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ABSTRACT 

In this paper, we studied a deterministic population model with a mass action law simplification. The 

main aim is to determine the steady-state solutions and their stability. From our previous study, we have 

used the selection method of penalty functions to select the estimated best-fit values of the model 

parameters a, b, d, f, while the precise values of the parameters c and e are assumed. The first model 

equations using the 1-norm selection method have four steady-state solutions (0, 0), (0, 3.3534), (3.2599, 

0) and (3.1908, 0.9543). The second model equations using the 2-norm selection method have four 

steady-state solutions (0, 0), (0, 3.6860), (3.0000, 0) and (1.1341, 3.4985) while the third model equations 

using the infinity-norm selection method have four steady-state solutions (0, 0), (0, 4.0545), (2.7898, 0) 

and (0.5871, 3.9478). Irrespective of the type of parameter selection method, we observe that the first 

three steady-state solutions are unstable while the unique positive co-existence steady-state solutions are 

said to be stable. Computer simulations were used to illustrate our theory. However, the question of 

stabilizing the unstable steady-state solutions which we have found in this study remains to be 

numerically answered. This level of analysis will be attempted in our next simulation study. 

 

Key words: Steady-State Solutions, Stability, Mass Action Law. 

 

INTRODUCTION 

The standard mathematical concepts of steady-

state solutions or equilibria and their stability 

characterizations are not new. The detailed 

mathematical definitions and the analysis of these 

techniques are clearly laid in the works of [1], [2], 

[3], [4], [5], [6], [7], [8], [9], 10], [11], [12], [13] 

and [15]. However, the application of these 

theories in describing the interaction between two 

legumes within the Niger Delta Region of Nigeria 

ecosystem renders interesting insight to 

researchers in mathematical modelling, crop 

scientists and biologists working in the ecosystem 

functioning, stabilization and planning. 

From the literatures on population modelling, the 

trivial steady-state solution indicates that the 

interacting populations will go into the ecological 

risk of extinction. For the border steady-state 

solutions, we learn that while one of the 

populations will survive at its carrying capacity, 
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the other population will go into extinction. These 

two ecological laws reinforce the notion of the 

well established competitive exclusion (12], [11]). 

The co-existence steady-state solution specifies 

the required population sizes which will enhance 

favourable co-existence and survival assuming 

there are plentiful resources according to 

competition theory ([12]). While a stable steady-

state solution provides better ecosystem 

predictions than the unstable version, most 

ecologists and mathematical ecologists are 

interested in stabilizing the unstable steady-steady 

solutions for the benefit of effective control of 

ecosystem functioning and stabilization. In as 

much as research activity is on-going to quantify 

the applications of the unstable steady-state 

solution in the context of ecological modelling 

and prediction, the qualitative behaviour of an 

unstable steady-state solution mathematically may 

throw greater challenges and concern to 

ecologists. Hence, it is a profitable collaboration 

for mathematicians and physicists to design a 

feedback controller which can be used to stabilize 

such unstable steady-state solutions. This proposal 

is at the present one of the best numerical 

simulation techniques of achieving this 

expectation ([14]). 

In most of the cited mathematical ecology 

papers, it appears at the present observation that 

there is a dearth of the quantification of 

environmental perturbations on growing 

ecological populations over a time interval. As a 

result of this limitation and lack of possible 

experimental studies which can be used for 

modelling purposes, it will be a meaningful 

scientific contribution if we can explore the 

modelling of environmental perturbations on the 

biomasses of legumes and its impact on the 

parametric sensitivity of the mathematical model 

of interacting legumes [3]. There is incorporation 

of the role of environmental perturbations in the 

study of steady-state solutions and their stability. 

Because of the resilient characteristic of the 

ecosystems and the instability of the ecosystem, 

we will think at the present modelling activity that 

the role of random white noise in quantifying the 

steady-state solutions and their stability will 

complement and contribute better comprehensive 

insights in the full understanding of complex 

ecosystem population interactions. 

From the literature on population 

modelling ([2]), we know that temperature 

changes do affect the growth rate parameters than 

any other model parameters. It is important also to 

investigate the extent of this indirect impact of 

temperature changes on the steady-state and 

stability characteristics of two interacting legumes 

especially in this era of controlling the inevitable 

impact of global warming so as to save the 

livelihoods of the growing human populations in 

the Niger Delta Region of Nigeria. 

It is expected that when two legumes 

interact, it is possible for these legumes to either 

survive together or both will go into extinction or 

while one legume survives the other legume may 

go into extinction. However, it is an interesting 

modelling challenge to calculate the extent of all 

the intraspecific and interspeciic coefficients on 

the steady-state solutions and their stability on two 

interacting legumes. If it is possible, it will 

become an interesting numerical simulation to 

quantify the extent of steady-state solutions and 

their stability when the starting biomasses of two 

interacting legumes are precisely estimated. 

 

Mathematical Formulations 

In this section, we will present three distinct 

model formulations between cowpea and 

groundnut interaction. 

 

Model Formulation 1 

Our first model formulation is based on the 

application of the 1-norm penalty function 

selection method. The mathematical structure of 
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this nonlinear first order ordinary differential 

equations is 

 

(2.1.1)

 

))(0005.0)(006902.00225.0()(
)(

tGtCtC
dt

tdC


 

 (2.2.1)

 

))(01.0)(0133.00446.0()(
)(

tCtGtG
dt

tdG
  

 

where the initial biomasses are C(0) = C0 > 0 and 

G(0) = G0 > 0. Here, C(t) and G(t) represent the 

biomasses of cowpea and groundnut at time t in 

days. 

 

Model Formulation 2 

Our second model formulation is based on the 

application of the 2-norm penalty function 

selection method. The mathematical structure of 

this nonlinear first order ordinary differential 

equations is 

 

(2.2.1)

 

)(004.0)(007500.00225.0()(
)(

tGtCtC
dt

tdC


 

 (2.2.2)

 

))(002.0)(0121.00446.0()(
)(

tCtGtG
dt

tdG
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under the same initial conditions and simplifying 

assumptions. 

 

Model Formulation 3 

In the same manner, our third model formulation 

based on the infinity-norm penalty function 

selection method is 

(2.3.1)

 

))(0045.0)(008065.00225.0()(
)(

tGtCtC
dt

tdC


 

 (2.3.2)

 

)(002.0)(0110.00446.0()(
)(

tGtGtG
dt

tdG


 

under the same initial conditions and simplifying 

assumptions. 

 

MATERIALS AND METHODS 

In this section, we aim to characterize the steady-

state solutions and their stability of the three 

model equations which we have defined in the 

previous section. 

 

Characterization of Steady-State Solutions 

and Stability using the 1-norm model 

equations  

Following [3], and considering some simplifying 

assumptions such as Ce ≠  0, Ge = 0; Ce = 0, Ge ≠  

0; Ce ≠  0 and Ge ≠  0 where 

(Ce, Ge) is an arbitrary steady-state solution for 

this 2-dimensional system of model equations. It 

is clear that these model equations are 

characterized by four steady-state solutions which 

are (0, 0), (0, 3.3534), (3.2599, 0) and (3.1908, 

0.9543).  

 

Theoretically, the appropriate steady-state solution 

except the trivial case are 

),(),,0(),0,(
cebf

acbd

cebf

cdaf

f

b

b

a








, 

provided af  > cd,  bd > ac,  bf  > ce 

where 

  

a 0.0225, b = 0.006902, c = 0.0005, d = 

0.0446, e = 0.01, f = 0.0133 
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Without providing detailed analytical calculations 

as can be read in the reports of [4], [2] and [14], 

but using the method of linearization around each 

chosen steady-state solution and the method of a 

small perturbation from a steady-state solution, 

the stability features for this system of model 

equations are characterized as follows: (0, 0) is 

unstable because the two calculated eigenvalues 

are 0.0225 and 0.0446 followed by an unstable 

steady-state solution (0, 3.3534) having two 

eigenvalues of -0.0446 and 0.0208. The steady-

state solution (3.2599, 0) is similarly unstable 

because its calculated eigenvalues are  -0.0225 

and 0.0120. Another steady-state solution is the 

unique positive point (3.1908, 0.9543) which is 

characterized as being stable because its 

calculated eigenvalues are -0.0234 and -0.0113. 

 

Characterization of Steady-State Solutions 

and Stability using the 2-norm model 

equations  

By applying the assumptions on the arbitrary 

steady- state solutions as we have done in the 

previous section, we can observe that the model 

equations are characterized by four steady-state 

solutions which are (0, 0), (0, 3.6860), (3.0000, 0) 

and (1.1341, 3.4985) for the same similar 

theoretical calculations as mentioned in section 

3.1 

For this problem, the trivial steady-state 

solution is unstable having the same eigenvalues 

as in the case of the 1-norm model equations. The 

steady-state solution (0, 3.6860) is unstable having 

the eigenvalues of -0.0446 and 0.0078 while the 

steady-state solution (3.0000, 0) is unstable having 

the eigenvalues of -0.0225 and 0.0386. Here, the 

second unique positive point (1.1341, 3.4985) is 

characterized as being stable because its 

calculated eigenvalues are -0.0076 and -0.0432. 

5.3.  

 

Characterization of Steady-State Solutions 

and Stability using the infinity-norm model 

equations  

In this section, the four steady-state solutions are 

(0, 0), (0, 4.0545), (2.7898, 0) and (0.5871, 

3.9478). In the same manner, the trivial steady- 

state solution is unstable having the same two 

positive eigenvalues. The steady- state solution (0, 

4.0545) is unstable having two eigenvalues of -

0.0446 and 0.0043. 

Similarly, the steady-state solution 

(2.7898, 0) is unstable having two eigenvalues of -

0.0225 and 0.0340. The third unique positive point 

(0.5871, 3.9478) is stable having two eigenvalues 

of -0.0042 and -0.0440. 

 

DISCUSSION 

In all our analytical calculations of steady-state 

solutions and their stability, we have found that 

qualitatively, the unstable steady-state solutions 

contribute to the unbounded growth of the 

solution trajectories over a time interval while the 

steady-state solution which is stable contributes to 

the decaying behaviour of the solution trajectories 

over the same time interval. 

For the trivial steady-state solution, the 

two interacting legumes will go into extinction 

whereas for the border steady-state solutions, as 

one of the legumes survives at its carrying 

capacity, the other legume will be driven into 

extinction. 

This qualitative behaviour of the steady-

state solutions is in agreement with the ecological 

law of competitive exclusion. We also observe 

that the two interacting legumes also co-exist and 

survive together. 

 

CONCLUSION 

For the first time in the Niger Delta Region of 

Nigeria ecosystem, we have systematically 

characterized the steady-state solutions and their 

stability by using some standard mathematical 
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techniques. The steady-state solutions and their 

stability characterizations can provide useful 

ecological insights about the ecosystem stability 

and planning. Further extensions of this study will 

involve the sensitivity analysis of the estimated 

model parameters and the application of 

stabilizing a mathematical model of two 

interacting legumes and its significance in 

ecosystem functioning, ecosystem economics and 

biodiversity gain. 
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