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ABSTRACT 

An analysis was carried out on the effects of variable thermal conductivity on radiative MHD 

flow in a porous medium between two vertical wavy walls. The thermal conductivity is 

assumed a linear function of temperature and the fluid flow consists of two parts namely a 

mean and perturbed part, where the perturbed component is expressed as complex 

exponential series in terms of short wave length. The resultant governing equations were 

solved using Homotopy Analysis Method (HAM). The effects of the fluid parameters 

characterizing the velocity, temperature, fluid pressure, skin friction and Nusselt number 

were analysed and discussed. 

 

Key words: A porous medium; Homotopy analysis method; Radiative MHD flow; Variable 

thermal conductivity; Wavy walls. 

 

INTRODUCTION 

Considerable attention of researchers has 

been drawn to the study of an 

incompressible viscous fluid flow between 

wavy wall(s) in the last few decades. This is 

due to its applications in engineering and 

industry such as in design cooling system 

for electronic components, design of 

ventilation for heating buildings and design 

of storage facilities for agricultural produce. 

The wavy channel is often used for MHD 

flow in many applications such as crude oil 

refinement, glass manufacturing and paper 

production (Akbar, 2015).  

The importance of flow in wavy wall(s) led 

Fasogbon (2006) to investigate the effects of 

magnetic field on the viscous 

incompressible fluid in corrugated channel. 

The author  reported that the magnetic field 

slow down the fluid velocity. Heat transfer 

with radiation in the MHD free convection 

between a vertical wavy wall and a parallel 

flat wall was studied by Tak and Kumar 

(2007). The authors concluded the thermal 

radiation has an accelerating effect on the 

velocity and temperature profiles. Fasogbon 

(2010) presented heat and mass transfer by 

free convection in an irregular channel. The 

investigator reported that the effects of 

different chemical species on the fluid flow. 

The heat transfer of viscous incompressible 

fluid with slip effects within a spirally 

enhanced channel was studied by Abubakar 

(2014) and concluded that the slip effects 

increase the fluid velocity. In the 

aforementioned studies, the investigations 

were narrowed down to one vertical wavy 

with a parallel flat wall. 

Tak and Kumar (2006) and Kumar (2011) 

studied the viscous incompressible fluid in a 
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two-dimensional vertical wavy channel and 

highlighted that radiation increases the fluid 

flow while heat source reduces the fluid 

flow in a non-Darcy porous medium. 

The study of fluid flow through a porous 

medium has vital applications in heat 

removal from nuclear fuel debris, 

underground disposal of radiative waste 

material and storage of food stuffs. Above 

mentioned applications of porous media led 

Teneja and Jain (2004) to analyse the MHD 

free convection flow in the presence of 

temperature dependent heat source in a 

viscous incompressible fluid confined 

between a long vertical wavy wall and a 

parallel flat wall in slip flow regime with 

constant heat flux. Heat transfer with 

radiation and temperature heat source in a 

porous medium between two vertical wavy 

walls studied by Dada and Disu (2015). The 

authors reported that the velocity of the 

fluid increases with the increase in the 

permeability of the porous medium. Disu 

and Dada (2017) studied Reynolds’ model 

viscosity on radiative MHD flow in a 

porous medium between two vertical wavy 

walls. The authors observed that an increase 

in variable viscosity parameter increases the 

velocity of the fluid. 

The thermal conductivity of the fluid flow 

in all the above studies is assumed constant 

throughout the flow regime. However, it is a 

known fact that the thermal conductivity 

changes with temperature within the fluid 

flow. For example, the thermal conductivity 

of engine oil at 20
0
C and 80

0
C are 

0.145W/mK and 0.138 W/mK respectively. 

Some studies of variable thermal 

conductivity of the fluid flow over a 

stretching sheet, parallel walls and pipe 

have been reported (Chaim, 1992; Sharma 

and Singh, 2009).  

In view of the above, it is necessary to 

extend the variation of the thermal 

conductivity to the study of the fluid flow in 

a porous medium between two vertical 

wavy walls. Therefore, we present the 

effects of variable thermal conductivity on 

MHD radiative flow in a porous medium 

between two vertical wavy walls. Thermal 

conductivity is assumed a linear function of 

temperature and Darcy model is used for 

porous medium. 

 

Formulation of the problem 

Consider a two-dimensional free 

convective, steady laminar and 

hydromagnetic-radiative flow in a Darcy’s 

model porous medium between two vertical 

wavy walls (Figure 1). The  -axis is taken 

vertically upwards and Y -axis 

perpendicular to it. The wavy walls are 

represented by             and 

              respectively, 

where       . The fluid flow takes place 

under buoyancy and temperature dependent 

heat. The governing equations of the fluid 

flow and heat transfer are given below: 
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                                      Figure 1:  Geometry of the fluid flow 
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The boundary conditions are taken as: 

              at                 

        
  

  
    at      

                         (5) 

 

where     are the velocity components in   

and   directions,   is the fluid pressure,    

is the dynamics viscosity,   is the 

acceleration due to gravity,   is the 

coefficient of volume expansion,   is the 

fluid temperature,    is the uniform 

magnetic field,    is the porosity parameter, 

     is the variable thermal conductivity,   

is the density of the fluid,    is the specific 

heat at constant pressure,    is the heat 

source,    is the equilibrium temperature,  

   is the radiative heat flux in the 

  direction and    is the radiative heat 

flux in the   direction.  

 

The Rosseland approximation defined the 

radiative heat flux in the   and   directions 

as Brewster (1972) 

 

   
  

   
 

   

  
       

  

   
 

   

  
              (6) 

 

where    is the mean absorption coefficient 

and   is the Stefan-Boltzmann constant. 

Assuming the temperature differences 

within the fluid flow are sufficiently small 

such that    may be expressed as a linear 

function of the temperature, then the Taylor 

series expansion of     about   , after 

neglecting higher order terms, is given by 
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              (7)   

                                                                                             

The thermal conductivity is assumed to vary 

as a linear function of temperature (Slattery 

(1972); Sharma and Singh (2009))  

 

                   .      (8) 

 

The non-dimensional parameters are defined 

as                                                                                   
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   is the thermal conductivity variation 

parameter,    is the Prandtl,   is the 

Grasshof number,   is radiation parameter, 

  is the heat source parameter,   is the 

magnetic parameter,   is the porosity 

parameter,   is the dimensionless frequency 

and  is the dimensionless amplitude ratio. 

 

Using Eq. (9), Eq. (8) becomes   

 

            .         (10)                                                                                                    

 

Then, Eqs. (1) – (4) are in non-dimensional 

form as 
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                 (14) 

 

with the boundary conditions; 

            at           , 

        
  

  
   at               

(15) 

where      
 

  
  is the radiation 

parameter. 

 

We assume that the solution consists of a 

mean part and a perturbed part so that the 

velocity and temperature distributions are 

 

                     

               

                     

                      
 

 
.        (16) 

 

Substituting Eq. (16) into Eqs. (11) - (14) 

with boundary conditions (15), we obtain 

the following set of equations: 

 

zeroth order equations are 
    

        
 

 
                  (17) 

       
    

      
   

  
 

 

        (18)                             

where   
   

  
, 

 

with boundary conditions 

 
                                   

     
   

  
                          

   (19) 

First order equations are 
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with boundary conditions 
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Eqs. (20) – (23) with boundary conditions 

(24) are simplified by introducing the 

stream function       such that 
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Therefore, Eqs. (20) - (23) and boundary 

conditions (24) becomes 
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with boundary conditions 

 

  

  
  

   

  
 

  

  
          

   

  
           

  

  
   

  

  
       

   

  
                          

   

(28) 

Due to the nature of the wall motion, we 

assume wave-like solutions of the form  

              
     

     (29) 

               
     

       (30) 

where        
 

Substituting Eqs. (29) and (30) into  Eqs. 

(26) and (27) with boundary conditions 

(28), the sets of  obtained equations are: 
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with the boundary conditions 
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The Homotopy Analysis Method of 

Solution 

The solution of Eqs. (17) and (18) with 

condition (19) are obtained by constructing 

zeroth-order deformation (Liao (2004); 

Cheng et al (2008); Liao (2012)) as  

 

                      
                                     (37) 

                      
                               (38) 

 
                   

          
        

  
        

         (39) 

        is the embedding parameter,   is 

the auxiliary operator ,    and    are the 

initial guesses of unknown function 

        and        ,   is the auxiliary 

parameter,        is the auxiliary 

function and   is the nonlinear operator. 

when     and    , the followings are 

obtained  

          ,                    (40) 

                               (41)      
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Using the Maclaurin series,         and 

           can be expanded with respect 

to      
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where       
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Assuming the Eqs. (42) and (43) converge 

at    , the equations yield 
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Eqs. (37) and (38) are differentiated with 

respect to     times, then setting     

and divided by    (Cheng, 2008) and (Liao, 

2012). The following   order deformation 

equations are obtained 
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In the similar way, the following equations 

are obtained for            and      and 

these are given as follows 
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Fluid pressure 

The fluid pressure        for Eqs. (2) and 

(3) is defined as  

             
  

  
   

  

  
   .                                                                             

(59) Using Eqs. (11), (12), (16), (25), (29) 

and (30) in Eq(59), then  Eq. (59) becomes  
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Eq. (60) can be expresssed as    

              where    is the pressure 

drop which is the pressure at point   in the 

fluid flow with respect to   (Fasogbon 

(2010)). The pressure drop      is at    or 

     

 

Skin Friction 

The shear stress at the walls            

and              are given as 

             
             

   
                      (68) 

             
             

   
                     (69) 
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Nusselt Number 

The rate of heat transfers at the walls 

           and              

               
            

   
                  (70) 

               
            

   
                    (71) 

 

Discussion of Results 

Eqs.  (49) - (50), (59) - (62) are 

implemented and solved on Maple 18. The 

following series of computations are carried 

out to determine the effects of variable 

conductivity parameter    , heat source    , 

radiation parameter    , magnetic 

parameter    , Grashof number     , 

permeability parameter    , frequency    , 

and amplitude    , on the velocity, 

temperature, skin friction as well as Nusselt 

number. The analysis of the fluid flow and 

heat transfer distribution profiles were 

carried out with the following fixed values 

for the parameters:               

                        
           and      . All the graphs 

use the default values expect otherwise 

stated. 

 

The effect of the magnetic parameter      
on the velocity profiles is depicted in Figure 

2. The presence of the magnetic field 

normal to the fluid flow in an electrically 

conducting fluid introduced a Lorentz force 

which act against the flow. This resistive 

force slow down the the flow and hence the 

fluid velocity decreases with increase of 

magnetic field parameter. Figure 3 presents 

the variation of velocity profiles with 

permeability parameter. It is observed that 

the presence of permeability parameter 

reduces the resistance of the porous medium 

thereby enhance the fluid velocity. Figure 4 

depicts the variation of velocity distribution 

with different value of Grashof number. It 

can be seen that an increase in Grashof 

number leads to a rise in velocity profiles. 

Figure 5 illustrates the effects of variable 

thermal conductivity on the velocity 

profiles. It is noted that as   increase (as 

thermal conductivity increases with 

temperature), the velocity increases. 

 

Figures 6 and 7 represent the influence of 

heat source      and thermal radiation 

parameter      respectively on the velocity 

profiles. It is observed that an increase in 

heat source parameter causes a reduction in 

the buoyancy effect which reduces the fluid 

velocity. It can be seen that the velocity 

profile increases as the radiation parameter 

     increases, thereby increasing the 

momentum boundary layer thickness. This 

is because the intensity of heat produced 

through thermal radiation increases thereby 

breaking the bond holding the components 

of the fluid particles together and as the 

fluid velocity increases. 

Figure 8 shows the temperature profiles for 

different values of thermal conductivity 

parameter   . It can be seen that an increase 

in thermal conductivity parameter increases 

the temperature profiles. Figure 9 illustrates 

the influence of heat source parameter     

on temperature profiles. It is observed that 

the temperature of the fluid decreases with 

an increase in the values of the heat source.  

The variation of temperature profiles for 

different values of thermal radiation 

parameter     is shown in Figure 10. The 

results show that the temperature profile 

increase in the thermal radiation parameter 

and hence increasing the thermal boundary 

layer thickness 

 

Figure 11 depicts the fluid pressure with 

different values of magnetic parameter   . 

It is observed that an increase in magnetic 

parameter decreases the fluid pressure 



96 
 

 
Disu A. B. and Dada M. S.: Effects of Variable Thermal Conductivity on Radiative MHD Flow in a Porous Medium…  

 

profile. Figure 12 represents the variation of 

permeability parameter on the fluid 

pressure. It is observed that an increase in 

the permeability parameter causes a 

reduction in the fluid pressure. It can be 

seen that the fluid pressure increases with an 

increase in the Grashof parameter in Figure 

13. Figure 14 illustrates the influence of 

thermal radiation parameter     on the fluid 

pressure. It can be noticed that fluid 

pressure decreases as the radiation 

parameter increases. Figure 15 presents the 

trend of the fluid pressure with variation of 

heat source parameter   . It can be seen 

that an increase in heat source parameter 

produces a rise in the fluid pressure. Figure 

16 represents the variation of thermal 

conductivity parameter     on the fluid 

pressure profiles. It is observed that an 

increase in thermal conductivity increases 

the fluid pressure profiles. 

 

 

                 
Figure 2: Effects of     on Velocity profiles       Figure 3: Effects of    on velocity profiles 

 

 

                   



97 
 

Scientia Africana, Vol. 17 (No. 1), June 2018. Pp 89-102 

© Faculty of Science, University of Port Harcourt, Printed in Nigeria                                           ISSN 1118 – 1931 

 Figure 4: Effects of    on Velocity profiles      Figure 5: Effects of    on Velocity profiles 

                               
  Figure 6: Effects of    on Velocity profiles            Figure 7: Effects of     on Velocity profiles                     

 

 

                                     
Figure 8: Effects of   on Temperature profiles         Figure 9: Effects of  on Temperature profiles        
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Figure 10: Effects of   on Temperature profiles     Figure 11: Effects of  on Fluid pressure profiles 

 

 

                        

              
Figure 12: Effects of   on Fluid pressure profiles   Figure 13: Effects of   on Fluid pressure profiles 
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Figure 14: Effects of   on Fluid pressure profiles    Figure 15: Effects of   on Fluid pressure profiles 

 

 

 

              
   Figure 19: Effects of   on Fluid pressure profiles 

 

The skin friction coefficient and Nusselt 

number are expressed in equations (68) - 

(71) are shown in Table 1 and Table 2 for 

the fluid parameters. The entire fluid 

parameter take their fixed values expect, the 

varied parameter. Table 1 shows that 

increase in value of  ω, G, K or S causes a 

fall  in the skin friction while increase in α 

or M produces a rise in the skin friction 

coefficient. Table 2 presents that the 

increase in value ω or S increases the 

Nusselt number while increase in   reduces 

the Nusselt number. 
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Table 1: The skin friction for different values of the fluid parameters 

Fluid parameter     Skin friction 

      
      
      

-0.1116760 

-0.1345073 

-0.1507360 

       M = 0.1 

       M = 0.3 

       M = 0.5 

-0.1116760 

-0.1070134 

-0.1042505 

       K =  0.1 

       K = 0.3 

       K = 0.5 

-0.1116760 

-0.1275513 

-0.1322307 

       G = 0.1 

       G = 0.3 

       G = 0.5 

-0.1116760 

-0.1275513 

-0.1322307 

      
      

      

-0.1116760 

-0.1060528 

-0.1012977 

      
      

      

-0.1116760 

-0.1060535 

-0.1012977 

Table 2: The Nusselt number for different values of the fluid parameters 

Fluid parameter     Nusselt number 

      
      

      

4.999996 

3.354092 

2.687392 

      

      

      

4.999996 

5.400617 

5.777358 

      
      

      

4.999996 

5.300647 

7.773500 

 

The effects of the thermal conductivity on 

MHD radiative flow in a porous medium  

between two vertical wavy walls is 

investigated. The following conclusions 

were drawn: 

i. when the effects of thermal 

conductivity is taken into account, 

the flow characteristics changed 

significantly; 

ii. increase in the thermal conductivity 

parameter (S), radiation parameter 

(ω), permeability parameter (K) and 

Grashof number (G) increases the 

fluid flow  while increase in 

magnetic field parameter (M) and 

heat source parameter (α) slow down 

the fluid motion; 

iii. temperature of the fluid increases 

with increase in the thermal 

conductivity parameter      and 

radiation parameter    . But the 

temperature decreases with the 

increases with increase in heat 

source parameter    ;  

iv. fluid pressure increases with the 

increase in values of     or   while 
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it decreases with the increase in 

value of     or  ; 

v. increase in the value of      or   

increases the skin friction while 

increase in     or   reduces in the 

skin friction; and  

vi. increase in the value of   or   

increase the Nusselt number whereas 

increase in the value of    reduces 

the Nusselt number. 
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