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ABSTRACT 

This article is sequel to [18] except that a moving mass case is considered that is the inertial 

term was not neglected as in [5,6,7,8,9,13,14,18 ]. The dynamical problem is solved using 

Mindlin Goodman, Generalized Generalized Galakin's method (GGM), Struble’s asymptotic 

techniques, Laplace Integral transformations and then convolution theory as alluded to in 

[5,6,7,8,9,13,14,18]. Using numerical example, various plots of the deflections for beams are 

presented and discussed for different values of axial force N, foundation modulli K and at 

fixed rotatory Inertial (r) and also for fixed axial force N  and foundation moduli K but at 

various rotatory inertial (r) for moving mass. However, both moving force and moving mass 

cases were compared and reported as well. Obviously, the results presented in this paper 

shows good agreement with what is obtainable when compared with that of existing 

literatures. 

 

Key Words:  Non- uniform Rayleigh Beam, Moving mass, Critical Speed, Time-Dependent 

and Resonance, rotatory inertia,.                              

 

INTRODUCTION 

As mentioned in the abstract this work is the 

continuation of [18], recall that it was 

reported in [18] that the moving force case 

was obtained while that of moving mass 

was difficult and even cumbersome which 

led to the emergence of this work. The same 

equation procedure from the governing 

equations (1.0-63.0) were as reported in[18]. 

Hence the totality of equation (63.0) shall be 

solved which is called simply supported 

moving mass case where the  inertial term 

which was set to zero in [5,6,7,8,9,13,18] 

will be strongly considered here and that is 

the novelty or the contribution in this paper. 

The introduction, methodology and the 

solution procedures are as in 

[5,6,7,8,9,13,14,]. The interest of this paper 

is to compare the results in [18] with the 

result of the moving mass in this paper as 

shown in the plotted graphs. Effects of some 

very important beam parameters on the 

motions of the vibrating systems are also 

investigated and reported. 

 

THEORETICAL FORMULATION OF 

THE GOVERNING EQUATIONS 

Considered here is a simply supported non-

uniform Rayleigh beam resting on elastic 

foundation where the beams properties such 

as the moment of inertia , and the mass 

per unit length of the beam  vary along 

the span  of the beam.  The  is the 

Rotatory inertia, K is the elastic foundation 

Modulli, x is the spatial coordinate. The 
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transverse displacement  of the beam 

when it is under the action of a moving load 

of mass  which is moving with a non-

uniform velocity such that the motion of the 

contact point of the moving load is 

described by the function  

    (1.0) 

where  is the point of application of force 

P = Mg at the instance t = 0, c is the initial 

velocity and a is the constant acceleration of 

motion governed by the fourth order partial 

differential equation given by 

 

 

 

 

 

 

  (2.0) 

 

 

 where g is the acceleration due to gravity, 

 is the variable moment of inertia and 

is the variable mass of the Rayleigh 

beam per unit area. Next, the example in [7] 

shall be adopted and   and    take 

the forms: 

 

and     (3.0)                           

 

where Io and µo are constants. The boundary 

conditions of the above equation (2.0) are 

taken to be time dependent, thus at each of 

the boundary points, there are two boundary 

conditions written as: 

 

and 

          (4.0) 

where  are linear homogenous 

differential operators of order less than or 

equal to three. The initial conditions of the 

motion at time  are specified by two 

arbitrary functions thus: 

and     (5.0) 

But            

 (6.0) 

Substituting equations (3.0) to (6.0) into 

equation (2.00) on simplifications and 

rearrangements,gives.   
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  (7.0) 

3.0 Operational Simplifications of Equation 

In this work, the initial-boundary value 

problem (7.0) consisting of a non-

homogeneous partial differential equation 

with non-homogeneous boundary conditions 

is transformed to a non-homogeneous 

partial differential equation with 

homogeneous boundary conditions, using 

the Mindlin-Goodman’s method described 

in [1-5]. In order to solve the above initial-

boundary value problem. Thus, we 

introduce the auxiliary variable  in 

the form 

            (8.0) 

 

Substituting equation (8.0) into the 

boundary value problem (7.0) and 

simplifying, transforms the latter into a 

boundary value problem in terms of . 

The displacement influence functions  

are chosen so as to render the boundary 

conditions for the boundary value problem 

in  homogenous. Thus, gives;                                           
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3.1 Method of Solution 

Evidently, an exact closed form solution of 

the above partial differential equation does 

not exist. The method of separation of 

variables is inapplicable as difficulties arise 

in getting separate equations whose 

functions are functions of a single variable. 

As a result of these difficulties, one resort to 

an approximate method commonly called 

Galerkin’s method. 

 

3.2   Galerkin’s Method 

The Galerkin’s method is used to solve 

equations of the form 

 

                           (10) 

where                  is the differential 

operator. 

is the structural displacement and 

is the transverse load acting on the 

structure 

A solution of the form 

. (11) 

is sought when j = 1,2,3, ………n.      (11) 

The function  are chosen to satisfy the 

approximate boundary conditions. The 

Galerkin’s method requires that the 

expression (11) be orthogonal to the 

function  for . 

Thus             

       for  i 

=1,2,………,n                                         (12) 

This gives us a set of ordinary differential 

equations in   to be solved. These 

differential equations are called Galerkin’s 

equations. 

 

3.3  Analytical Approximate Solution. 

The Galerkin’s method requires that the 

solution of equation (9.0) takes the form 

(13) 

where  is chosen such that the desired 

boundary conditions are satisfied. 

Equation (13) When substituted into 

equation (9.0) yields            
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    +

 

  (14) 

In order to determine   , it is required that the expression on the left hand side of 

equation (13) be orthogonal to the function . 

Thus, 
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       (16) 

Furthermore, 
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At this juncture, a solution valid for all cases of classical boundary conditions is sought. 

Consequently, is chosen as the beam function given as  

 

Thus,                                                                                                       (18) 

 

Consequently,       
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In order to evaluate the evolving integrals            

  ,                                                 (20) 

Use is made of the property of the Dirac Delta function as an even function to express it in 

Fourier cosine series namely: 
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         (22) 

where                                                                                                                  (23) 

and 

   (24) 

 

Equation (22) is the transformed equation 

governing the problem of non-uniform 

Rayleigh beam resting on a constant elastic 

foundation and transverse by a moving load. 

This second order differential equation is 

valid for all variants of the classical 

boundary conditions. In what follows, we 

shall consider boundary conditions such as 

simply supported boundary conditions as 

illustrative example. 

3.4 Simply-Supported Boundary 

Conditions. 

The deflection and bending moment at 

 and  vanish for a non-uniform 

Rayleigh beam having simple supports at 

both ends. 

,    (25) 

also, for normal modes ,

                             (26) 
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(31) 

where the integrals ( ) when solved gives 
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]                                                                                   (45) 

                (46)                     

  (47) 

and                                                                (48) 

 

 

At this juncture, it is pertinent to obtain the 

particular functions  that ensure zeros 

of the right hand sides of the boundary 

conditions for simply supported beam. thus, 
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In view of equations (49).  

 

and                                        

(50) 

while, 

       (51) 

       (52) 

       (53) 

             (54) 

 (55) 

(56) 

Solving the evolving integrals ( ) in 

equations (51) to (56) thus:

 

                

(57) 

                                      (58) 

                            (59) 

     (60) 

           
















22224

42

99

108

11

60
6

kmkm

mkl

kmkm

mkl
mL

L

m





L

NmKL

0

22

0 22 




































  2

0

2

01
2

1
sin

2

1
sin41

2
),,( atctx

L

m
atctx

L

kL
tmkQ



 

     








































2222

2

0

1

222

222

2

1
cos2

1
)(4),,,(

kmnkmn

atctx
L

n
kmn

km
mkatctnmkQ n





),,(
)(

),,( 12

222

3 tmkQ
L

matc
tmkQ




 xg i

  ,11
L

x
xg    3

2

2
6

1

3
x

LL

x
x

L
xg 

 
L

x
xg 3   x

L
xg

6
4 

 xg i

 tf i

 xg i  xg3

)(1 tf

)(3 tf

              0 tGtGtGtGtGtGtG gfedcba

              0  tGtGtGtGtGtGtG TrnmjIh

         21311

1
N

L
tftfNtftGk

 

         41331

1
N

L
tftfNtftGl

 

      tftf
L

Nr
tG 13

5

0

0
 

 

 

    























































tftfNatctx
L

n
N

L

M

atctx
L

k
tf

M

tG

n

p

13

1

6

2

02

0

2

2

01

0

2

1
cos2

2

1
sin













      tftfatctx
L

k

L

matc
tGq 13

2

0

0 2

1
sin

)(2  
















        







 tftf

L

k
Ntf

k
tG 13

0

11

0

5


5,.......1 NN

 

 












odd is1if,0

even is1if,
2

1

k

k
k

L

N 

  1
2

2 1



k

k

L
N















1if,

2

1if,0

3
k

L

k

N

 

 
 















odd1if,

1

4

even1if,0

222

2
4 k

k

kl-

k

N





241 
 

 

Ajibola S. O.: Flexural Motions Under Moving Loads of Structurally Prestressed Non- Uniform Simply Supported Beam…  

 

 

                                                                                  (61) 

                                                         (62) 

substituting (49 to 62) into (43), simplified an arranged gives: 

  (63) 

Where           (64) 

 (65) 

 (66) 

                                                (67) 

                (68) 

 (69) 

     (70) 

 (71) 

 

Equation (63) represents the transformed 

equation of the non-uniform Rayleigh beam 

simply-supported at both ends and having 

boundary and initial conditions which are 

time dependent. 

In order to solve equation (63), two cases 

are involved, namely: Moving Force [18] 

and Moving Mass which is being focused in 

this paper.  

SIMPLY SUPPORTED NON-UNIFORM 

RAYLEIGH BEAM TRAVERSED BY 

MOVING MASS    

 

In this case, the moving load has mass 

commensurable with that of the beam. 

Consequently, . As mentioned earlier 
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resort to the modified Struble’s asymptotic technique already alluded to in this thesis. In 

order to solve equation (63), it is rearranged to take the form                      

(72) 

                                                                                                        

Where 

   ,            

  , (73) 

 

  

 

and     are as 

defined in equations (68-71) 

As in the previous section, the 

homogeneous part of equation (72) is first 

considered as a modified frequency 

corresponding to the frequency of the free 

system due to the presence of the moving 

mass is sought. An equivalent free system 

operator defined by the modified frequency 

then replaces equation (72). To do this, 

consider a parameter for any arbitrary 

mass ratio defined as. 
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It can be shown that 
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  (79) 

Therefore, when the effect of the mass of the particle is considered, the first approximation to 

the homogenous system is 

                                                                                              (80) 

where                                                     (81) 

 is called the modified natural frequency representing the frequency of the free system due to 

the presence of the moving mass. Thus, the homogeneous part of (79) can be written as                        

                                  

                                                                                                               (82) 

Hence, the entire equation (72) taking into account (81) takes the form 
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where                      (98) 

        

(99) 

 

                                                                                        (100) 

 (101)      

                                            (102) 

                                                 (103)  

                                                              104) 

                                                                              (105)  

 

Equation (97) is solved using Laplace transformation and convolution theory, after 

simplifications and rearrangements one obtains 
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 where the evolving integrals  are evaluated and substituted into (106) simplifying 

and rearranging, one obtains 

 

 

          

                

           

                  (107)   

   atc
L

n
zandatc

L

k
zgT 


10

*

1 ..,

   
 













 












































kk

Lk

k

kR

mm

L

m

L

mk

L
T

k 12

2222

02

0

2

0

2

0*

2

1

1

4

1

2

2

     
   

  1

2222

022

0

1122

0*

3 1
1

4

1

211)( 

























 








k
kk

k

Lk

k

kR

mm

L

mk

L
T









 














k

k 122 1

   
   

  1

2222

01

0

1

0*

4 1
2

1

4

1

21212 





































k
kk

kk

Lk

k

kR

mmk

L
T













    ,/,/,2/ *

7

*

6

2*

5 LatcTLatcTT 

       
 





















1
22

22
*

9

11

2 n

nknk

nk

nknk
T





     
 





















1
22

*

10

11

n

nknk

nk

nknk
T




     
 





















1
22

2
*

11

11

2 n

nknk

nk

nknk
T



   1

12

1

5

1

11

*

5

1

10

1

5

1

9

*

5

1

8

1

4

1

7

*

4

1

6

1

3

1

5

*

3

1

4

*

2

1

3

*

2

1

2

*

1

1

1

*

1

1
ITITITITITITITITITITITITt

m

m 


1

22

1

6

1

21

1

6,

1

20

1

7

1

19

1

7

1

18

1

7

1

17

1

7

1

16

1

6

1

15

1

6

1

14

1

6

1

13

1

6 ITITITITITITITITITIT 

1

34

1

11

1

33

*

11

1

32

1

10

1

31

*

10

1

30

1

10

1

29

*

10

1

28

1

9

1

27

*

9

1

26

1

9

1

25

1

9

1

24

1

6

1

23

1

6 ITITITITITITITITITITITIT 

tcITIT msin01

36

1

11

1

35

*

11 

 1

34

1

1 .. ItoI

tAtzAtY mom sinsin)( 2010  teAtAtA t

m   coscossin 504030



   tzAtzAteA oo

t  

807060 cossin teAteA m

t

m

t   sincos 9190

 

   tzeAtzeA o

t

o

t   sinsin 9392

    tzAtzeA oo

t   sincos 9594



   tzeAtzA o

t

o   cossin 9796

    tzeAtzeA t

o

t  

19998 cossin 

     tzAtzAtzeA t  

199319921991 sinsinsin



245 
 

 

Ajibola S. O.: Flexural Motions Under Moving Loads of Structurally Prestressed Non- Uniform Simply Supported Beam…  

 

 

Where  

,

    

 

 

 

 

,  

 ,   

 

 

      

,

 

22

1
10

om z

T
A







    222

4

222

32

2

22

1
20

11














 mm

omom

o

m

TT
Q

T

z

zT
A 



 
    

  













 222

2

222

1

6 mo
o

mo
o z

Q

z
z

Q

z
T 

     












 





1

222

2

222

7
Q

z

Q

z
T omom 


    























22226

om

o

om

o

z

z

z

z
T



         












 





4

22

1

2

1

3

22

1

2

1
9

Q

zz

Q

zz
T mm 

     












 





4

2

1

22

3

2

1

22

10
Q

z

Q

z
T mm 


 
 
  





























 o

mom

C
z

z

z

z
T

2

1

2

1

22

1
11



  
    









 






























21

62222

222

340 2
11

2
1

Q

z

Q

z
T

zz
TT

Q
A oo

omom

sm

o






     












 





!

1

222

!

2

222

7
Q

z

Q

z
T omom 










 





!

4

1

!

3

1
92

Q

z

Q

z
T 

     


















 





!

4

2

1

22

!

3

2

1

22

10
Q

z

Q

z
T mm 

  2222

43!

0

50

1
 mTT

Q
A    ,2

1
4

2222

3!

0

60 TT
Q

A m  

   22

5
8022

5
70          ,











omom z

T
A

z

T
A


22

2
30




m

T
A
























 













 





!

4

1

!

3

1
9!

2

!

1

690 22
Q

z

Q

z
T

Q

z

Q

z
TA oo 

         


















 





!

2

222

!

1

222

691

1

Q

zz

Q

zz
TA moomoo

m





         


















 





!

4

22

1

2

!

3

22

1

2

9
Q

zz

Q

zz
T momo 

   
1

1

7
931

2

7
92

2
        ,

2

Q

zT
A

Q

zT
A oo 







   22

6
9622

6
95          ,











omom z

T
A

z

T
A





246 

 
Scientia Africana, Vol. 16 (No. 2), December 2017. Pp 230-251 

© Faculty of Science, University of Port Harcourt, Printed in Nigeria                                                        ISSN 1118 – 1931 

 

 

,        

  and                                     (108) 

 

Where 
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Therefore, 

                (110) 

Consequently, in view of the inverse of 

equation (110),the solution becomes 

             

 

                 

(111) 

Equation (111) is the dynamic response of a 

non-uniform Rayleigh beam to Moving 

Mass whose two simply supported edges 

undergo displacements which vary with 

time.  

 

DISCUSSION OF THE ANALYTICAL 

SOLUTION 

If the undamped system such as this is 

studied, it is desirable to examine the 

response amplitude of the dynamical system 

which may grow without bound. This is 

termed resonance when it occurs. Equation 

(81) clearly shows that the simply supported 

elastic Rayleigh beams transverse by a 

moving force will be in state of resonance 

whenever  
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While equation (80) shows that the same 

beam under the action of moving mass 

experiences resonance effect when 
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deduced for the same natural frequency, the 

critical speed for the system of a simply 

supported elastic beam on an elastic 

foundation and traversed by a moving force 
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is greater than that traversed by moving 

mass. Thus, resonance is reached earlier in 

the moving mass system than in the moving 

force system. 

4.1.1    Numerical Calculation and 

Discussion of the Results for Non-Uniform 

Simply Supported Beam. 

 

In order to illustrate the analytical results in 

dynamics of structures and Engineering 

designs for example considered, the non-

uniform Rayleigh beam is taken to be of 

length L=12.192m, the load velocity u = 

8.123 and .The values 

of the foundation moduli K varied between 

0 and 400000 ,axial force NA varied 

between 0 and 40000 and for fixed values of 

rotatory inertia R=1.The traverse deflections 

of the non-uniform Rayleigh beam are 

calculated and plotted against time for 

values of rotatory inertia, axial force  and 

foundation stiffness K. Fig. 1 shows 

response of  simply supported moving mass 

of a non-uniform Rayleigh beam for fixed 

value of rotatory inertia , fixed value of 

axial force NA=400000 and various values 

of foundation moduli K = 0 to K = 4000000. 

From the graph it shows that the response  
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Figure 1: Deflection profile of a simply surported non-uniform Rayleigh beam under the action of  
moving mass for various values of foundation modulus K and for fixed values of axial force  

N=20000 and rotatory inertia R=1 
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amplitude decreases as the values of the foundation moduli K 

increases. While, fig. 2,shows the deflection profile of simply 

supported Non-Uniform Rayleigh beam under the action of moving 

mass for various values of axial force N=0 to 2000000 and fixed 

value of Rotatory inertia R=3 and fixed value of foundation 

modulus K= 20000. The graph reads that as the axial force 

increases the deflection profile decreases. However, fig.3, exhibits 

deflection profile of simply supported moving mass of Non-

Uniform Rayleigh beam for various values of rotatory inertial R=0 

to 3 and for fixed value of axial force N=20000 and for fixed value 

of foundation modulus K=40000. From the graph it shows 

 

 

Figure 2:  Deflection Profile of a simply surported Rayleigh beam under the actions of moving  
mass for various values of axial force N and for fixed values of Rotatory inertia R=1 and  

foundation modulus K=40000 
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that the response amplitude decreases as the 

values of Rotatory inertial R increases 

.However, fig.4: shows the comparison of 

the moving force and moving mass simply 

supported Non-uniform Rayleigh beams for 

fixed value of foundation moduli K= 40000,  

fixed value of axial force NA=40000  and 

rotatory inertia R=1, respectively.  

Figure 4:  Comparison of the Moving force and Moving mass cases for simply supported non- 
uniform Rayleigh beam for fixed value of foundation modulli K=40000 and rotatory inertia R=1 
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Figure 3: Deflection profile for simply supported non-uniform Raylegih beam under the action of  
moving mass for various values of rotatory inertia and for fixed values of axial force N=20000  

and foundation modulus K=40000 
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