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ABSTRACT 

Two approaches to discriminant analysis procedure are examined and compared based on 

their misclassification error rate. The Fisher’s approach tends to find a linear combination of 

the variables which maximize the ratio of the between group sum of squares to that of the 

within group sum of squares in achieving a good separation. On the other hand, the Bayesian 

approach assigns an observed unit to a group with the greatest posterior probability. 

Fisher’s linear discriminant analysis though is the most widely used method of classification 

because of its simplicity and optimality properties is normally used for two group cases. 

However, Bayesian approach is found to be better than Fisher’s approach because of its low 

misclassification error rate. 

 

Keywords: variance-covariance matrices, centroids, prior probability, mahalanobis distance, 

probability of misclassification. 

 

INTRODUCTION 

Classification is the allocation of an 

individual or object to a group or category 

on the basis of its own observed 

characteristics in the vector of observations 

for individual unit in which the linear or 

quadratic functions of the variables are 

employed to assign an individual unit to one 

of the groups (Anderson, 1958). The 

combination of measurements used is 

known as classification function and it is 

used to find the group or category to which 

the individual most likely belongs (Knoke, 

1982). 

 

Basically, the idea of classification analysis 

runs as follows; Suppose that we have 

samples from J populations of size jn , j 

=1,2,…,J, with p measures on each of the 

N(= jn ) units. Using the N x p data 

matrix, we want to determine from which of 

the J populations an (N +1)
st
 unit is 

mostlikely to have been randomly sampled.  
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To accomplish this task we use the 

information in the given N x p data matrix 

to set up a rule for making the assignment. 

This situation is similar to that in multiple 

regression studies, where one is typically 

predicting a score on a continuous variable 

instead of predicting group membership. We 

could see that in both situations a rule based 

on a given data matrix is derived and may 

be used with “new” units (Rublik, 2008). 

 

The Assumptions of Fishers Linear 

DiscriminantFunction 

- The covariance matrix in first 

population is the same as the 

covariance matrix in second 

population i.e.  Σ1 = Σ2 = Σ. 

- The means µ1, µ2 and covariance 

matrix Σ are known. 

- The two populations are multivariate 

normal i.e. f1(x, θ1) and f2(x, θ2) are 

multivariate normal density 

functions (Haerdle & Simar, 2003). 

 

Fishers Linear Discriminant Function 

Fisher’s linear discriminant procedure 

works like the Principal Component 

Analysis which finds the most accurate data 

representation in lower dimensional space 

that projects data in the direction of 

maximum variance (Tipping, 2001). The 

main idea of Fisher’s linear discriminant is 

finding projection to a line such that 

samples from different groups (populations) 

are well separated. This involves finding 

linear combination that maximizes the ratio 

of the between-group sum of squares and 

the within-group sum of squares such that a 

good separation is achieved (Fisher, 1938). 

It is also used for maximizing the sample 

mahalanobis distance between the two sets 

of data. Maximizing difference 

betweengroups may lead to reducing 

probability of misclassification. 

 

Fisher suggested that using a linear 

combination of observations and choosing  

 

coefficients so that the ratio of the 

difference of means of linear combinations 

in the two groups to its variances is 

maximized. Fisher’s linear discriminant 

function is known to be optimal for two 

multivariate normal populations with equal 

covariance matrices (Gorenstein et al, 

1996). 

 

Derivation of Fishers Linear 

Discriminant Function 

Suppose we have a population consisting of 

two groups  1 and  2 and a d- dimensional 

samples x1, x2,…,xn such that n1  samples 

comes from first group ( 1) and n2  samples 

comes from second group ( 2) and must 

assign the individuals whose measurement 

are given by the d-dimensional samples into 

 1 and  2. We need a rule to do this, 

specifically, if the parameters of the 

distributions are known it can be used 

directly in construction of an assignment 

rule. However, if the parameters are 

unknown we use the n1 samples from  1 and 

n2 samples from  2 to estimate the 

parameters. 

 

Consider a projection on a plane with v 

being the direction of projection; we can say 

that the projection of samples xi onto a line 

in the direction v is given by v xi.Now, we 

want to measure separation between 

projections of different groups 

(populations).Suppose θ1 and θ2 are the 

means of projections of groups 1 and 2, 

respectively.  Let µ1 and µ2 be means of 

groups 1 and 2, respectively. 

Now, using ∣θ1-θ2∣ as the measure of 

separation  

Where;  

θ1= 1
1

'

1

'1'1
1

1




VX
n

VXV
n ii

n

Cxi








    

1.4.1 

and  θ2 = 
2'V   1.4.2 

 

It is important to note that the larger the ∣θ1-

θ2∣, the better the expected separation
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Figure 1: Projection of observations on both vertical and horizontal axis. 

 

From Figure 1, the vertical axis is a better 

line of projection for separability than the 

horizontal axis but   ∣Ð1-Ð2∣>∣θ1-θ2∣.  This is 

shows the problem with ∣θ1-θ2∣ because it 

does not consider the variances of the 

classes. Normalizing ∣θ1-θ2∣ by a factor 

which is proportional to variance, let the 

factor be S (scatter) and define as 

 

 
2

1





n

i

yiYS    1.4.3 

 

If we define   ii XVY '   1.4.4 

 
s

iY
'
are the projected samples, then

1S  is the 

scatter matrix for projected sample of group 

1 

 
2

1

2

1

1

 


CY

i

i

YS


   1.4.5 

and S2 is the scatter matrix for projected 

samples of group 2 

 

 
2

2

2

2

2

 


CY

i

i

YS


   1.4.6 

 

We need to normalize the function by both 

scatter matrices (Gilbert, 1969).  Thus 

Fisher’s linear discriminant is to project on 

line in the direction v which maximizes 

 

 
2

2

2

1

2

21)(

SS

v








   1.4.7 

 

If we find v which makes  v  large, we are 

guaranteed that the classes are well 

separated. 

 

Expressing  v  explicitly as a function v 

and maximizing it. 

Defining the separate classes scatter 

matrices S1 and S2 for classes 1 and 2 

respectively, these measure the scatter 

matrices of the original samples (xij) before 

the projection. 

 

  '111

1




  i

CX

i XXS
i

  1.4.8 

 

  '222

2




  i

CX

i XXS
i

  1.4.9 

We now define the within group scatter 

matrix as 

21 SSSW
   1.4.10 

Recall from equation 1.4.5 that 
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2

1

1

)(2
1

 


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i

i

YS


  

 Using ii XVY '  and 
1' V  

 



1

2

1)''(2
1 CY

i

i

VXVS
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1
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i

XVXV
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  

 
1
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i

VXVX


  

 
1

)')((' 11

CY

ii

i

VXXV


  

 = VSV 1'    1.4.11 

 Similarly,  

VSVS 2'2
2




   1.4.12 

Hence, 

VSVVSVSS 21

2

2

2

1
'' 



 

= VSV W'    1.4.13 

Now, defining the between the group scatter 

matrix, 

   22121 ''  VV   

  =   VV '' 2121    

= VSV B'    1.4.14 

Thus  v  can be rewritten as 

 
 2

2

**

1

21

SS

v







  

                =
VSV

VSV

W

B

'

'
 

Minimizing  v  and equating to zero 

 
 

0
'
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2
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VSVVSVSVVS
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       =     0''  VSVSVVSVSV WBBW  
 

          =  
 

0
'

'


VSV

VSVSV
VS

W

WB
B

 
 

                = 0 VSVS WB 
 

VSVS WB  (General Eigen value problem). 1.4.15 

 

If SW has a full rank, we can convert this to 

a standard Eigen value problem 

VVSS BW 1

 
 

But SBV for any vector V points in same 

direction as (
21   ). 

 

    212121 '   VVSB
 

Thus the Eigen value problem can be solved 

immediately 
 

  21

11   

WBW SVSS
 

 

     
           

 

                And       21

1   

WSV  . 

 

Therefore the linear discriminant function 

 

iXVY ' ,  i=1…p    and X=(x1,x2,…,xp) 

 

   
            

 

Expected value of Y with respect to group 1 

is given by  

  1121

1
1

_

  

WSY , 

 

And with respect to group 2 is given by 

  2221

1
_

2   

WSY  
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Where, i is the mean of measurement in 

the i
th

class. 

 

Since the discriminant function  

 

iXVY '
 

                                                   

 

V being the direction of projection. 

The discriminant score for ith individual is 

defined by 

pipiii XVXVXVY  ...2211 ;  i=1, 2, … ,ni   

and j=1…J . 

Where Xij represents the j
th

 group with 

measurement Xi . 

 

Assignment Rule 

For      ini ,...,2,1 and  2,1j ;  assign i
th

 

individual to group 1 if 

   0' 212
1  iXV  

and to group 2 if    0' 212
1  iXV . 

or 

Assign i
th

 individual to group 1 if

2

21
1

YY
Y


 , and to group 2 if otherwise. 

 

Bayesian Approach to Classification 

The Bayesian approach towards 

classification when all parameters are 

known (estimated from the data) and 

misclassification cost are equal would begin 

with evaluation of the posterior probability 

that jX   given

X , for each. Jj ,...,2,1

(Dunsmore,1966, Baldwin,1988). Then the 

posterior odds or ratios are computed for 

each pair of populations. Alternatively for

2J , the population with the greatest 

posterior probability can be selected 

(Birnbaum & Maxwell, 1960). 

 

 

 

When the costs of misclassification are 

unequal, the Bayesian would select the 

population thatproduces a minimum cost 

when average with respect to the posterior 

probability. This result alsoholds for all 

2J when all parameters are known. 

Bayesian approach to classification is 

moregenerally applicable even when the 

covariance matrices are not equal and it 

requires nocomplicated distribution theory, 

though it is much more difficult to apply. 

 

Construction of Classification Rule 

For easy understanding of the classification 

rule, we present some definition of basic 

concepts and terms; 

 

Typicality Probability   jXp  

It is the probability that a randomly selected 

observation has a profile close to X, given 

that the unit is a member of population j.

Kj ,...,2,1 . 

 

Posterior Probability   XjP . 

It is the probability of an observation 

belonging to population j given that it has a 

particular observational vector X. Posterior 

in the sense that it is a probability 

conditioned on knowing

X . 

It is reasonable to say that an observation be 

assigned to that population for which 

 

XjP  is greatest. 

 

 
 

 









K

j

jXP

jXP
XjP

1

  1.7.1 

is the probability that an observation belong 

to population j given an observed score 

vector. It is   equal to the ratio of the 

probability of its score vector in population j 

to the sum of the probabilities associated 

with its score vector in all j
’s
. 
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Prior Probability    

Examining the equation 1.7.1 above closely 

it is clear that the adequacy of  
i

XjP


 will 

depend on goodness of the estimates of

 jXP
i

, and that goodness in turn depends 

on size (representativeness) of the original 

samples on which these estimates are based.  

 

This is one of the major problems of the 

Bayesian Approach (Rubin, et al, 2003). 

If we let j  denote the proportion of 

observations in total K populations that is 

present in population j, then j is the 

probability that the observation will be from 

population j. 

 

This probability is known as the prior 

probability of membership in population j. 

Prior in the sense that it is a probability of 

population membership before 
i

X


is 

known. 

Hence j should be taken into consideration 

when estimating 









iXjP . 

Now, letting 










jXP ij .  denotes the 

probability that a randomly selected 

observational unit belongs to population j 

and at the same time has a score vector  

 

 

 

close to

X . This can be used to arrive at 

values of 









iXjP  by employing rules of 

probability due to T. Bayes (1701-1761). 

So with respect to j ,  

          
         

          
 
   

 

 

     
         

          
 
   

  1.7.2 

 
Since                ,  

hence, the Bayes rule can 

be stated as;  

Assign observation Xi to population j if; 

                ;  j ≠ j1, where 

        is as earlier defined. 

Or, Assign observation Xi to population j if; 

       

        
   

And to population 
'j if otherwise. 

The rules above can be applied only if the 

probability density function          is 

known. Most times the distribution 

parameters s' and 
s' are usually not known 

but can be estimated from the sample data. 

Using 










jXf i to be a multivariate normal 

density function define as 

 































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
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




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


























jijjij

p

i XXjXf 
1

'

2
1

2

2
1exp2 , 

estimates of j  and 


j   are respectively 







jn

i

ij
j

j X
n

X
1

_

1̂ and 
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2

1
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1ˆ 



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


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

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
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i
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j
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nS  
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 

































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
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p
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1

'

2
1

2

2
1exp2ˆ    1.7.3 

Setting   ij
2



































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




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















jijji XXSXX
1
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     1.7.4 

We have 

   ijj

p

i SjXf 22
1

2

2
1exp2ˆ 







 



      1.7.5 

By substitution  

 

 ij

K

j

jj

ijjj

i

S

S
XjP

2
2

1

1

22
1

2
1exp.

2
1exp.

ˆ




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


















     1.7.6 

 

So for a p variate case the rule will be to 

assign an observation to population j if 
 
  1

'ˆ

ˆ







XjP

XjP

Rij

   , 'jj   and assign to 

population    if otherwise. 

where Rijis the predictive odd ratio for 

classifying 

X into any of the two 

populations. 

Now, consider a case were

 K...21
, i.e. a case where we 

assume the equality of covariance matrices. 

Here an estimator for  is the pooled 

sample covariance matrix S p
where S p

is 

defined as 

(Anderson & Bahadur, 1962, Chernoff, 

1973). 

 

 

Then  




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









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
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
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
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j
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     ijp

p

i SjXf 22
1

2

2
1exp2ˆ 


  

Note that  is a generalized distance 

estimator that is often attributed to an Indian 

statistician 

P.C Mahalanobis.  

 

Analysis and Comparisson 
 

Analysis Using Fisher’s Linear 

DiscriminantFunction 

Assuming we have the following estimates 

of   ,    , Σ and Σ  respectively 
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 j

KK

p
nN

KN

SnSnSn
S ,

1...1 2211



31 
 

 

Oyeyemi G. M., Oyebanji L. A., Salawu I. S.and Folorunsho A. I.:Comparison between Fisherian and Bayesian…  

 

 




















09.63

79.59

90.56

2X  

  



















5.4599755.621

756506485

5.62148584.2673

1S


















49.432729.1536.650

29.15379.50835.401

6.6505.4013.6418

2S  

21 SSSW
  

 

The inverse matrix 
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The Fisher’s linear discriminant function is given by 

 

, 

 

where

X is a 3x1 vector of observations. 
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The discriminant scores for the two faculties are computed using the formulae 
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From the above 
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The discriminant function cut off is therefore computed as; 
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So we assign i
th

 observation to population 1 if Y> 0.18810982, and to population 2 otherwise. 

 

ANALYSIS USING BAYESIAN APPROACH 

Using the estimates in section 2.1, the pooled covariance matrix,   , is defined as  

 

 

is computed as 
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The prior probabilities ( ) are 
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The distance estimates for each of the 

observed score vectors are obtained using 
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Note that the distances to be computed here 

are of two types, namely, 

(i) The distance of each of the 

observed vectors from their 

centroids, 

(ii) The distance of the observed 

vectors from the centroid of the 

other population. 

For group 1, the distance of the observed 

vectors from its means is,  
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For group 2, the distance of the observed 

vectors from its means is 
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Also for group 1, the distance of the 

observed vectors from the other means is 
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and for group 2, the distance of the observed 

vectors from the other means is 
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So the predictive odd ratio for group 1 is; 
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And for group 2 is 
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Hence, the decision rule will be to assign individual with measurement 
ij

X


 to any of the two 

groups whose    value is greater than 1, and to the other group otherwise, i = 1, 2, , , nj; j = 1, 

2                   

 

Table 1. Number of observations wrongly and correctly classified using Fisherian method  
 

Faculty Group 1 Group 2 Total 

Group 1 

Group 2 

60 

10 

19 

51 

79 

61 

Total 70 70 140 

 

 

The probability of misclassification of 

observations into group 1 is denoted by P1 

and calculated as; 

   
  

  
 

  

  
        

 

where 1q is the number of misclassified 

observations into group 1 and 1n is the 

number of samples of group 1. 

 

Similarly, 2p is the probability of 

misclassification of observations into group 

2 and calculated as; 

 

   
  

 
 

  

  
        

 

` where 2q is the number of 

misclassified observations into group 2 and 

2n is the number of samples in group 2. 

 

Hence, the total probability of 

misclassification by the Fisherian approach 

is 
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Table 2. Number of observations wrongly and correctly classified using Bayesian method  
 

Faculty Group 1 Group 2 Total 

Group 1 

Group 2 

60 

10 

17 

53 

77 

63 

Total 70 70 140 

 

The probability of misclassification of 

observations into group 1 is denoted by P1 

and calculated as; 

   
  

  
 

  

  
        

where 1q is the number of misclassified 

observations into group 1 and 1n is the 

number of samples of group 1. 

Similarly, 2p is the probability of 

misclassification of observations into group 

2 and calculated as; 

   
  

  
 

  

  
        

where 2q is the number of misclassified 

observations into group 2 and 2n is the 

number of samples in group 2. 

Hence, the total probability of 

misclassification by the Bayesian approach 

is; 

NN

qq
P




 21



140140

1710




  = 0.0964 

 

DISCUSSION  

From the comparison above, we can see that 

the probability of misclassification for the 

Fisher’s approach is 0.1036 while that of the 

Bayesian approach is 0.0964, which makes 

the error rate of the Fisher’s approach 

higher by 0.0072. 

 

While the Bayesian approach provided only 

a predictive distribution for placing a vector 

of observations into the second population 

(in addition to the predictive odds) it falls 

short in defining prior probability for the 

groups. The Fisherian approach while 

providing only a decision that attempts to 

cope with the problem of risk associated 

with the classification decision falls short in 

requiring that sample size be large and that 

covariance matrices be equal, assumptions 

that are not always true. 

 

Since we know that a rule is better than its 

alternative if its probability of 

misclassification is less than that of the 

alternative, we can conclude that the Baye’s 

rule is better than the Fisher’s rule, though 

this assertion may not always be true in all 

situations. 
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