussian potential 

[16,18]. bacbiDDD iii 9,9,7,7);numerical()analytical( )3()3(

3   

 
Graph Expressions for the Gaussian potential. 
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Fig5: Deviation plot for some five-molecule graphs when  the analytical
expressions in table2 are compared with derived computational expressions.
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From each of the rooted graphs )((3)

5 rD , 

)((3)

6 rD a
, )((3)

6 rD b
, )((3)

7 rD a
, )((3)

7 rD c
 and 

)((3)

9 rD b
 one can obtain the corresponding 

un-rooted graph in the 5th virial coefficient 

by inserting an f12 bond and integrating over 

2rd . The scheme is expressed in equation 

(24) – (29); the symbols on the left-hand-

side are those used by Barker et al (1966). 

 
     rdrDfE 
3

5126                             (24) 

     rdrDfE a
3

6127                            (25) 

     rdrDfE b
3

6127                            (26) 

 

 
    rdrDfE b
3

7128                              (27) 

    rdrDfE c
3

7128                              (28) 

    rdrDfE b
3

91210                              (29) 

 

In table 3, the results obtained from Eq. 

(24)–(29) with a LJ potential are compared 

with the results of Barker et al. (1966). It is 

seen that except for the E10 and E8 graphs 

at the lowest temperature where relative 

errors of some 11 per cent and 2.5 per cent, 

respectively, exist the calculations 

performed here agree with those of Barker 

et al. to better than 1 per cent. 

Table 3: Calculated values of graphs in the 5th virial coefficient for a LJ potential model. 

Graph T* = 0.75 T* = 1.25 

 This work ref. 13 This work ref. 13 

E6 152.568 152.5822 2.4060 2.3999 

E7 -115.002 -114.773 -2.4548 -2.45671 

E7 -62.662 -62.530 -1.8943 -1.89320 

E6 -6.027 -6.075 -0.1088 -0.10961 

E6 -54.632 -53.290 0.3002 0.29945 

E10 1.280 1.153 0.02805 0.02877 

 

Graph T* = 1.6 T* = 3 

 This work ref. 13 This work ref. 13 

E6 1.8976 1.89461 1.2096 1.21058 

E7 -1.2941 -1.29406 -0.9853 -0.98639 

E7 -0.6963 -0.69611 -0.2360 -0.2363 

E6 0.0393 0.03895 0.1399 0.13995 

E6 0.4257 0.42506 0.3877 0.38812 

E10 0.0123 0.0126 0.0081 0.0811 

 

It is by no means certain that the 

calculations of Barker et al. for the complete 

(or K-) graph E10 should be preferred to the 

one performed here since they used only 

Legendre polynomials series with l  8, 

while here we used l  11. As shown by 

Henderson and Oden (1966) in the case of 

four-molecule graphs, truncating before 

l=11 can lead to non-negligible errors at low 

reduced temperatures. On the other hand, it 

should be pointed out that in the work of 

Barker et al. (1966) the radial integration 

was carried out to rmax=20. Even so, the 

discrepancy between the two results decline 

rapidly, even for the K-graph, at high 

reduced temperatures. 
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There are three main sources of error in the 

numerical computation of )()3( rd : 

truncation error due to the finite range of 

integration, truncation of the Legendre 

series and the error due to the finite grid 

spacing in the numerical integration. The 

sensitivity of the calculations performed 

here have been investigated with regards to 

independent variations in these parameters 

(Monago, 1997). 

 

 

For the five-molecule graphs, when r*, 

rmax and lmax (for the Legendre polynomials) 

were perturbed by about 20 per cent, it was 

found that changes due to r* produced the 

greatest effects in the values of the graphs in 

the 5th virial coefficient at the lowest 

temperature considered here (i.e. T* = 0.75). 

Table 4 shows the results for some five-

molecule, unrooted graphs when r*=0.04, 

T*=0.75; all other parameters pertaining to 

their computation remaining as for table 3.

 
Table 4: Sensitivity of Eq. (24)–(29) to the parameter r* at T*=0.75. 

Graph Value 

 r* = 0.05 r* = 0.04 

E6 152.568 152.228 

E7 -115.002 -114.747 

E7 -62.662 -62.513 

E6 -6.027 -6.018 

E6 -54.632 -54.507 

E10 1.280 1.278 

 

As a result of similar tests on the 

computation scheme, it was concluded that 

the five-molecule graphs were computed 

with accuracy of better than 1 per cent at the 

lowest temperature. We feel that this level 

of error will negligibly impact on structural 

and thermodynamic properties bearing in 

mind that the relative contributions to these 

properties arising from the five-molecule 

cluster integrals are likely to be small. 

 

A computational method to determine the 

coefficients, up to the third order, in the 

expansion of the tail of the direct correlation 

function in powers of density is described. It 

is based on expansion of Mayer functions in 

Legendre polynomials and it was 

demonstrated that, for realistic potentials, 

the method leads to reliable and accurate 

results at all temperatures. At the lowest 

temperature considered in this article (T* = 

0.75), the computational imprecision was 

estimated at about 1 percent; however, at the 

expense of greater computational costs, the 

method is capable of higher accuracy. 
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