127

Scientia Africana, Vol. 16 (No. 1), June 2017. Pp 127-147
© Faculty of Science, University of Port Harcourt, Printed in Nigeria ISSN 1118 - 1931

TRANSVERSE DISPLACEMENT OF CLAMPED-CLAMPED NON-UNIFORM
RAYLEIGH BEAMS UNDER MOVING CONCENTRATED MASSES RESTING ON
A CONSTANT ELASTIC FOUNDATION.

S. O. Ajibola

School of Science and Technology
National Open University of Nigeria, Lagos
E-mail:jiboluwatoyin@yahoo.com

Received: 02-11-16
Accepted:20-12-16

ABSTRACT

In this paper, the vibrational motion of a non-uniform beam clamped at both ends carrying
moving concentrated loads is investigated. The governing equation of motion of the
dynamical system is transformed via Mindlin-Goodman’s cum Generalised Galerking’s
methods as given in Oni and Ajibola (2009) The resulting coupled dynamic equation is
simplified via struble’s asymptotic techniques Oni,(1991), Oni and Omolafe (2005) , Oni and
Omolafe (2005) and Oni (1996) a second order differential equation that ensued is solved
using integral transform methods to obtain a closed form solution. From the closed form
solution, it is obtained that for the same natural frequency, the critical speed for the non-
uniform Rayleigh beams traversed by moving force is greater than that under the influence of
a moving mass. Hence, resonance is reached earlier in the moving mass problems.
Furthermore, the transverse displacement for the moving force and moving mass models
were calculated for various time t and presented in plotted curves and in the clamped-
clamped non-uniform boundary conditions. It is found that, the moving force solution is not
an upper bound for the accurate solution of the moving mass solution. Analysis further shows
that an increase in the values of the structural parameters reduces the response amplitude of
non-uniform Rayleigh beams of our dynamical problem.

Key words: Rayleigh beam, non-uniform, axial force, non-classical boundary, rotatory-
inertia, Foundation-modulli. Clamped-clamped.

INTRODUCTION (2006) and Savin (2001). It must be noted
The problem of assessing the dynamical that this class of dynamical problems
response of an elastic system (beam or  concern results for cases when the elastic
plate) which supports moving concentrated system have simple supports at the
masses is fundamental in the analysis and boundaries and solution techniques are not
design of highway and railway bridges and easily adjusted to the cases in which the
as such, this problem continues to attract the  supports conditions are not simple ones Jia-
attention of research Engineers and Jang (2006). The boundary conditions for
Scientists Milomir,eta (1969), Sadiku and structural members under moving loads can
Leipholz (1981), Oni (1991), Gbadeyan and be classified Frybal (1972) and Bishop and
Oni (1995), Oni and Omolafe (2005), Oni Johnson (1979) into two viz:

and Awodola (2003), Omer and Aitung (a) Geometric boundary conditions.
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(b) Dynamic / force boundary
conditions. Hilderbrand (1977),
Jaeger and Starfield (1974),
Clough and Penzien (1975) and
Craig (1981).
In considering a non-classical end
conditions, we discuss the elastically
supported end conditions. Suppose a beam
is hinged or pinned at one of its ends and
supported by an elastic spring, with
modulus k at the other end, the magnitude
of the shearing force must be k times the
displacement Oni and Ajibola (2005).

In this paper, the work Oni and Ajibola
(2005) is extended to cover boundary
conditions other than simple ones. In
particular, at end x = 0, the Rayleigh beam
is clamped and at endx =L, the beam is
also clamped; thus the termed Clamped-
Clamped Rayleigh beam.

In the mathematical model, the beam
properties vary along span L of the beam.
The method of Generalised Garlerkin’s
method already alluded to in Oni and
Ajibola (2005) shall be used. This method is
employed to simplify the governing fourth
order partial differential equation with
singular and variable coefficients. The
transformed process, in the case of
Clamped-Clamped boundary conditions is
clearly more cumbersome than we had when
working with simply supported boundary
conditions.  The  resulting  Garlerkin
equations are solved via the modified
Struble’s asymptotic techniques already
alluded to in Oni and Ajibola (2005).

Governing Equation

In this paper, a non-uniform Rayleigh beam
resting on a constant elastic foundation
where the beams properties such as the
moment of inertial | , and the mass per unit
length of the beam 4« vary along the span

L of the beam is considered.Ris the
Rotatory inertial, K is the elastic foundation
Moduli; x is the spatial coordinate and t is
the time. The transverse displacement
U(x,t) of the beam when it is under the

action of a moving load of mass M which
is moving with velocity c is governed by the
fourth order partial differential equation
given by

El<x>a—iu(x,t)]*u<x>az“(x")—i (

lx RO o (X,t)
X ar X

oxat?

Ll
6’X2

2 2 242
. M(s(x_ct{a_+ﬁ+i U(xt)+ KU(x )= Mgs(x—ct)

&2 oxét 8X2

where

g is the acceleration due to gravity. It is
remarked here that, since the Rayleigh beam
is non-uniform, | and 4 are no longer
constants but vary with the spatial
coordinate along the span of the beam .in
particular, adapting the example in Fryba
(1972).Let 1(x) andu(x) take the forms

I(x)= .0(1+Sin %T ﬂ(X)=ﬂo[1+sin %j @

where |, and |, are constants.

The boundary conditions of the above
equation (1) are taken to be time dependent,
thus at each of the boundary points, there
are two boundary conditions written as

D UO.t)=fit) i=12,0; U(LL)]=f) =34 (3)
where D, are linear homogenous differential

operators of order less than or equal to
three.

For example, if the Rayleigh beam in
question is
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Clamped-clamped ends

D, =1 D2=§,D3=1,D4=§. 4)

The initial conditions for the motion at time
t=0 are specified by two arbitrary
functions. Thus
u(x0)=Ugy(x) and

ol
Substituting equation (2) into (1) and after
some simplifications and rearrangements
yields

m{(10—630052—”)(+15sinﬁ—sin3—ﬂxj—a4u(x’t)

4 L L L) a4

241 . 2 307 mx 6m _ 3mx)d%U(x.t)
+| ——SIn —— + ——C0S — — —C0S ——
L L L L) a8

2472 27 1572 972 . 3 |d2U(xt)
+ 5 COS——————8in-=+—-sin—— >

L L L L v L ox
22U (x.t)
b‘tz

o4 3
—ﬂoR [1+sm—j U2(x2t) cosﬁau(xz't)
L) ax“et L L et

+M5(x—ct{ 22u(x, ., 2C52U(X,t)+C252U(x,t)}

+ ;10[1+ sin TJ

12 axet 2

+KU (x,t) = Mgs(x —ct) .

Operational Simplifications of Equation

The initial-boundary value problem (6)
consisting of a non-homogeneous partial
differential  equation with a non-
homogeneous boundary conditions s
transformed to a non-homogeneous partial
differential equation with homogeneous
boundary conditions, using the Mindlin-
Goodman’s method. In order to solve the
above initial-boundary value problem, we
introduce the auxiliary variable z(xt) in the
form

4
= Z(x,t)+z fi(t)gi (x)

Substituting equation (7) into the boundary
value problem (6), transforms the latter into

a boundary value problem in terms of z(xt).
The displacement influence functions g;(x)
are chosen so as to render the boupdary
conditions for the boundary value problem
in z(xt) homogenous.
Substituting equation (7) into (6) and
simplifying yields.

(%)
4
Elo|(10-6cosZ* 1 15sin X —sin 3% 6_2( t)
4 L L L) ot
3
+6= (4sm2—+5cosﬁfcos3—ﬂx a—Z( t)
L L L L )3

2 2
+3—(8c052——55|n—+3sm3—7ZX a—Z(x t) +/40(1+sm— Zy(x.t)
2 L L L ) ox?

2 2 2
_ o| 0 . X 0 T X 0
HoR {_axz Zyt (x,t)+sm—L _ax2 Ztt(x,t)+ 0 cos—L _6x2 Zyt (x,t)}

242

¢ 62 Ztt(x,t)}+ KZ(x,t)

+ M&(x—ct{zn (x,t)+%2n (x,t)+

27X 37x

Mgs(x —ct)
Eloy, i(t)20- Gcos—+15sm——sm— iV (x)
4 L L :

>
i1
+ 6%[4(@)2Tﬂx+5cos%fcossTﬂx]gi'” (x)

2 .
+3—[8cosz—”x—5sm—+35|n jg, (x )} + 11 fi (t{1+sinﬁjgi (x)
2 L L L
x
ZCOST ol (X)j

~ RO it ((g. ()+Sin%gi"(X)+L

+ Molx—ct)] i )i (0)+ 2o Do (6)+ <260t (x) K5 (i )
(8)

Where dot(-) represents the derivative with
respect to time, while slash (') represents

the derivative with respect to space
coordinate.

Now the expression in equation (7) must
satisfy the boundary conditions in ectl.}ition

3).

Consequently, we have
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4
Dzt Y fipilailo]= fit) =12

=1

4
Dj [Z(L't)]+2 fi (t)0i [0i (L)] = fi (t),

=1

i=34.

Substituting equation (7) into the initial
equation (5) leads to.

2(s.0)=U(k0)- ) 00, 2eo)=Ugl- Y i) (10)

Using the Mindlin — Goodman method [16]
the boundary conditions (9) in terms of
Z(x,t) can be made homogeneous if the

function gi(x) are chosen such that the
sixteen conditions given by

D, [gi(o)] =J; (i =12 j =1,2,3,4) (11a)
and
Difgi (L)]= & (i=34,j=1234) (11b)
Where
ol i 12

is the Kronecker delta; are satisfied.
Using equations (11) in the non-
homogenous boundary conditions (9) we
obtain  the  homogenous  boundary
conditions.

Di[z(o,t)] =0 i=12

Di[z(L.t)]=0 i=34 (13)

The original problem now reduces to that of
solving the non-homogenous partial
differential equation (6) subject to the
homogenous boundary conditions in (13)
with the non-homogenous initial conditions
(10).

Solution Procedure

It is observed that the initial — boundary —
value problem in equation (8) is a fourth
order partial differential equation having
some coefficients which are not only
variable but are also singular.  These
coefficients are the Dirac delta functions
which multiply each term of the convective
acceleration operator associated with the
inertia of the mass of the moving load. It is
remarked at this juncture that this
transformed equation is now amenable to a
modification of the approximate method
commonly called Galerkin’s method

Analytical Approximate Solution

The Galerkin’s method requires that the
solution of equation (8) takes the form

Zp(xt)= iYm (t)‘/m (X)
m=1

where v, (x) Is chosen such that the desired

boundary conditions were satisfied. An
appropriate selection of functions for beam
problems are beam mode shape. Thus the
m™ normal mode of vibrations of a uniform
beam given by

AmX
L

(16)

Vi ()= Sin@LH AmCos@LXJr BmSinthx+CmCosh

is chosen as a suitable kernel of the integral
(15) where 4, is the mode frequency,

A, B,and C, are constant. An important

feature of the use of this kernel is that it
makes the transformation suitable for all
variants of the boundary conditions of the
dynamical problems. The parameter
Aa A, Byand C,, are obtained when the

equation (16) is substituted into the
appropriate boundary conditions.
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By applying the Generalized Galerkin’s ¢z [4sm2—ﬂx+5cosﬁ7cos3—]g”'()
method (GGM) as in (15), equation (8) L L L L
takes the form ,
n V3 27X 7X 37X
Z{EIO[@O 6c032—+153|nﬂ73|n3—ﬂx rT'1V(x) +3|__2(8COST_55mT+3smTJg' () +
| 4 L L L
_ p f((1+sm jg()
+6£(43in2—ﬂx+5cosﬁ70053—M}/n'1"'(x) ° I
L L L L o o
R ! ()52 ! 1)+ cos o 1)
2 27 x 3\ 11 L L L
+3—(8cos——55m—+3sm— (x) Ym (t)
L2 L L L +MS(x *Ct)(f.i (t)ai (x)+ 2cf; (t)ai (x)+C2 £ (t)o! (X))
‘g [vm (50 vy (x))y"m 0 +Kfi(t)gi(x) =0 (17)
ﬂORO(v”( )+sin”va”( )+7Ifcos7i(v'( ))Y"m(t) In order to determinev,(), it required that

+M&(x— ct)(\/m (xWm )+ 2CVih (X Vi ()

OV (i ) KV (Vi fhe expression on the left hand side of
equation (17) be orthogonal to the function

—Mgé(x—ct) Vie(9)

i=1

: Elo 27X i
+Z {Tfi({(lo 6cosT+15smTfsln j9| ()} Thus,

M:

H 1K)+ Hafm k) [Hg(m,k)+H4(m,k)+%H5(m,k)ﬂY}n(t)
{E'O ([LoHg(m, k)+15H7(m k)-6Hg(m,k)—Hg(m,k)] +6%[4H10(m,k)+15Hll(m,k)— Hyo(m, k)] +ﬂ£0Hi(m,k) Wn(t)

+3’i—2[8H13(m,k)+15H4(m,k)+3H14(m,k)] ) +M[H15(m,k)fm(t)+ ZCHle(m,k)Ym(t)+CzHl7(m,k)Ym(t)ﬂ —ﬂvk(ct)
Ho Ho

+[Gat)—Gp(t)+ G (t)— Gy (1) + G (t) + G 1 (1) - Gg (t) —Gq(t)+Gelt)+ Gt (t)-Gg (t)+ Gn(t)-Gi(t)
+Gj(t)+ Gy (t)+ Gy ()~ G (t)-Gn ()-Go () (18)

where +G,(t)+Gq(t)+Grlt)+Gs(t) =0

L L L
Ha(m )= [ Vi oMk iz k)= [ "sin 2t ik, M, )= [ Vil (it
H4(m,k)=J-0Lsin %Vn']' (X Wy (x)dx H5(m,k)=LLcos%Vr%(x)\/k (x)dx H6(m,k)=J‘LVn!]V (X (xalx ).
L 27
H7(m,k)=J.O smTVm (x)\/k(x)dx H8(m k) J.OcosTvm (x)\/k(x)dx Hg(m k) J.Osm—vm (x)\/k(x)dx
Hyg(m, k)= OLsinzTﬂXV,%“(x)\/k(x)dx,.Hll(m,k)=J.0 cos = Vil (xVi (x)dx , Hyp(m k)= J.OLcos Vol (Vi (x)ax

agmi)= [eos 22l (Mo, raalin )= [ sin St (i (i Hzs(imk) = [ 50— ctVim (oM (<l

Hqg(m, k)= LLé(x —ct Ve (Vi (x)dx and Hy7(m k)= J.OLd(x — et Wl (3 (x)ax

are the resulting integrals and
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4 L
4 4 15El X |V
Ga(t):lofiZ f‘J oY (M, Golt :%Z l,tt'[ o0s 2 g e elox GC(t) 4ﬂ00 Z fi (t)J.O Sngi (X)‘/k (X)dx
i=1

i=1 i=l

Ely N Lo o3 4 . 4
ol 2 W] sin Tl (e . 202> 4], sn 2 el Weldox ()= 2Ele2
0

Auy L
a i=1

4 2 4
6EI 24El
030210 TS 1] s 2 " () oo, oy )= 20

dug |2 iz

4
ei<t>:15E'°”—§Z T

4utg |_2

L
fi(t),[o COSZTﬂxgi” (M () Gy )= 24Eh ”2

O, cos ol s ek

4 L
Ho )

Ao

4
> i j 05 22 11 (ol )

4
; fi(t)J;Lsm—g (x M (x)ebx 9 Gy (t) z filt J- 9i (XVic (x)ex

i=1
4

4
e.<t)=zﬂ(t)joLsm—g.(xm (08, G Rz O o tdteka G l)=ROD” [ s 2l (o

'l

4

L
i=

4

4
Roﬂz filt J cos—g, (XM (x)dx G, :MZ filt
Lo
)

i=1

L
J. 8(x = ct)gi (XM (X)dx
| 0

2 L 4
6r(0= S 0 el and )= > 0] v
=1

Ho =y

At this junction, the solution is valid for the
case when both ends of the Rayleigh beam
are clamped is sought. Consequently, v,,(x)is
chosen as in equation (16) which is the
beam function suitable for all other
boundary conditions other than simple ones.
Thus,

Vi (x)= smﬂt +Akcosﬂk +Bksmh)bk +Ckcosh—and

Vi (ct)= smik—+/-\kcosﬂk—+Bksmhﬂk—+Ckcosh— (20)

which is the beam function suitable for all
other boundary conditions other than simple

ones.
i i
He(m,k):—THl(m,k) and H7(m,k):—TH2(m,k)
L L

(21)

Next, use is made of the property of the
Dirac-Delta function as an even function to

express it in series form, namely
o0
1 2 nzx nact
5(xct)[E+EZcosToosTJ
n=1 (22)

In view of equation (22)

L

o0
Hqs(m, k)—i{ m, k +ZZcosn—tCtHlA(m,n,k)] ,

H15mk

I_IH

g(m,k +ZZcos—H18a(m n, k)]

1
Hy7(m, k :I[ m,k +22cos—H3A(m n, k)] and
mX

ng(m k

(<M () 23)

where (20)
i
HlA(m,n,k)=Jcos?/—”XLm(x)Vk (x)dx ,
m

0

Haa(mn.K) = j;ws%vr;(xyk(x)dx and

ngA(m,n,k)=-‘:c03%vr}](x)\/k(x)dx (21)
Next, we substitute equations (23) and (24)
into equation (17) after some simplifications
and rearrangements, leads to

S ol kY ca(m ko)

m=1

te [{Hl(m,ky Zicos $H1A(m,n,k)}';n(t)

n=1
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0
+ ZC{ng(m, k)+ ZZCOS n—tCtngA(m, n, k)}fm(t)

n=1

+ CZ[Hg(m, k)+ ZiCOSnTmHSA(m, n, k)]Ym (t)ﬂ

n=1

_ Mg {smﬂk—+ Akcosﬂk—+ Bks|nhL+C coshig Ct}
Ho

*lGa - ()*Gc( )*Gd ( )*Ge( )*Gf ( )*Gg()JrGh( )*Gi(t%L

Gj(t)+Gi(t)+ G (t)— Gm(t)- G (t)- Gy (t)+ Gp t)+ G lt)+ Gy (t)+ Gs

Where

mL

e= —

Ho

colm)=| Hy(m )+ Hy(m k) RO[H3(m,k)+H4(m,k)+%H5(m,k)H

and
ag(m,k) = 4/1 [[10H5(m k)+15H7(m,k)—6Hg(m,k)—Hg(m,k)]

+62 [4H10mk)+5H11(m k)~ Hyo(m, k)] 7 [8H13(m k)- 5H4(m,k)+3H14(m,k)]}

(k)
Ho

Equation (25) is the transformed equation
governing the problem of time dependent
Clamped-Clamped non-uniform Rayleigh
beam resting on a constant Winkler elastic
foundation and transverse by a moving load.
This second order differential equation is
actually valid for all variants of the classical
boundary conditions. In what follows, we
shall consider Clamped-Clamped boundary
conditions as illustrative example.

Clamped-Clamped Boundary Conditions.
In this section, we consider a Rayleigh beam

whose ends are clamped at ends x = 0 and X
= L, both deflection and slope vanish at

these ends. Thus, the conditions are
expressed as
Z(0,)=0=Z(L1), %z‘(m): 0= ;;XZ(L,t) (29)

Thus, for normal modes we have

Tnl0)-0=7(0), Ynl)_o V) (30)

This implies that

\7k (O)= 0 :\7k (L), 6\7;)((0) =0= 6_2)(0‘) 31)

hus making use of equations (29)-(31) into
quatlon (16) the beam function, it can be
shown that (25)

By =Bk =-1 (32)

Apn=-Cp = _ Sinh Ay —sin A (26()33)
cosh A —C0S Ay

Ax =—Cy ;M (34)

cosh A, —cos Ak

Vin(X)=Vincelx)= coshT cosl%—am(smh— sin 2 T)(35)

The frequency equation is given by

coship, cosdy —1=0 (36)

Such that [2] (28)

Jq =4.73004; 1y =7.85320; 43 =10.99561  and SO on.
At this juncture, it is pertinent to
obtain the particular function g;(x) that
ensures zeros of the right hand side of the
boundary conditions. We now sought the
function  g;(x) to be a third degree

polynomial.
gi(x):aix3+bix2+cix+di,i:12,3,4. (37)

To obtain ¢,(x) explicitly, it is required to
satisfying four conditions defined in (3),
that is,

Dy[01(0)]=11=1, Dal01(0)]=612=0, Dsfgs(0)]=613=0 and
D4g1(0)] =614 =0 (38)
For clamped-clamped end conditions as in
equation (4)

0.(x)

=ag(x)+ by (x)+ 1 (x)+ dy
Dl[gl( )=

1aq (0)+ by (0)+ ¢4 (0)+ oy ]=1
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hence, d, =1 (39)
D[91(0)]= %[gl(x)] =3ayx? + 2y x + ¢
%[91(0)] = 3'51102 +20+¢c; =0

therefore, ¢, =0 (40)

Dafos(L)]=0
a3+ + ¢ L +dy |=0

using equations (39) and (40) , one obtains

gL +byLl? +1=0 (41)
Daloy(L]= < [ (L] -3ay12 + 20yl vy

3yL2 + 2L +c; =0

using equation (40), then
3a1L? +2byL =0 (42)

Solving  equations (41) and (42)
simultaneously, it is obvious that

2 3
a= and b=-7 (43)

therefore
(x)=ayx3 + byx? + ¢ x + d 2 3= 12+253 (44)
gl =a 1 17L3 |_2 L L

To obtain g,(x) explicitly, it requires
satisfying four conditions as enumerated
above.
But gg(x):a2x3+b2x2+czx+d2

D1[92(0)]= 521 =0

D2[g2(0)]= 522 =1

D3g2(0)]= 623 =0

D4[g5(0)]= 624 =0 (45)

92(0)=a(0)+by(0)+c(0)+dy
D1[g2(0)]=1[a(0)+ by (0)+ c5(0) + d2]=0
hence, d, =0 (46)

Dz[gz(x)]:g[gz(x)k 3apx® + 20px + ¢

[92(0)] = 32,0% + 2,0+ ¢ =1

9
OX
=1 47

therefore, c,
Dslg2(L)]=0
a3 +by1% + ¢yl +dy|=0

Using equations (46) and (47) , one obtains
a2L3+b2L2+1:0 (48)
Dalg2(L)]= %[QZ(L)] =3aL% + 2L + ¢y
3a2L2 +2byL+cp =0

Using equation (47), then
3ayL2 + 2byL +1=0 (49)

Solving  equations (48) and  (49)
simultaneously, it is obvious that

1 2
ag=—aNndp, =-=
2772 2="7

Therefore

gg(x):a2x3+b2x2+czx+d2=ix3—£x2+xzx_2ﬁ+ﬁ (51)
2oL L2

Similarly, when i = 3,4.we have

ost)=4 %) 2] (52)
and
oab)-{ 2|12 (53

In view of equations (44) and (52). It is
straight forward to show that

Galt) =Gy (t) = Gy (t) = Gy () =0 (54)
o) =T Ny + Ay + BN + G| (0 - 1)
Ho
90El7
Gt () =- 4 [Ns + AcNg + BcN7 + CNg | f3(t) — fa(t)
Ho
18Ely7
Gy(H)=-—14 [N + AcNgo + BeN11+ CiNio | fa®) - fa(t))
Ho
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36EI 071'
Gh() = 4 (f3(0) = f2(t)[N13+ AcN1a+ BiNis+CiNig ——(N17 + AcN1g + B Nig +CyNoo)
Ho
15Elo7r
Gi(t)= 2 2 (f3(t) - fu(t) (N21+ AN+ BkN23+CkN24)— (N25+ AcN2g +BNp7 + CiNog)
Ho
9EI
Gjt)= of (f3(t)- f1(t){ (N2g+ AcN30+BNa1 +Cy N32% (N33+ ANz + By N35 +Cy Nse)}

Gk (t) = fy(t)(N37 + AcN3g+ B N3g +Ci N4o)+F(fé(t) - f.1(t)XN41+ ANz +BcNg3+CNyg)
2 (. .
—F(fsa) ~ ©))(Nas + AN46 + BNy7 + CNgg)
. 3 (. .
L(t) = f1(t)(N21 22+ BkN2g+CyNag)+—\ f3(t) — f1(t) \N4g 50+ BkN5g+CkNsp
GL(t) = Fi(t)(Ny + AN + BeNags + CNag )+ 2 (Fa(®) - f16)(Nag + ANso + BNs1 + CNsp)
2 (. .
——3(f3(t) - fl(t)XN53+ ANs 4+ BxNss +CyNsg)
Gm(t) = Ro(fs(T) - fl(t){ (Ng7+ ANgg + B N3g +Cy N40¥ (N57 + AcN5g + B N5g +Cy Neo)}
o(fy0- o]
Gn(t) = R™\f3(t) - f1(t) ?(Nzﬁ AN22 + By N23+CkN24}F(N25 + AN+ B N27 + CxNog)
Go(t) = Ro(fs(t) - fl(t){ (Ngy + AcNg2 + BxNg3 + Ci N64)— (Nes + A¢Nogg + BcNg7 + Cy Nes)}
m . ct ct . ct ct
Gpt)=— fl(t) smﬂkT+Akcos/1kT+ BksmhﬂkTJer coshﬂkt
2
ﬂo (fs(T) - f1(t){ (Nag+ ANg2 +BcNag+CNag)- T (N45 + AcNag + B Ng7 +CyNag)

+ ZCOS—{— Ngg+ AcN70+ Bk N7 +Cy N72% (N75+ AcN74+ By N75+CkN76)H}

2 . 6 6
Gqlt)= ;;n (fa( )- fl(t){F(NW + ANsg + B Nsg + CiNgo) - F[(Nzu + AcNgp + BNgg + CNyg)

0
nzct

12 12
+ZCOST{F(N77 + A«N7g+BgN79+Cy Nso)—F(N69+ A¢N70+BgN71+Cy N72)H}

n=1

Gr(t) =

M (t5(0) - fl(t){ (smﬂk =+ A cosﬁk—+ By sinh A —+Ck cosh A — j

Ho

o0
12 24 nzct
—F(Nm + A«Nsg + By Nsg + C Ngo) *FZCOST(NW +AN7g+ BkN79+CkN80)} )

n=1

Gs(t) =7 f1(®) +y—(f3(t) - ﬁ(t)){ (N1 + AN + BNz +CiNgg) — LZ (N5 + AcNgg + BiNg7 +Ci N48)} (55)
0

where Z[ao(m, KV (© + a1 (m, K )Y ()
N;,i =1-100 are different integrals. m-1

Substituting equations (55) into +e [Hl(m,k)+ 2icos@H1A(m,n,ka (t)]
equation (25), simplifying and n-1
rearranging yields. [

)
+2C ng(m,k)+ ZZcosn—thlgA(m,n,k)Ym(t)J

n=1
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= P[sin/lkc—Lt+ A cosﬂkc—l_tJr By sinh/lk%twk coshﬂkc—l_t]+ (f3(t)— fi(t))lﬁgg— fi(t)Has

+(f3(t) - 1‘1(0)L Hzg + * f1(t)
Ho Ho

_¢{ fi(t)P[sinﬂk%t+ A cosﬂkc—l_tJr By sinh/ik%tJer coshjy C—LtJ

+Uﬂ0ﬁm{Hw+Hu§:w§%2]

n=1

: : — nact
+2(f3(t) - fl(t){H32 + H33ZCOST]

n=1

+C2(f3(t) - fl(t)){%[sinxkc—l_tJr A cosAkC—LtJr By sinh C—Lt +Cy coshi C—Ltj
L

_(H34 + HssleOSnTﬂCtJ} (56)
It is remarked here that, it is only necessary
to compute those g;(x) for which the

corresponding f;(t) do not vanish. for our
analysis, we shall consider a clamped beams
whose end x = 0, (say) is subjected to a
sine-wave (undamped) transient
displacement, starting from rest and end x =
L is subjected to a damped sine-wave
transient displacement starting from rest.
Thus, we can write.

f1(t)=Bsintand f;(t)= Ae A sinot (57)

where A,B are amplitudes, s is the

parameter and « is the frequency.
Therefore, the required ¢(x) are g(x) and

gs(x). The determination of #(t), f5(t), 0i(x)
and ga(X) complete

determination of the right hand side of
the initial conditions. Thus, setting u,(x)

and %Uo(x) to zero
simplicity and substituting f,(t), (), u®)
and g,(x) into the initial condition. One
obtains

allows the

respectively for

Z(x0)=0, and Z;(x0)= -0 (58)
Which when transformed yield
Z(mo)=0 and Zz,(m,0)=17, (59)

where

= ryor[(l—cosim)+ Bm((:osMm —1)+ Ansindy +Cn sinhim] (60)

and
Mor =—£ (61)

Using the influence functions equations (57)
and their derivatives in equation (56), after
some simplifications and rearrangements,
equation (56) becomes.

n [e'e]
Z[ao(m,k)\?}n(t)+al(m,k)Ym(t) +5{[H1(m,k)+ 2Zcos ”’ia HlA(m,n,k)}'{’m(t)
m=1 n=1

n=1

n=1

+ ZC[ng(m, k)+ 22(:05”—’C°t Higa(m,n, k)}(’m ® + CZ[HS(m, k)+ 22003 ntd Haa(m.n, k)}Ym (t)H

= PVic(ct)+ HggsinQt + Hyge A sinQt — Hage A cosat

- .sL[H423 inQt + H43e‘ﬂt SinQt — HygCOSOL + H45e_ﬂt cosQt

0 0 0
nact . nmct _ nmct _pt .
+Hyg cos ™ sinat + Hy7 cosﬂe ﬂtcoth+H48 cos % e~ Asin ot
L L L

n=1 n=1

o0 00

- Z H492COS n—tthos Ot —HgV (ct) + Hg 1V (ct)e"ﬂt sin Qt

n=1 n=1

n=1

(62)

Where
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Hy =Ny~ N3)+ Ac(Ng ~ Ny ) Hp = (N5 - N7 )+ Ac(Ng — Ng)
Hy= (N13 ~Nys)+ Ac(Nyg—Ni7), Hs = (Ngs - Ny7)+ A (Nig—Nao)

Ha = (Ng — Ny )+ Ac(Ngg ~ Nyo)
He =(Ng—Nog)+ Ac(Ngp—Nog)

H7 =(Ngs - N7 )+ Ac(Nag —Nag), Hg =(Ngg N )+ Ac(Ngg— NagJHg = (N3~ Ns)+ A (Nas — Na),
Hyg = (Ng7 - Nag)+ Ac (Nag—~Nag) Hi1 = (Nag ~ Nag)+ Ac(Naz - Naa) Hip = (Ngg—Nag )+ Ac(Nag— Nag)
Hg=(Ngg~Nag+ A(Nap=Nag). Hig = (Ngs—Nag )+ Ac(Ngg - Nygh Hig = (Nag - Nug }+ Ac(Nig ~Nao),
14 =(Ns3 - Ngg )+ A (Ns4 — Nag Hs = (Ng5 - Nsy )+ A (Nsg - Nsa) Hyg =(Ngy - Neg)+ A (Ng2 ~ Nes)
Hy7 = (Ngs—Ne7)+ A (Neg—Neg) Hig =(Ngg—N7a)+ Ac(N7g—N7g) Hig = (N73— N7g )+ Ac(N7a— Nog),

2 2 2
Hao = (N77—Ny7g)+ Ac(N7g—Ngo) , H21= (H4 +IH5]~ Hoo= [Ha T H7jy Has= (Hs T Hg}

3 2 3 2 6 12
Has=(Hio+Hg), Has= [F leﬁ le} Hos =(? HlS*F H14jy Ha7 = [? H10*F HlSj

6 12 6 6 3 2 6 4
Hog = [—He __H7j’ Hag :(— Hie—— H17} H3p :[— Hii-— le} H3l:[_ Hig—— ng}
L2 3 L2 3 3 L4 3 L4

6 6 24C H 12 24 3 2
Hap =2C| — His ——Hi1 | Hag =2 Hao——12 | , Has =3 Hus, Has =7 Hao, Hag=| —5 Hi1——5Hio
K L4 K L4 L4 12 3

L

72ElozHy | 90ElgrHp 18ElgrHg
Ha7 = 4 4 4
ol ol ol

18Elozr(

Nol- 4

4H1+6H3 2H21+ Zﬂng 7§7Z|'|23

36EI ;an 90Elgz?H;  54ElgrHas
Ho L4 4;10L4 4 L4

] y Hag=Hs7 —kH25+ Hog)—RO(Ho7 +Hog + H29)J

2 2 k k 262 k
H39=(Q H3g +Q H24N_H36+ﬂ_j H40={(ﬂ -Q )Hserﬂ—Hse}, Hg1=2/0H3g, H42=(QZH30+CZH34)
(] 0 (0]

Hys = [(ﬂz _QZ)HSO —2/CHg, —CZH341 Ha4 = 2COHgp , Has = (2CQH5, — 2BOH30)
2 2
s = 07Hay +C2Hig), ey - 2000 =52 -2z -

Hag = (2/80H3; + 2COH33) , Hso = [QZP+—C Jand Hgy = —— 6c? (63)

Equation (62) represents the transformed
equation of the non-uniform Rayleigh beam
model Clamped at both ends which undergo
displacements which vary with time when it
is traveling under the action of concentrated
load. In what follows we shall discuss two
special cases of the equation

Clamped-Clamped Traversed by Moving
Force.

This model neglects the inertial effect of the
moving mass M. Thus, in equation (62), ¢
is set to zero. On this consideration, the
transformed equation (62) reduces to

12

Vi () + o2 Yt
1 . ct ct . ct
=————| P| sin4 — + A, cosl — + By sinh 4 —
ao(m,k)[ [ AL T Aceoshe B Ay
. ct .
+Ck5|nhﬂkr+ H3gsinQt

+ H40e’ﬁt sinQt — H4le’[’7[ cothJ (64)

This is the classical case of a moving force
problem associated with the system. It is an
approximate model which assumes the
inertia effect of the moving mass as
negligible.

To obtain the solution of equation (64), it is
subjected to Lap lace transformation defined
as

()= 0edt  (65)
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where sis the Lap lace parameter in

conjunction with the initial conditions
Z(m,0) =0 =Zt(m,0)

and finally, by the use of convolution theory
,0ne obtains

Amf

1 Q ; 3 .
Yi(t) =——| Py 7 ul 7 5|n23t——35|namft +RA— 2(cosamft+00523t)
Imf

Omf amf - 123 amf—13

a . 3 .
+ Py Bk 3 mf 5 S|nh23t——35|namft
s 128 Amf

a,
+ PoCk 5 mf 5 (cosh 23t — cos amt)
amf -3

* o
+Hsg 5 mf 3 {sin Ot —aisin (met]
A —Q mf

20mQ
mf (e’ﬂt cosQt — cosamft)]
4

Q
+ HZO[Qﬂ:(e"/ﬁ SinQt +sin amft)+

+ HZle’/’~1 [Q% M(ﬁz + “’rzm +0? )sinamt +t amf(ﬂz + aﬁlf —Qzle’/)1 CosQt - COSam,t)— 2,liaer’ﬁI sinﬂtl]

+C°sin amft] (66)
Where
P * Hsg
P, = Hag =
° ap(mk)’ % a(mk) 1
* Hao * Ha1
Hzo = . Hyy=—-21
40 apm,k ao(m,k)
2 _ a(mk) _A&C
ot =k and z;-= 5 (67)
Therefore,

n
Zn(x,t) = ZYm (t{sin /ILLX +A coslil_x + By sinh % +Cy cosh %} (68)
m=1

Consequently, by equation (7)

U(xt)=Z{xt)+sin Qt[l—3[i]2 + 2[ij3]+eﬂf sin Qt[S[ijz —Z[Ef] (69)

Equation (69) is the transverse-displacement
response to a moving force of a non-
uniform Rayleigh beam clamped at both
ends which are constrained to undergo
displacements which vary with time.

Clamped-Clamped Traversed by Moving
Mass.

In this section, the solution to the entire
equation (62) is sought when no terms of the
coupled differential equation is neglected.
Evidently, an exact solution to this second
order ordinary differential equation (62) is
impossible.

Though the equation vyields readily to
numerical  techniques, an  analytical
approximate method is desirable as the
solution so obtained often sheds light on the
vital information about the vibrating system.
Therefore, we are going to use a
modification of the asymptotic methods due
to Struble often used in treating weakly
homogeneous and non-homogeneous, non-
linear oscillatory system discussed in [2].
To this end equation (62) is rearranged to
take the form.

25C[H18(m, k)+ 22'.0:cosnT7ZCt H18A(m’ n, k)]Ym(t) |:a1(m, k)+ éCZ[Hg(m, k)+ ZECOSnTﬂCt H3A(m, n, k)]]Ym(t)

n=1 n=1

+

ag(m,k)+ ,{Hl(m, k)+ Zi“cosnTﬂCt Hia(m,n, k)ﬂ {ao(m, k)+ ,{Hl(m, k)+ Zi“cosnTﬂCt Hia(m,n, k)ﬂ

n=1 n=1

Y'm(t)+ {
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- & *[H5Zsinﬂk°—Lt+H52Akcos/1kc—Lt+ H5ZBksinh/1kC—Lt+ Hg2Cx cos,lkc—Lt
o0
ao(m,k)+g[H1(m,k)+ ZZ:(:osnTﬂct H1A(m,n,k)]
n=1
O nmt O nact
+Hg3sinQt + Hygcos Qt — H55e‘5‘ cos Ot — H462cosnTsin ot - H47ZcosnTe‘/ﬁ cos Ot + H54e‘ﬂt sin Qt
n=1 n=1
e - O nmt S t
- H462cos %sin ot - H47Zc03%e‘/"‘ cosQt — H4gzcos nTe‘ﬂt sinQt + H492cos %e‘ﬂt cos Ot (70)
n=1 n=1 n=1 n=1
Where
m m 4
P="2, ¢=1, Hs=(g+Hso) H53=[—°H39*H42J,
Ho Luo m
4 H
H54:[F0H40*H43j, and H55:(F0H41+ H45j (71)

Next, we consider the homogenous part of
equation (70) and seek a modified frequency
corresponding to the frequency of the free
system due to the presence of the moving
mass. An equivalent free operator defined
by the modified frequency then replaces
equation (70), using Struble’s technique the
equation simplifies to

Yin(t)+ BmtYm(t) =0 and the entire equation becomes

Yim (t)+ PmtYm (t)

AL . ct ct . ct ct
=————| Hgy| sinA — + A, cosA — + By sinh A, — + Cy coshA, —
ao(m,k){ 52[ A L A cos A L k Ak L k Ak Lj

+ Hg3sinQt + H54e’ﬁt SinOt + HygcosQt

0
- n .
—Hgse ﬂtcoth—H% E cosTmstt

n=1

~ S t
- H47Zcos nTe’ﬂ[ cos Qt — H4BZ cos %e’ﬂ[ sin Qt

n=1 n=1

S t

+ H4QZCOS n%cos ot (72)

n=1
where

1(m.k “Halmk
e

is the modified natural frequency due to the
presence of moving mass.

To obtain the solution of equation (72), it is
subjected to a Laplace transform and
convolution theory in conjunction with the
initial conditions. Thus,

1
Yin(t)=——[HseYa +Hs7Yp + Hsgc
ﬂmf

+HsgYg + HeoVe + He1Y s + HeaYg

—Hegayn + HeaYi —HeaYj — Hes Yk
—HegsY) —HgeYm + HeeYn + He7Vo + H67yp] (74)

where
ALH
Hse = ao(mf—)li) y Hs7 =HsgA , Hsg = HggBy
ALHg3 ALH 5,
- Hpo = 221153 _ MMss
Hsg =Hs56Cy , Heo 2o k)’ He1 g (m.K)
L _AlHa o AHss | ALHg
62_oco(m,k)’ 63_oto(m,k)’ 64_2a0(m,k) '
ALHy JLH 45 JLH 44
e TR H,, = 2149
520 mk) 5 am k) 2 =2 i ()
and
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t

t t t
Ya = (sin Z3tI sin fpgrcoszgdr — c0523tj sin Bpgrsin Zgrd‘r} y Yo = [coszgj Sin fyircoszgrd T +sin 23tj
(0] (0] (0] (0]

t t
Yo = [sinﬁmftj SinhZSTCOSﬂmdeT—COSﬂmftJ. sinh23rsinﬂmfzdr] )
0 0

t t
Yd :[sinﬁmftj‘ coshzgz —cosfmidr — cosﬂmftJ‘
(0] (0]

SinﬂmeCOSZ:gTdT]

coshzgr —sinﬂmfzdr]

t

t
Ye —[sinﬂmftJ- sinﬂmfrsiandr—cosﬂmftJ. SinﬂmeCOSQZdT]
0 (0]

t t
Vi :[sin,b’mftj. e’ﬁrcosﬂmfrsinQrdr—cosﬂmftj eﬂrsin,b’mfrsinﬁzdr]
o] 0]

t

t
Yg =[cothI SinﬂmeCOSQZdT‘FSithJ‘ SinﬂmeSinQZd‘[]
0 0o

t t
Yh :em[cosﬂt.[ eﬁrsinﬁmeCOSQﬂT-l—SithJ' eﬂfsinﬂmfrsinﬂzdr]
o] o]

0
yi = Z[sm 71 +Q)tJ. sin ﬁmfrcos(zl +Q)zdr—cos 71 +Q)IJ. sin ,Bmfrsm(zl +Q)1dr]

n=1

yj= Z[sm 7 - Q)tJ. sin B¢ 7 cos(zq — Q)rdz — cos(zg — Q)tJ. sin Bsrsin(zy - Q)zdr]

n-1
s t t
Vi = Ze’ﬂt [cos(zl + Q)tJ. eP7sin Bz cos(zy + Q)dz +sin(zg + Q)II e sin Byrsin(zy + Q)d r}
=1 (0] (0]
s t t
y| = Z:e’ﬁt [cos(zl - Q)tJ‘ eP7sin Bz cos(zy — Q)rdz +sin(zg - Q)tj P sin Bsrsin(zg - Q)d rJ
(0] (0]
[sm ,BmftJ. “P7 cos Bpgrsin(zg + Q)dz - cos ﬂmftj BT sin g rsin(zg + Q)ed r]

[smﬁmftj BT cos frsrsin(zy — Q)7 — cosﬁmftj BT sin B rsin(zy - Q)zdr]

= Z( (21 + Q)t.[ sin B cos(zy + Q) +sin(zg + Q)tj sin B¢ rsin(zy + Q)d r]

Yp = Z[cos(zl - Q)t-rsin Bmizcos(zy - Q)dr +sin(zg — Q)tj'tsin Bmsrsin(zg - Q)zdr] (76)
e o o
Hence,
Zn (x,t): Z;(Ym (t){sin ALLX + Ay cos /ILLX + By sinh XLLX + Cy cosh ﬂ%} (77)
Consequently,
(78)

u(x,t) = z(x,t)+sith[1f3(yL)2 + 2(%_)3j+ e‘ﬁt sith[s’(%_)z - 2(%_;)

Equation (78) is the dynamic response of a beam to a moving mass when one end of the
Clamped-Clamped non-uniform Rayleigh beam (x = 0) is subjected to a sine-wave
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transient displacement starting from rest
while the other end (x = L) is subjected to a
damped sine-wave transient displacement
starting from rest.

Discussion of the Analytical Solution

If the undamped system such as this is
studied, it is desirable to examine the
response amplitude of the dynamical system
which may grow without bound. This is
termed resonance when it occurs. The
Clamped-Clamped elastic Rayleigh beams
transverse by a moving force will be in state
of resonance whenever o2,=z2  which

implies that o, =z, (79)

and equation (73) shows that the same beam
under the action of moving mass
experiences resonance effect when

pi =23 which implies that 4, -z, (80)
from equation (73), it implies that
a.c = 23
" A i) gl
2| ao(mk)  ag(m ki
(81)

From equations (80) and (81), we deduced
for the same natural frequency, the critical
speed for the system of a Clamped-
Clamped elastic beam on an elastic
foundation and traversed by a moving force
is grater than that traversed by moving
mass. Thus, resonance is reached earlier in
the moving mass system than in the moving
force system.

NUMERICAL CALCULATION AND
DISCUSSION OF THE RESULTS
Illustrating the foregoing analysis, the non-

uniform Rayleigh beam of length

L=12.192m is considered. Furthermore, the

load velocity u = 123,
El

E =2.109x10°kg/m ,— =2200m* /s>
U

and the ratio of the mass of the load to mass
of the beam is 0.25. The traverse deflections
of the non-uniform Rayleigh beams are
calculated and plotted against time for
various values of parameters in the
dynamical system. Values of axial force N
between 0 and 20000, foundation modulli K
were varied between ONm? and 4000000N

m?
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Fig.1: Deflection profile of the Clamped-Clamped Non-Uniform Rayleigh Beam under a moving
force for various values of foundation modulli K and for fixed rotatory inertia r(1)
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Fig.2: Deflection profile of the Clambnéﬁt-)CIamped Non-Uniform Rayleigh Beam under a moving
force for various values of rotatory inertia r and for fixed value of foundation modulus
K(40000)
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Fig.1, displays the transverse displacement
response  of  Clamped-Clamped non-
uniform Rayleigh beam under the action of
a moving force for various values of
foundation modulli K and for fixed values
of axial force N and rotator inertia r°.The
graph shows that the response amplitude
decreases as the values of the foundation
modulli K increases. In, fig.2, the
deflection profile due to a moving force of
Clamped-Clamped non-uniform Rayleigh
beam for fixed value of foundation modulli
K and axial force N and for various values
of rotatory inertia r°. It is clearly seen that
as the rotatory inertia value increases, the
response amplitude of the beam reduces.
Also, in fig.5, the response amplitude of the
Clamped-Clamped non-uniform Rayleigh
beam under the action of moving force for

0.00025

various values of axial force N and for fixed
values of foundation modulus K and
rotatory inertial corrector r° is displayed. It
is observed that as the axial force N
increases the response amplitude of the
beam decreases. Furthermore, fig.3,
depicts the transverse displacement response
of Clamped-Clamped non-uniform Rayleigh
beam under a moving mass for fixed values
of rotatory inertia r°and axial force N and
for various values of foundation modulli K .
The response amplitude of the beam was
found to decrease as the values of the
foundation moduli K increases. In, fig.4, the
deflection profile of the Clamped-Clamped
non-uniform Rayleigh beam under moving
mass for various values of rotatory inertia
and for

N=0"

0.0002 E

— - - — N=10000
— — = N=15000
------ N=20000

0.00015 -

0.0001 4

V(o/26p05

0\,

o\,
WA

-0.00005
-0.0001

-0.00015

-0.0002

Time(t)sec

Fig 3. Deflection profile of Clamped-Clamped Non-Uniform Rayleigh beam under the action of
moving force for various values of axial force N and fixed value of rotatory inertia r(1) and
for fixed value of foundation modulus K(40000)
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fixed values of foundation modulli K and
axial force N is shown. The graph shows
that the response amplitude decreases as the
values of rotatory inertia correction factor
r° increases. Also, fig.6, shows the
deflection profile of the Clamped-Clamped
non-uniform Rayleigh beam under the
action of moving mass for various values of

axial force N and for fixed values of
foundation modulus K and rotatory inertia
r°. From the graph it is shown that as the
axial force N increases the response
amplitude of the beam decreases. Finally,
fig.7 shows the comparison of the transverse
displacement for the moving force and
moving mass cases of the

VRL/2, )i

0.
o\

Time(t)sec.

Fig .4: Deflection profile of Clamped-Clamped Non-Uniform Rayleigh beam under the action of
moving mass for various values of rotatory inertial and fixed value of axial force N(20000 )
and foundation modulus K(40000).

K=0

/|~~~ = k=40000

. /" | =——x=400000
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Fig 5: Deflection profile of the Clamped-Clamped Non-Uniform Rayleigh Beam under the action of moving
mass for various values of Foundation Modulli K and for fixed value of axial force N and Rotatory inertia r(1)
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Clamped-Clamped non-uniform Rayleigh
beams for fixed values of foundation moduli
K, axial force N and rotatory inertia r°.As
evident in the figure, the deflection profile
for moving mass is higher than that of the

100000

moving force confirming also that the
moving force solution is not always an
upper bound for the accurate solution of the
moving mass problem.

80000 —e— N=4000
A —=— N=40000
60000 N=400000
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Fig.6 Deflection profile for Non-Uniform Rayleigh beam Clamped-Clamped at both ends under
the action of moving mass for various values of axial force N, for fixed value of rotatory
innertia r(3) and foundation modulus K(2000000).
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Figure 7: Comparison of the transverse displacement of moving mass cases for Clamped-Clamped

Non-uniform Rayleigh beam for fixed values of foundation modulus K(400000) and rotator inertia r(1).
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The problem of dynamical analysis of non-
uniform  Rayleigh beam with time
dependent Clamped-Clamped boundary
conditions when it is under the action of
traveling loads is considered in this paper.
The main objective is to obtain an
approximate analytical solution for the
dynamical problem. To this end an approach
due to Mindlin and Goodman [16] is
extended to transform the governing non-
homogeneous partial differential equation
with  non-  homogeneous  boundary
conditions to a non-homogeneous partial
differential equation with homogeneous
boundary conditions.

Subsequently, the property of the Dirac-
delta function as an even function is used to
express it in Fourier cosine series form and
the partial differential equation subjected to
Generalized Galerkin’s method. The
Generalized Galerkin’s method (GGM) is
used to remove the singularity in the
Governing equation and to reduce it to a
sequence of second order differential
equation with variable coefficients. This
second order differential equation is then
simplified using the modification of the
Struble’s  asymptotic  technique.  The
methods of Integral transformation and the
convolution theory are then employed to
obtain the analytical solution of the one-
dimensional problem.

Analysis of the approximate analytical
solutions obtained is carried out and the
resonance conditions for the dynamical
system are obtained. The influences of the
rotatory inertia r° and foundation moduli K
on the dynamic response of the Non-
uniform Rayleigh beams having time
dependent Clamped-Clamped  boundary
conditions and under the actions of moving
concentrated loads were investigated. The
transverse displacements for the moving

force and moving mass models are
calculated and presented in ploted curves.

As the rotatory inertia r° and foundation
moduli K increases, the displacement
response of the Rayliegh beam having time
dependent Clamped-Clamped boundary
conditions and under the actions of moving
concentrated loads for both moving force
and moving mass models reduces. We also
observed that in Clamped-Clamped non-
uniform Rayleigh beams, the moving force
solution is not an upper bound for the

accurate solution of the moving mass
solution. Hence, the non-reliability of
moving force solution as a safe

approximation to the moving mass solution
is confirmed. Furthermore for fixed rotatory
inertia and foundation modulus, the
response amplitude for the moving mass
problem is greater than that of the moving
force. However for the same natural
frequency the critical speed for moving
mass problem is smaller than that of the
moving force problem. Hence, resonance is
reached earlier in moving mass problem.
Finally, higher values of Rotatory inertia
and Foundation moduli are required for a
more noticeable effect in the case of moving
mass than moving force non-uniform
Clamped-Clamped boundary conditions.
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