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ABSTRACT 

In this present deterministic numerical bifurcation analysis, if the daily intrinsic growth rate 

a is varied while other model parameters are fixed, the qualitative fundamental changes of 

the boarder steady-state solution (0,
f
d ) are studied. Here, the steady-state solution is stable if 

a <
fs

cd and d > 0 provided s is a positive parameter and d is one of the model parameters. It 

passes through a bifurcation point if a  = 
fs

cd and d = 0 and is unstable if a >
fs

cd  and     d < 0 
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INTRODUCTION 

The notion of a bifurcation analysis in 

ecological modelling is an important 

mathematical technique for understanding 

the fundamental changes in the qualitative 

behaviour of solutions which is due to a 

variation of a model parameter ([3], [4]), 

[5], [6]). Hence bifurcation analysis in 

ecological research is an active component 

of research. According to [1] and the several 

cited authors by [1] and without loss of 

generality, we know that, for a system of 

nonlinear first order differential equations, a 

steady-state solution can either be called 

stable if the signs of the eigenvalues are 

both negative and unstable if the signs of the 

eigenvalues are of opposite signs. But the 

bifurcation values where a stable-steady 

state solution changes to an unstable steady-

state solution remains to be an open 

problem in the context of this 

interdisciplinary research. These bifurcation 

values can provide some insights to 

ecologists. 
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In the sequel, we will present a few key 

results of our numerical bifurcation analysis 

which we have not seen elsewhere. 

This paper is organized into the following 

sections: Sections 2 and 3 will tackle the 

notions of bifurcation and some simplifying 

modelling assumptions. Sections 4 and 5 

will tackle the mathematical formulation 

and the characterization components of this 

proposed problem. Section 6 is the core 

component of this study which tackles the 

problem of constructing the bifurcation 

points and the fundamental changes in the 

qualitative behaviour of the steady-state 

solutions. The key results which one has 

achieved in this paper are quantitatively 

discussed in section 7 and summarized in 

section 8. 

 

 Bifurcation Analysis 

If a model parameter is varied while other 

parameters are fixed, we can study the 

fundamental changes in the qualitative 

behaviour of steady-state solutions and 

hence find the bifurcation points where a 

stable steady-state solution changes to an 

unstable steady-state solution. For example, 

after linearizing the interaction continuous 

and partially differentiable functions in the 

neighbourhood of an arbitrary steady-state 

solution, we will aim to characterize the 

stability and instability behaviour of the 

steady-state solution qualitatively. In this 

respect, we can explore the standard 

mathematical technique of the changes in 

the sings of the eigenvalues to specify if a 

steady-states solution is either stable or 

unstable. In some instances, a steady-state 

solution can be characterized as sitting on 

the cusp. A systematic calculation where a 

steady-state changes from a stable node to a 

saddle can have interesting application in 

the study of biological interaction which is 

both attractive and cost-effective. 

 

This numerical bifurcation analysis can be 

useful in ecological monitoring and 

stability. For other sophisticated bifurcation 

methods, see [3]. 

 

Modelling Assumptions 

In this paper, our core assumptions will 

border on the linear Malthusian growth 

phenomenon, logistic population growth 

and the law of mass action which are central 

in the formulation of a system of first order 

differential equations that describe the 

interspecific competition between two plant 

species in a Lotka-Voltera sense ([1]. [2]). 

 
 

Mathematical Formulation 

Recently, [2] introduced a mathematical 

model of plant species interaction in a harsh 

climate. They consider whether interactions 

between the species change in character as 

environment change. The model is 

constructed based on the notion of a 

summer season when the plants grow, 

followed by a winter season when there is 

no growth but when the plants are subject to 

the effects of events such as winter storms, 

see also [1]. 

 

The model of competition has the following 

form 

(4.1) ))()(1)(( 111 tztyty
dt

dy
   

 

(4.2) ))()(1)(( 222 tytztz
dt

dz
   

 

Here y and z denote the population of two 

plant species at time t. Here the non-

negative constants i, i, i, i = 1,2 are given 

respectively, as the intrinsic growth rate, the 

intra-species competitive parameter and the 

inter-species competitive parameter. This 

model equation has four steady-states. 
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They discussed how to choose the parameter 

value i, i, i, i = 1,2 such that the model is 

reasonable. They noticed that although the 

variation in i, i, i, i = 1,2 between the 

species is quite small, the behaviour of two 

such close species are much different over a 

growing season of several years length. The 

population of one species may die away and 

would become extinct over a growing 

season of several years length. They pointed 

that small perturbation in the environment 

could have quite devastating and 

unexpected results for ecosystems. Some 

steady-states are stable. For the purpose of 

this paper, we will consider a simplified 

version of the above model equations ([1]) 

such as 

 

(4.3)  ),( 211
1 cNbNaN

dt

dN
  

 

(4.4)  ),( 212

2 fNeNdN
dt

dN
  

where the initial conditions are N1(0) = N10> 

0 and N2(0) = N20> 0. 

 

For the purpose of this bifurcation analysis, 

we will consider the following system of 

first order nonlinear ordinary differential 

equations 

(4.5)  ),( 211
1 cNbNsaN

dt

dN
  

 

 

 

(4.6)  ),( 212

2 fNeNdN
dt

dN
  

Similarly the initial conditions are N1(0) = 

N10> 0,  N2(0) = N20> 0                and  s>0. 

 

Characterization of Steady-State 

Solutions 

If the rates of change are equated to zero 

and the interactions functions are solved 

analytically, we will obtain the four steady-

state solutions namely (0,0), 







0,

b

sa
, 

,,0 








f

d
    and     ee NN 21 ,    where   N1e = 

cebf

cdasf




  and  N2e = 

cebf

easbd




 provided 

.,, cefb
e

bd
sa

sf

cd
sa   

 

By using a standard mathematical technique 

of linearization at an arbitrary steady-state 

solution (N1e, N2e), we will consider two 

interaction functions F(N1e, N2e) and 

G(N1e,N2e) which are assumed to be 

partially differentiable and continuous at 

this arbitrary steady-state solution (N1e; 

N2e). 

 

In our context, the mathematical structures 

of these two functions are 

 

(5.1) ,),( 21
1

121
2

ee
e

eee NcNbNasNNNF   

(5.2)
e

eeeee fNNeNdNNNG
2

2

21221 ),(   

 

To determine the stability property of each 

steady-state solution, we differentiated these 

two functions partially with respect to N1e 

and N2e and obtain the following Jacobian 

coefficients such as 
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(5.3) ,2 21

1

11 ee

e

cNbNas
dN

F
J 


  

 

(5.4) ,1

2

12 e

e

cN
dN

F
J 


  

(5.5) ,2

1

21 e

e

eN
dN

G
J 


  

(5.6) ee

e

fNeNd
dN

G
J 21

2

22 2


  

 

Upon evaluating these values of partial 

derivatives at each steady-state solution, we 

can set up a Jacobian matrix from which 

two eigenvalues can be calculated. For 

example, at the steady-state (0,
f
d ), the two 

eigenvalues which are unique to these 

model parameters are if 

dandas
f

cd  21   

 

Numerical Bifurcation Analysis 

 

(1) If 1 < 0 and 2< 0, then a <
fc
cd  and 

d> 0. This first observation indicates 

that the steady-state solution (0, 
f
d ) 

is stable. 

 

(2) If 1 < 0 and 2 = 0, then a <
fs

cd  and 

d = 0 This second observation 

indicates that the steady-state 

solution (0, 
f
d ) is sitting on the cusp 

(3) If 1 = 0 and 2< 0, then a <
fs

cd   and 

d> 0. This third observation 

indicates that the steady-state 

solution (
f
d,0 ) is sitting on the cusp 

(4) If 1 = 0 and 2 = 0, then a  = 
fs

cd  

and d = 0. The fourth observation 

indicates that the loss of the stability 

for the steady-state solution           

(0, 
f
d ).  

(5) If 1 = 0 and 2> 0, then a = 
fs

cd and 

d< 0. The fifth observation indicates 

that the steady-state solution (
f
d,0 ) 

is sitting on the cusp.    

(6) If 1> 0 and 2 = 0, then a >
fs

cd  and 

d = 0. This sixth observation 

indicates that the steady-state 

solution (
f
d,0 ) is sitting on the cusp. 

(7) If 1 < 0 and 2> 0, then a <
fs

cd  and 

d> 0. The Seventh observation 

indicates that the steady-state 

solution (
f
d,0 ) is unstable. Here, the 

instability criteria of the steady-state 

solution (
f
d,0 ) are the partial 

opposite of the stability criteria of 

the steady-state solution (
f
d,0 ). 

(8) If 1> 0 and 2< 0, then a >
fs

cd  and 

d> 0. This eighth observation 

indicates that the steady-state 

solution (
f
d,0 ) is unstable. Similarly, 

the instability criteria of the steady-

state solution (
f
d,0 ).    

(9) If 1> 0 and 2> 0, then a >
fs

cd  and 

d< 0. This nineth observation 

indicates that the steady-state 

solution (
f
d,0 ) is unstable. We can 

see clearly that the instability criteria 

of the steady-state solution (
f
d,0 ) are 

the complete opposite of the stability 

criteria of the steady-state solution (

f
d,0 ). 

 

 

DISCUSSION  

In this present analysis, the steady-state 

solution (
f
d,0 ) is a stable node for           a < 

(0,
fs

cd ) and d > 0. It is a saddle for a <>
fs

cd

and d < 0. 

Therefore, the steady-state solution will 

change from a stable node to a saddle as it 

persists through tire bifurcation point a = 
fs

cd

and d = 0. 
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In this study, we have found that the steady-

state solution )0,(
b
sa is stable when the 

growth rate of the first population is strictly 

less than a multiple of the growth rate of the 

second population and when the growth rate 

of the second population is strictly greater 

than zero. 

 

This steady-state solution is similarly 

unstable when the growth rate of the first 

population is strictly greater than a multiple 

of the growth rate of the second population 

and when the growth rate of the second 

population is strictly less than zero. 

 

A bifurcation point a = 
fs

cd  and d = 0 has 

been determined which is capable of 

providing further insights in biosciences 

research. 
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