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ABSTRACT 

This study studied the problem of micronumerosity in CLR in other to prescribe appropriate 

remedy to the problem if encountered at any CLR analysis. The study is aimed at determining 

an optimum sample size n*, such that when the number of observations of variables in CLR is 

greater than (i.e. n > n*) then micronumerosity is not a problem. It also suggests means of 

correcting micronumerosity in CLR. The optimum minimum sample size (n) for a given 

number of independent variables (p) and level of correlation between the dependent and 

independent variable(s) were determined. Also, Factor Analysis served as the best method of 

overcoming problem of micronumerosity.  
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INTRODUCTION 

When estimating parameters of one sample, 

two samples, simple or multiple linear 

regression equations, a researcher is poised 

to have at the back of his mind the precision 

of estimation and least standard error. These 

conditions are as important as carrying out 

the research itself. In many situations, 

varieties of conditions such as wrong use of 

estimator, incorrect formulas, 

multicollinearity, insufficient sample size, 

etc., could make the precision of estimation 

and least standard error unrealizable. In 

multiple linear regressions, virtually all 

econometrics literatures blame the failure of 

an estimate to be non-precise or having 

large standard error on independent 

variables being significantly correlated with 

one another, that is, multicollinearity. This 

situation is the same if the sample size 

barely exceeds the number of independent 

variables in the regression equation. 

Goldberger (1964) has christened this 

scenario as the problem of micronumerosity, 

which simply means small sample size 

(Gujarati, 2004). 

 

Thus, micronumerosity is a situation 

whereby the sample size is not sufficient to 

obtain a precise (unbiased) estimate with 

relatively least standard errors. We cannot 

estimate a regression model with Ordinary 

Least Squares (OLS) method in a case of 

exact micronumerosity, or having fewer 

observations than parameters to be 

estimated. Also, we have relatively large 

standard errors with near micronumerosity, 

which means the number of observations  



 
190 

 

 

Oyeyemi G. M., Bolakale A., Folorunsho A. I. and Garba M. K.: Micronumerosity in Classical Linear Regression 

 

barely exceeds the number of parameters to 

be estimated.  

 

To drive home the importance of sample 

size, Goldberger (1964) coined the term 

micronumerosity, to counter the exotic 

polysyllabic name multicollinearity. 

According to Goldberger, exact 

micronumerosity (the counterpart of exact 

multicollinearity) arises when n, the sample 

size, is zero, in which case any kind of 

estimation is impossible. Near 

micronumerosity, like near 

multicollinearity, arises when the number of 

observations barely exceeds the number of 

parameters to be estimated. 

 

Regression analysis is concerned with the 

study of the dependent variable on one or 

more explanatory variables, with a view of 

estimating and/or predicting the 

(population) mean or average value of the 

former in terms of the known or fixed (in 

repeated sampling) values of the latter. The 

number of observations n must be greater 

than the number of parameters to be 

estimated. Alternatively, the number of 

observations n must be greater than the 

number of explanatory variables in linear 

regression modeling (Gujarati, 2004).  

 

 

Goldberger (1989) argues that if the sample 

size is less or equal to the number of 

predictors in a CLR equations, it is 

impossible to estimate the regression 

parameters or fit an appropriate model to the 

data. He furthered stated that if the sample 

size barely exceeds the number of 

predictors, there is lack of fit in the 

regression equation even if all other basic 

assumptions of CLS holds. He discussed the  

 

consequences of micronumerosity as similar 

to that of multicollinearity, and finally 

suggested the development of a critical 

value for the sample size, such that when 

taking observations, if the number of 

observations is greater than the sample size 

obtained, then micronumerosity is not a 

problem. Monogan (2011) also described 

the numerous consequences of 

micronumerosity as Goldberger (1990) did 

and furthered that the methods of correcting 

micronumerosity are the same as correcting 

multicollinearity in multiple linear 

regression. He further suggested the use of 

multivariate measurement in solving 

micronumerosity problems as used in 

multicollinearity problem. 

 

Application of principal component analysis 

(PCA) in regression has long been 

introduced by Kendall (1957). Jeffers 

(1967) suggested obtaining a new set of 

uncorrelated ordered variables (known as 

principal components, PC) from the original 

variables, to achieve an easier and more 

stable model. The most important of these 

conditions is that the transformed variables 

are uncorrelated. Correlation of variables is 

basically an indication of the strength and 

direction of a linear relationship between 

two  variables  (Weisberg  1980)  and  it  

must  be  considered  if  redundant  data  is  

to  be acknowledged and eliminated. 

 

Exploratory factor analysis (EFA) is a 

causal modeling technique that attempts to 

“explain” correlations among a set of 

observed (manifest) variables through the 

linear combination of a few unknown 

number of latent (unobserved) random 

factors. The procedure was originated by the 

psychologist Charles Spearman in the early  
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1900’s to model human intelligence. 

Spearman’s (1904) single factor model was 

later generalized by Thurstone (1933, 1947) 

to multiple factors (Timm, 2002). Factor 

analysis regression (FAR) provides a 

model-based estimation method that is 

particularly tailored to cope with 

multicollinearity in variables setting. Scott 

(1966, 1969) was the first to address this 

issue by deriving “factor analysis regression 

equations” from a factor model of both the 

dependent and the explanatory variables. 

The theoretical deficiencies of Scott’s 

approach are criticized for the most part by 

King (1969). He showed that Scott’s FAR 

estimator is biased and that the bias still 

exists asymptotically. Scott’s FAR approach 

has been reconsidered by Lawley and 

Maxwell (1973), Chan (1977) and Isogawa 

and Okamoto (1980).  

 

MATERIALS AND METHODS 

Here, we start by defining the vector matrix 

of means µ and variance-covariance matrix 

∑ for the dependent variable and p-

independent variable(s) such that all the 

assumptions of multiple linear regression 

stated in earlier holds. A random sample, 

starting from size n= p+1, is then simulated 

using the vector matrix of means µ and 

variance-covariance matrix ∑ earlier 

defined from a normal population. The 

correlation among the variables in the data 

is then checked to ensure that the underlying 

assumptions of linearity between dependent 

variable and the independent variable(s) and 

no multicollinearity between independent 

variable(s) hold. 

 

Further, we regress the dependent variable 

on the independent variable(s), and the 

model diagnosis using Analysis of Variance, 

ANOVA. If the F-statistic computed is  

 

significant at 0.01 level of significance, then 

we accept the sample size n used, as the 

minimum sample size required to avert 

micronumerosity, otherwise, the sample size 

is rejected and another sample is taken by 

increasing the sample size until a significant 

model is obtained. 

 

At the end of varying the sample size, the 

correlation between the dependent and 

independent variable(s) was also varied to 

see the effect of correlation on the sample 

size required. This procedure was repeated 

for p-independent variables ranging from 1 

to 10. 

 

A multiple linear regression of the minimum 

sample size required on the number of 

predictors p and the correlation between the 

dependent and independent variable(s) were 

then obtained to establish the relationship of 

the likelihood minimum sample size 

required to avoid micronumerosity. 

 

A principal component regression and factor 

analysis regression were also performed to 

check if the problem of micronunerosity 

could be solved with the two methods. The 

R
2
 obtained was compared to see which of 

the methods performs better in treating 

micronumerosity. 

 

 

RESULTS  

The simulation for the research and analysis 

of variance is conducted to determine which 

sample size is sufficient enough to avoid 

micronumerosity. At the different stages of 

the simulation and analysis, it would be 

shown how the change in sample size 

affects the change in F-statistic for the 

fitness of the regression model, and the t-

values for the regressors. 
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Lastly, using the SPSS package, factor 

analysis and principal component analysis 

regression were performed to determine if 

the methods of correcting multicollinearity 

is suitable for remedying micronumerosity, 

and also to determine which of factor 

analysis or principal component analysis 

regression performs better in fitting an 

alternative model, using their respective 

adjusted R
2
 values. 

 

Linear regression model 

Starting with one dependent variable, Y and 

one independent variable, X, Let the vector          

 

u = (6 4) and     
  
  

  be the vector of 

means and matrix of variance-covariance for 

Y and X respectively, observations was 

sampled from a normal population, with n = 

p + 1 (i.e. n = 2). 
 

A linear regression equation Y = 2 + X was 

obtained but the model diagnosis could not 

be obtained because of the singularity of the 

matrix    . 

By increasing the sample size by 1, i.e, n = 

3, the following analysis of variance was 

obtained.

 

Table 1: ANOVA for 3 sample size (n = 3) with a dependent and one independent variable. 

Coefficient Estimate Std. error t-value Pr (>|t| 

Intercept 2.000 2.581 x 10
-15

 7.749 x 10
14

 < 0.000 

X 1.000 5.924 x 10
-16

 1.688 x 10
15

 < 0.000 

F (1, 1) = 2.849 x 10
30

   p-value < 0.000      

       R
2
 = 1.000                      

   1.000 

Residual std. error = 9.553 x 10
-16

 

 

From the results obtained in Table 1, the p-

value (3.772e-16) for the F-statistic is 

highly significant, and thus we conclude 

that the model is suitable and appropriate for 

predicting. Thus, the required sample size 

(n) when the correlation between the 

dependent and the independent variable is 1 

is 3, i.e., n = 3. 

Now, by setting the variance-covariance 

matrix as     
    
    

 , the following 

model was obtained, starting with n = 3

 

Table 2: ANOVA for 3 sample size (n = 3) with a dependent and an independent variable  

(r = 0.8). 

Coefficient Estimate Std. error t-value Pr (>|t| 

Intercept 3.49581 0.17577  19.89 0.032 

X 0.57264 0.03834 14.94 0.053 

F (1, 1) = 223.1   p-value = 0.053     

        R
2
 = 0.9855         

   0.981 

           Residual std. error = 0.075 

  

From the results in table 2, the p-value 

(0.053) for the F-statistic is not significant at 

0.01 level of significance, and thus we 

conclude that the model is not appropriate 

for predicting. We continue to increase the 

sample size and fit the regression model at 

each step. The model was found to be 

significant when n = 11. 
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Table 3: ANOVA for 11 sample size (n = 3) with a dependent and an independent variable  

(r = 0.8). 

Coefficient Estimate Std. error t-value Pr (>|t| 

Intercept 3.49581 0.17577  19.89 0.032 

X 0.57264 0.03834 14.94 0.053 

F (1, 1) = 223.1   p-value = 0.053     

        R
2
 = 0.9855         

   0.981 

           Residual std. error = 0.075 

  

From the results obtained in table 3, the p-

value (0.003223) for the F-statistic is highly 

significant, and thus we conclude that the 

model is suitable and appropriate for 

predicting. Thus, sample size n required 

when the correlation r between the 

dependent and the independent variable is 

0.8 is 11. 

This process was continued for other p, the 

number of predictors, i.e., p = 2,3,4,5,…,10, 

while the correlation r between the 

dependent and independent variables was 

varied but zero (0) correlation was 

maintained between the independent 

variables. The result is presented in table 4.

 

Table 4: Minimum required sample size (n) for a given number of predictor(s) p, for 

different level of correlation between dependent and independent variables.  

S/N Number of predictors (p) Correlation (r) Number of observations (n) 

1 1 1 3 

2 1 0.8 11 

3 1 0.6 21 

4 2 1 4 

5 2 0.8 14 

6 2 0.6 28 

7 3 1 5 

8 3 0.8 17 

9 3 0.6 33 

10 4 1 6 

11 4 0.8 19 

12 4 0.6 38 

13 5 1 7 

14 5 0.8 22 

15 5 0.6 43 

16 6 1 8 

17 6 0.8 24 

18 6 0.6 38 

19 7 1 9 

20 7 0.8 29 

21 7 0.6 45 

 

By regressing the sample size (n) on the 

number of predictors (p) and correlation 

between dependent and independent 

variables (r), as presented in table 4, the 

results of the regression model are presented 

in Table 5. 
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Table 5: ANOVA for regression of sample size on number of predictor variables and correlation 

coefficient 

Coefficient Estimate Std. error t-value Pr (>|t| 

Intercept 71.0976 3.5197 20.200 < 0.000 

P 1.6991 0.2923   5.813 < 0.000 

R -73.150 4.4143  < 0.000 

F (2, 19) = 137.30   p-value < 0.000      

         R
2
 = 0.935             

   0.929 

              Residual std. error = 3.226 

  

                                 
Where 0 ≤ | r | ≤ 1 

 

Factor analysis and principal component 

regression 

In this section, both factor analysis (FA) and 

principal component analysis (PCA) are 

used as a way of solving the problem of 

Micronumerosity. A p- variate multivariate 

data set (p=10) with problem of 

micronumerosity is sampled using R 

statistical package. PCA is used to obtain 

the p- components with their respective 

eigen-values. Scree plot of the eigen values 

was used to determine the appropriate 

number of components to be used in the 

principal component regression. The Scree 

plot as shown in figure 1 suggested three (3) 

components for the regression model. The 

results of the principal component 

regression model are presented in table 5 

 
Figure 1: Scree plot of components derived from ten independent variables 
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Table 5: Model Summary and ANOVA Table for PCA regression 
Source 

Sum of 

Squares df 

Mean 

Square F Sig. R R  Square 

Adjusted 

R  Square 

Std. Error 

of the 

Estimate 

Regression 1399.130 3 466.377 151.392 0.000 .986 .972 .966 1.75516 

Residual     40.048 13     3.081 
      

Total 1439.178 16 
       

 

The same simulated data was used to obtain 

factor analysis regression retaining three 

factors (as the independent variable) to be 

consistent with principal component 

regression model obtained earlier. The 

results of the factor analysis regression are 

presented in table 6. 

 

Table 6: Model Summary and ANOVA for factor analysis regression 
Source 

Sum of 

Squares df 

Mean 

Square F Sig. R R  Square 

Adjusted 

R  Square 

Std. Error 

of the 

Estimate 

Regression 1438.970 3 479.657 29978.56 0.000 1.000 1.000 1.000 0.127 

Residual      0.208 13     0.016     
    

Total 1439.178 16       
    

 

DISCUSSION 

The simulation study on Micronumerosity 

problem in classical linear regression shows 

that the sample size (n) should at least be 

greater than the relationship: 

 

 

 

to avoid Micronumerosity problem. Where 

p is number of independent variables and r 

is the minimum correlation coefficient 

between the dependent variables and 

independent variable(s). 

 

Also, both principal component and factor 

analysis regression model have been 

demonstrated as means of solving 

Micronumerosity problem. This was 

achieved by reducing the independent 

variables into a fewer components or 

factors, although, factor analysis model is 

better than principal components regression 

because it provided higher R
2
. 

 

In conclusion, the presence of 

micronumerosity is prevalent and might not 

be avoidable in many econometrics 

researches due to reasons beyond the control 

of the econometrician. However, the 

problem of micronumerosity should not be 

confused with multicollinearity (except both 

occurs in the same model) since both show 

nearly the same symptoms and some of the 

ways of treating multicollinearity are 

applicable to micronumerosity. 

Multicollinearity most times does not affect  
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the predictability of a regression equation 

whereas the first thing micronumerosity 

affects is the predictability of Classical 

Linear Regression. It is advisable though to 

check first multicollinearity in a dataset that 

has any of the symptoms stated earlier to 

ascertain which of the two problems to 

tackle. 

 

Therefore, if there is presence of 

Micronumerosity in a data set, then 

additional data should be obtained (increase 

the sample size n). If it is not possible to 

increase the sample size,then the best 

method of remedying Micronumerosity is to 

use factor analysis regression or principal 

component regression. 
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