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ABSTRACT 

We have solved the Schrodinger equation with Varshni potential model using the modified 

factorization method. By employing the Greene Aldrich approximation scheme and an 

appropriate transformation scheme, analytical expressions of the energy eigenvalues and its 

corresponding normalized eigenfunctions were obtained in terms of the hypergeometric 

function in closed form. Numerical results of the energy eigenvalues for different quantum states 

were computed at varying screening parameters and discussed. The effects of the Varshni 

potential model parameters on the energy eigenvalues have been evaluated. The analytical 

expression of the energy eigenvalues obtained have been used to obtain an expression for the 

ro-vibrational partition function and other thermodynamic functions for the Varshni potential 

model. The variation of the thermodynamic functions with temperature for different quantum 

states have been analyzed. Our results obtained promises to be relevant in different areas of 

studies including molecular and chemical physics. 

Keywords: Varshni Potential, Modified factorization method, Energy eigenvalues, Partition 

function, Thermodynamic properties. 

 

 

INTRODUCTION 

The studies of both nonrelativistic and 

relativistic systems with various potentials 

have been a major research interest to most 

researchers. This is due to the fact that 

potential energy functions have proven to 

be useful in explaining atomic and 

molecular structures theoretically in non-

relativistic and relativistic frame- works 

(Ocak et al., 2016). Some of the potential 

energy functions still under investigation 

include: Morse potential (Morse, 1929), 

Eckart potential (Eckart, 1930), Rosen-

Morse potential (Rosen and Morse, 1932), 

Manning-Rosen potential (Manning and 

Rosen, 1933), Poschl-Teller potential 

(Poschl and Teller, 1933), Woods-Saxon 

potential (Woods and Saxon, 1954), 

Varshni potential (Varshni, 1957), Deng-

Fan potential (Deng and fan, 1957), Tietz 

potential (Tietz, 1963), Schioberg potential 

(Schioberg, 1986), Hua potential (Hua, 

1990), etc. Also, more convenient forms of 

the above-mentioned potentials have been 

constructed for diatomic molecules (Jia et 

al., 2014; Zhang et al., 2012; Wang et al., 

2012; Yanar et al., 2016). This is possible 

with the use of different explicit parameters 
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like the equilibrium bond length and the 

dissociation energy. 

Hitherto, some of the above-mentioned 

potentials have been solved exactly, while 

others can only be solved using different 

approximation schemes like Pekeris-type 

approximation scheme (Pekeris, 1934) and 

Greene-aldrich-type approximation scheme 

(Greene and Aldrich, 1976).  The solutions 

of nonrelativistic and relativistic wave 

equations with any chosen potential 

function have be obtained using any of the 

following methods: The factorization 

method (Dong, 2007), asymptotic iteration 

method (AIM) (Ciftci et al., 2005), 

Nikiforov-Uvarov (NU) method (Nikiforov 

and Uvarov, 1988), supersymmetric 

quantum mechanics (SUSYQM) (Witten, 

1981), exact and proper quantization 

method (Ma and Xu, 2005), modified 

factorization method (Liu et al., 2013), and 

others. 

Recently, several authors have obtained the 

rotation-vibrational energy spectra for 

diatomic molecules and dimers. Okorie et 

al. (2018a) solved the Dirac and 

Schrodinger equation using modified 

factorization method to obtain the 

relativistic and non-relativistic ro-

vibrational energy spectra with the shifted 

Tietz-Wei potential model for hydrogen, 

nitrogen and oxygen dimers. Onate and his 

collaborators (2017) obtained the 

eigensolutions and entropic system for 

Hellmann potential in the presence of the 

Schrodinger equation. The bound state 

solutions of the Schrodinger equation for 

the modified Kratzer plus screened 

Coulomb potential has been studied using 

NU method (Collins et al., 2019). In higher 

dimensions, the rotation-vibrational 

energies for selected diatomic molecules 

have been obtained with improved Rosen-

Morse potential model (Udoh et al., 2019). 

By employing the rotation-vibrational 

energies obtained for various potential 

models, the partition function and other 

thermodynamic functions of various 

molecules have been studied by different 

authors (Ikot et al., 2018b; Jia et al., 2017; 

Okorie et al., 2018b; Ikot et al., 2019). 

There has also been a recent trend towards 

obtaining some thermochemical properties 

of gaseous substances with their rotation-

vibrational energy spectra (Deng and Jia, 

2018; Peng et al., 2018). 

Hence, we are motivated to study the 

Varshni potential model which is defined as 

(Varshni, 1957) 

( ) 1 rb
V r a e

r

 
  

 
   (1). 

Here, a  and b  represents the potential 

strengths,   is the screening parameter and 

r  denotes the inter-nuclear distance. The 

Varshni potential is known to be a short 

range repulsive potential energy function 

which has received remarkable attention in 

the areas of chemical and molecular 

physics. Worth mentioning is the use of this 

potential to describe multi-body condensed 

matter using the 2-body Kaxiras-Pandey 

parameters (Lim, 2009). The relativistic and 

bound state energies and spinor wave 

function of the Varshni potential have been 

obtained by some authors using the Dirac 

equation (Arda and Sever, 2014). Recently, 

Oluwadare and Oyewumi (2017) studied 

the scattering states of the Duffin-Kemmer-

Petiau (DKP) equation with the Varshni 

potential. The authors also obtained the 

asymptotic wave function, the scattering 

phase shift and normalization constant for 

the DKP equation. We are also motivated to 
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obtain the thermodynamic properties of the 

Varshni potential model, which has not 

been studied before to the best of our 

knowledge. 

 

 

MATERIALS AND METHOD 

Bound state solutions of the Schrodinger equation with the Varshni potential 

The radial part of the Schrödinger equation is given by (Okorie et al., 2018c) 

 
 

 
 

2 2

2 2 2

12
0

2
n

d r
E V r r

dr r

 




 
    

 
      (2). 

Substituting Equation (1) into Equation (2), we obtain 

 
 

 
2

2 2 2 2

12 2
0

r

n n

d abe
E a r

dr r r

 


  
     

 
     (3). 

Equation (3) cannot be solved analytically for 0  due to the centrifugal term. Therefore, we 

employ the Greene-Aldrich approximation scheme of the form (Greene and Aldrich, 1976) 

   

2

22

1 1
,

11
rrr r ee



 


 


      (4). 

Substituting Equation (4) and introducing a coordinate transformation of the form 

 
1

1 rz e 


  , Equation (3) becomes 

   
   

 
2 2

2
1 1 2 0

1 1
n

d d G z
z z z z

dz dz z z z z

 


 
       

  
    (5). 

 

 

Here, we have adopted the following abbreviations 

   2

2 2 2

2 2
, , 1 .n

ab
E a G

 
 

 
          (6). 

We propose the following ansatz 

     1
vw

n nz z z f z          (7), 

where 

2 2,w G v       .      (8). 

Substituting Equation (7) into Equation (5), we obtain 

 
 

   
 

 
2

2

1 1
1 1 2 2 2 2 0

2 2

n n

n

d f z d f z
z z w w v z w v w v f z

dz dz
 

   
                   

   

(9), 

where 

1

4
          (10). 
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The solution of the hypergeometric Gauss differential equation given in Equation (9) is obtained 

as 

     1 2 11 , , ,
vw

n z N z z F x y t z       (11), 

where 

1

2
x w v           (12), 

1

2
y w v           (13), 

1 2t w         (14). 

The energy eigenvalues can be obtained by equating either Equation (12) or Equation (13) to a 

negative integer  n . After doing this and carrying out simple algebra, we have  

2

2 1 1

14 2

2

G
n

n


  



 
   
      
         

   (15). 

Substituting Equations (6) into Equation (15), we obtain the nonrelativistic energy eigenvalues 

of the Varshni potential to be  

 
 

 

 

2

2 2 2 2 2

2
1

1
1

2 2 2 1 2
n

ab

n
E a

n



  

 

  
          
  

  

  (16). 

The unnormalized wave function of the Varshni potential given in Equation (11) can also be 

written in terms of the Jacobi polynormials as 

   
 

 
   2 , 2

1

! 1 2
1 1 2

1 2

v w vw

n n

n w
z N z z P z

n w


 
  

  
      (17), 

where we have used the definition (Gradshteyn and Ryzhik, 2007) 

   
 

 
 ,

2 1

1
1 2 , 1 ; 1 ;

! 1

A B

n

n A
P q F n n A B A z

n A

  
      

 
   (18),  

and 1N  is the normalization constant which can be calculated by the normalization conditions 

of the wave function: 

2

0

( ) 1nl r dr


  .              (19). 

Substituting equation (17) into Equation (19), we have 

 

 
     

2
1

22 1 2 , 22 2 1

1

0

! 1 2
1 1 2 1

1 2

v w vw

n

n w
N z z P z dz

n w


  

          
 ,   

1

1 rz e 


          (20). 

Equation (20) can be transformed into 
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 

 
 

2
2 1 2 11

2
2 , 22

1

1

! 1 2 1 1
1

2 22 1 2

w v

w v

n

n w s s
N P s ds

n w

 



                         
 , 1 2s z          (21). 

Employing the standard integral (Falaye et al., 2014), 

   
     

 

2 1

1, 1

2

2 ! 2 2 21 1

2 2 3 2

h g n

h g

n

n n h n g n h gf f
P u du

n h g



                                

   (22), 

we obtain the normalization constant from Equation (21) to be 

   

       

22

1 23 2

1 2 1 2 2 2

! 2 1 2 1 2 2 2n

n w n w v
N

n w n v n w v

         
         

              (23).      

 

Partition Function and Thermodynamic Properties of Varshni Potential 

The bound state contributions to the rotation-vibrational partition function of any system at a 

given temperature T is defined as (Jia et al., 2017) 

   
1

0

,nE

B

n

Z e k T


 




      (24), 

where Bk  is the Boltzmann’s constant,   is the upper bound quantum number, nE  is the ro-

vibrational energy eigenvalues of the Varshni potential. 

Substituting Equation (16) into Equation (24), we obtain 
22 2

1
2

( )

2 2( ) 2

0

( )

P n
P

n

n

Z e

 


 



  
        



     (25), 

where 

   
2 2

1 22

2
1 , 1 , 1

2

ab
P P a

 


 
          (26). 

Replacing the sum by an integral in the classical limit, we obtain: 

2

2

( ) ,

M
L N

Z e d n

    




   

    
        (27), 

where 
2 2 2 2 22 2

1 1
2; ;

8 8 4

P P
L M N P

 

  
       (28). 

By employing a Maple software to evaluate the integral in Equation (27), we obtain ro-

vibrational partition function of the Varshni potential to be 

 

 
   

2 2
2

( )

MM
L N M M

Z e M erfi erfi e e


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 
     

  

 
     
                   

(29), 

where the imaginary error function is defined as (Jia et al., 2017) 
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2

0

( ) 2
( )

u

serf iu
erfi u e ds

i 
            (30). 

With the help of the ro-vibrational partition function of Equation (29), other thermodynamic 

properties of the Varshni potential can be obtained with the following relations: 

 Rotational-vibrational internal energy 

ln ( )
( )

Z
U







 


        (31). 

 Rotational-vibrational free energy 

1
( ) ln ( )F Z 


         (32). 

 Rotational-vibrational entropy 

ln ( )
( ) ln ( )

Z
S k Z k


  




 


     (33). 

 Rotational-vibrational specific heat capacity 

   
2

2

2
lnC k Z  







      (34). 

 

RESULTS AND DISCUSSION 

In our study, we employed the Maple software throughout our computation. The rotational-

vibrational energy eigenvalues of the Varshni potential are computed for different states (1s, 

2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d and 4f) and different screening parameters ranging from 0.01 to 

0.1, using Equation (16). These results are given in Tables 1 and 2. In Table 1, we observe 

complete bound state energies for 1s state. Also, these bound state energies increase as the 

screening parameter increases. In other states considered, there is a corresponding increase in 

energy eigenvalues as the screening parameter increases. Table 2 also shows the same trend of 

energy behavior observed in Table 1 for each state. The variation in the energy eigenvalues with 

different parameters of the Varshni potential such as , anda b  are shown in Figures 1 – 3. 

Figure 1 shows a monotonous increase in energy as the screening parameter increases. Also, 

the increase in energy is much sharper for 4f state. Figures 2 and 3 show a decrease in the energy 

eigenvalues as the potential parameters anda b increases, respectively. We also observe a 

sharp decrease for state 4f, as compared with other quantum states considered.  

Figures 4 – 8 show the variation of ro-vibrational partition function and other thermodynamic 

properties of the Varshni potential with various temperatures, for different quantum states. In 

figure 4, the rotational-vibrational partition function decreases as the temperature increases. In 

Figure 5, there is a sharp increase in rotational-vibrational free energy for all the quantum states 
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at a particular temperature. Thereafter, the free energies for each state remains constant as the 

temperature increases. The rotational-vibrational free energy is seen to be highest for state 1s 

and least for state 4f. We also observe first, a slow decrease in ro-vibrational internal energy 

and later a constant internal energy as temperature increases as shown in Figure 6. But, there is 

a sharp decrease in the rotational-vibrational internal energy as exhibited by state 4f, when the 

temperature begins to increase. In Figure 7, we observe a monotonous decrease in rotational-

vibrational entropy as the temperature increases for the quantum states considered. Figure 8 

exhibits an “increase-decrease-constant” phenomenon of the rotational-vibrational specific heat 

capacity as it varies with temperature for different quantum states. In this graph, we see that 

increase-decrease-constant phenomenon for the different quantum states is unique, and it is 

much sharper for state 4f. Since this study of thermodynamic properties is not carried out before 

for Varshni potential, it is therefore, difficult to compare our results with any literature. 

 

Table 1: Rotational-vibrational energy eigenvalues of Varshni potential for states  

(1s, 2s, 2p, 3s, 3p, 3d).  

Screening 
Parameter 

 ( )nE  

 1s  2s  2 p  3s  3 p  3d  

0.01  -5.970025000 0.7799000000 0.7651750000 2.029775000 2.023397223 2.010575000 

0.02  -5.940100000 0.8096000000 0.7807000000 2.059100000 2.046922222 2.022300000 

0.03  -5.910225000 0.8391000000 0.7965750000 2.087975000 2.070575000 2.035175000 

0.04  -5.880400000 0.8684000000 0.8128000000 2.116400000 2.094355556 2.049200000 

0.05  -5.850625000 0.8975000000 0.8293750000 2.144375000 2.118263889 2.064375000 

0.06  -5.820900000 0.9264000000 0.8463000000 2.171900000 2.142300000 2.080700000 

0.07  -5.791225000 0.9551000000 0.8635750000 2.198975000 2.166463888 2.098175000 

0.08  -5.761600000 0.9836000000 0.8812000000 2.225600000 2.190755556 2.116800000 

0.09  -5.732025000 1.011900002 0.8991750020 2.251775000 2.215175000 2.136575000 

0.10  -5.702500000 1.040000000 0.9175000000 2.277500000 2.239722223 2.157500000 

 

Table 2: Rotational-vibrational energy eigenvalues of Varshni potential for states 

   (4s, 4p, 4d, 4f).  
Screening 
Parameter 

( )nE  

 4s  4 p  4d  4 f  

0.01 2.467100000 2.463643750 2.456693750 2.446175000 

0.02  2.495900000 2.489575000 2.476775000 2.457200000 

0.03 2.523900000 2.515293750 2.497743750 2.470575000 

0.04  2.551100000 2.540800000 2.519600000 2.486300000 

0.05 2.577500000 2.566093750 2.542343750 2.504375000 

0.06  2.603100000 2.591175000 2.565975000 2.524800000 

0.07  2.627900000 2.616043750 2.590493750 2.547575000 

0.08 2.651900000 2.640700000 2.615900000 2.572700000 

0.09  2.675100000 2.665143750 2.642193750 2.600175000 

0.10  2.697500000 2.689375000 2.669375000 2.630000000 
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Figure 1: Rotational-vibrational energy eigenvalues variation with   for various quantum 

states. 

 

 
 

Figure 2: Rotational-vibrational energy eigenvalues variation with a  for various quantum 

states. 
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Figure 3: Rotational-vibrational energy eigenvalues variation with b  for various quantum 

states. 

 

 

 
Figure 4: Rotational-vibrational partition function versus   for different quantum states. 
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Figure 5: Rotational-vibrational free energy versus   for different quantum states. 

 

 

 
Figure 6: Rotational-vibrational internal energy versus   for different quantum states. 
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Figure 7: Rotational-vibrational entropy versus   for different quantum states. 

 

 

 
 

Figure 8: Rotational-vibrational specific heat capacity versus   for different quantum states.  
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CONCLUSION 

In this study, the Schrodinger equation was 

solved with Varshni potential within the 

framework of modified factorization 

method. The energy eigenvalues and its 

corresponding normalized eigenfunction 

were obtained in terms of hypergeometric 

function in closed form. The numerical 

results of the energy eigenvalues were 

obtained for different quantum states, at 

varying screening parameters. Here, we 

observed that the energy eigenvalues 

increase as the screening parameter 

increases for the different quantum states. In 

addition, we considered the effect of the 

Varshni potential parameters on the energy 

eigenvalues for different quantum states 

considered. As such, we see that the energy 

eigenvalues increase as the screening 

parameter increases. But, the reverse is the 

case when considering the variation of the 

energy eigenvalues with other potential 

parameters. We also extended our studies to 

the consideration of the rotational-

vibrational partition function and other 

thermodynamic properties of the Varshni 

potential. These include the rotational-

vibrational free energy, rotational-

vibrational internal energy, rotational-

vibrational entropy and rotational-

vibrational specific heat capacity. A striking 

result obtained is the “increase-decrease-

constant” phenomenon exhibited by the 

rotational-vibrational specific heat capacity 

for various quantum states, as it varies with 

temperature. As an extension, this studies 

can be applied to many areas of studies 

including molecular and chemical physics, 

thermochemical engineering and high 

energy physics. 
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