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ABSTRACT 

In this work the interaction between the blood and the penile structures was treated in order to 

have an insight into erectile functionality. Coital consummation and, maybe, its concomitant 

tendency to procreate is only attainable when there exists a fluid-structure synergy. 

Remarkably, hemodynamic influence is the basis of the behaviour of the penile ‘utensils’ 

towards such consummation. The blood flow that induces penile engorgement that precedes 

vaginal intromission results in both tunical and vascular deformation, as was shown 

theoretically in this paper. The equations that govern blood flow and those that govern the 

penile structures’ response are derived. One of the results is the equation that furnishes the 

axial length of a penile shaft under axial displacement by using some tunical characteristics.  

Of much interest in erectile functionality is the concept of penile buckling. This was given 

attention here. Contrary to some insinuations occasioned by the treatment of the penile ‘shaft’ 

as a column subjected to axially compressive force that buckles under further application of a 

force, which was reported here, this work sees  penile tissue detumescence resulting from the 

withdrawal of a force as the basis of penile axial buckling.  

Keywords: hemodynamics, deformation, elastin, buckling, equations, pressure 

 

INTRODUCTION 

The penis plays two vital roles: the primary 

role is the removal of urine, a liquid by-

product of metabolism in humans, and in 

many other animals, the act of coition which 

is approved for the divine purpose of 

procreation, may be seen as a higher-order 

role.  About three physiological fluidic 

substances flow through the penile 

structures−urine, semen, and blood. While 

urine and semen are emissive fluids, blood 

is not. The flow under consideration here is 

blood. The flow of blood in arteries and 

veins is a biological fluid-structure 

interaction (FSI) problem. In the event of 

blood flow, the recipient body tissues are 

innervated. In fine, the integrity of cells and 

organs is essential for normal development, 

and therefore blood flow to them is 

indispensable. Tissue healing is predicated 

on adequate blood flow and the rate and 

quality of tissue repair are directly 

proportional to the blood and oxygen supply 

(see McMeeken (n.d)). The same, as above, 

can be said of general tissue functionality. 

The structures considered in this work are 

the penile tissues. The mathematical theory 

of erectile functionality presupposes the 

knowledge of penile anatomy and 

physiology. A plethora of literature, which 

include Robert and Tom (2005), Levin 

(2016), Ahmed (2004), and Rob (2013) treat 

hemodynamics of penile erection from the 

standpoints of anatomy and physiology and 

therefore furnish some salient facts for 

https://dx.doi.org/10.4314/sa.v20i3.13
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mathematical analysis. Physiological 

treatment of concern is the hemodynamic 

influence on penile functionality, while the 

anatomical treatment concerns the 

structures of the penile members. Studies on 

penile structures and functionality deal 

largely with the behaviour of the arteria-

venous vessels, together with the non-

vascular structures, albeit under 

hemodynamic influences. Penile tissues 

consist of soft tissues. Most biological soft 

tissues, including blood vessels considered 

to be thin-walled elastic cylinders, are 

thought to undergo large deformation (Jian  

et al.(n.d), Brossollet (1995). The typical 

substances inside the extracellular matrix of 

the soft tissue, found in the penile 

structures, are collagen and elastin. They 

play critical roles in the mechanical 

deformation of the penile shaft during 

tumescence and erection, as detailed by 

Hemat (2007). The issue of increased 

hemodynamic flow, during excitation, that 

induces tumescence and the response by the 

penile structures leading to erection may not 

have received substantial mathematical 

attention. Penile reaction to applied load 

was treated in terms of column buckling by 

Udelson et al. (1998, 1999). Udelson et al. 

(1998) described penile buckling forces as 

the magnitude of the axially compressive 

force applied to the glans of an erect penis, 

resulting in evident curving such that any 

added small force would prompt collapse 

(buckling) of the erect shaft. The bulwark of 

the above works was radial penile 

deformation. A question arose: Which one 

of axial compression and radial 

compression is instrumental in 

counteracting penile shaft buckling? This 

informed a polemic issue that is worth 

reconciling; while Udelson et al. (1998, 

1999). saw the penile shaft as an isotropic 

shaft with axial stresses as the principal 

stresses governing its column buckling, 

findings by Timm et al.(2001) oppugned the 

isotropic shaft view with the position that 

the penis acts as a thin-walled pressure 

vessel that becomes rigid when its walls 

reach their elastic limit. They contended 

that the physical properties of the tissues 

contained by the penile corpora cause it to 

behave like a thin -walled pressurized 

vessel, wherein the stresses, hoop and axial, 

have a constant relationship. This 

relationship is not contingent on the length 

to diameter ratio whilst as an isotropic beam 

,this relationship varies. According to them, 

penile rigidity and ability to withstand 

buckling may be determined by radial 

compression measurements rather than by 

radial penile deformation. Tubes are treated 

as a pressure vessel when the only load 

acting is the hydrodynamic pressure from 

the fluid, and when the load due to viscous 

and shear stresses is neglected. However, 

forces that act to engorge the penile tissues 

may not only be hydrodynamic; the 

deliberate act of penile massaging in the 

direction of flow induces titillation. This 

external contact force adds to the internal 

fluid pressure to make the structure behave 

in a manner that is rather more than just a 

pressure vessel. The concept of axial 

compression as applied to the arterial vessel 

led to the modelling of blood vessels as 

closed-ended vessel segments. In a bid to 

estimate the critical pressure by use of the 

Euler buckling equation, Kylstra et al. 

(1986), Brossollet and Vito (1995) 

modelled blood vessels as such. This was 

adjudged unrealistic by Hai-Chao et al. 

(2013) on the contention that close-ended 

vessel structure is incompatible with 

physiological blood vessels. 

https://en.wikipedia.org/wiki/Extracellular_matrix
https://en.wikipedia.org/wiki/Collagen
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MATHEMATICAL 

FORMULATIONS  

Before proceeding to the mathematical 

formulations of the problem, it is 

pertinent to have an insight into the 

penile anatomy. 

The penile structure 

The penis is a complex organ comprising 

ligaments, smooth muscle, skeletal muscle, 

arteries, veins, and other numerous tissues.  

The penile structure, under normal non-

excitation conditions, is flaccid and 

pendulous. In these states, it is 

approximately 8.5–10.5 cm long and 3–

5 cm in diameter (Levin (2016)), The 

constituent parts work together in perfect 

synchronization when the penis transits 

from flaccid to erect, and vice versa. 

Expansion occurs when blood is pumped, 

and as soon as the penis is full the veins are 

pressed against the tunica, therefore blood 

is prevented from leaving the penis (veno-

occlusion), thereby sustaining erection. 

When the limit of the tunica is reached, 

additional pressure results in stiffness. The 

outer longitudinal layer encloses the corpus 

chambers and controls the length of the 

expanding penis. The main body of the 

penis consists of three circular chambers. 

The top two chambers make up the corpora 

cavernosa. The lowermost chamber makes 

up the corpus spongiosum. The tunica 

albuginea envelops the corpora cavernosa. 

It has biomechanical properties, as it is 

made up of fibrillar collagen entwined with 

elastin fibres. This composition gives the 

penis great tissue strength flexibility and 

rigidity when stretched (Hsu (2013)). The 

elastic fibres (elastin) contribute more to the 

ability to tolerate radially compressive 

loads. The flaccid penis is markedly in a 

moderate state of contraction, and may 

further shrink in extremely cold weather 

conditions. In the flaccid state only a small 

amount of arterial flow delivers 

nourishment to the tissue through tunical 

contraction of the smooth muscles (Hemet 

(2007)). The cavernous smooth musculature 

and the smooth muscles of the arteriolar and 

arterial walls play a crucial role in the 

erectile process, thanks to the internal 

pudendal artery− the major vessel that 

supplies oxygenated blood to the penis. 

During erection, blood is stored in the 

lacunar spaces of the cavernosal erectile 

tissue. The filling of the lacunar spaces with 

blood causes penile expansion. While 

collagen and elastic fibres are compliant 

tissues that permit changes in girth and 

length during tumescence, they also provide 

enough resilience for a return to the flaccid 

state with detumescence (Hemet (2007)). 

The tunica itself guards against 

overstretching or compression of the 

nervous and vascular appurtenances, which 

are subject to increasing intra-cavernosal 

pressure during erection. 

The inner penis is encircled by and made up 

of the pelvic floor muscles, mainly the 

bulbocavernosus muscle and the 

ischiocavernosus muscle. Together, these 

muscles pump blood into the penis, 

inducing a chain of reactions that leads to an 

erection. The penis has numerous penile 

arteries and veins, including the outstanding 

ones — the dorsal vein and dorsal artery, 

located on the top part of the penis. The 

arteries and veins provide the plumbing for 

the blood being pumped by the pelvic floor 

muscles to get in and out.  

Tissue deformation  

Blood vessels are one of the biological soft 

tissues that undergo large deformation (Jian 

et al. (n.d), Brossollet (1995)). In general, 

https://dx.doi.org/10.4314/sa.v20i3.13
https://en.wikipedia.org/wiki/Blood_vessel
https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Soft_tissue
https://en.wikipedia.org/wiki/Soft_tissue
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arteries and veins are subject to complex 

mechanical loads. They have to contend 

with lumen and outer pressures, axial 

tension due to tissue tethering, twisting and, 

bending caused by body movement. Soft 

tissues have some properties which include 

hyperelasticity, viscoelasticity, 

incompressibility, anisotropy, and their 

stress-strain curve is nonlinear. Essentially 

they are considered a thin-walled elastic 

cylinder. In what follows, the basic theory 

of deformation is discussed. In the 

configurations below, Fig. 1(a) shows a 

hollow cylinder of length L, with the inner, 

outer radii R1 and R2, respectively. The 

coordinates of initial and deformed shapes 

are (R, Θ, Z) and (r, θ, z) respectively; the 

base vectors of the Cartesian coordinates of 

initial and deformed configuration are (eR, 

eΘ, eZ) and (er, eθ, ez) respectively.  

                                                                                                                   

                                                                         R, r                                     p1 

 

                                                                                                              pP 

 

                                                                                                              

 

                                                                        

                      (a)                                     (b)                                                         (c)                                                                                      

                                                                                                                             p2 

 Fig.1 Schematic of  (a) the reference configuration,     (b) the coordinate system and 

                                            (c) uniform pressure, of a soft hollow cylinder                                             

The axisymmetric deformation under pressure (as in seen Fig. 1(c)) may be expressed as 

1( ), ,r r R z Z                   (1)  

where λ is the stretch/elongation the along axial direction of the cylinder. The inner and outer 

radii, of cylinder are such that 

r1 = r1(R1), r2 = r2(R2), with r1 < r2.  

The associated left Cauchy-Green deformation tensor (see Jerrold E. M. and Thomas (1983)) is 

2 2
2

r r z z z

dr r

dR R
  

   
     
   

B e e e e e e ,    (2) 

with the three invariants given by 

               
R1 

       0        

R2      

 

        
              Θ, 

θ 

          0                           

   R1            R2 
                                                                      

               0                                                    
   R1            R2 

https://en.wikipedia.org/wiki/Viscoelastic
https://en.wikipedia.org/wiki/Incompressible
https://en.wikipedia.org/wiki/Stress-strain_curve
https://en.wikipedia.org/wiki/Nonlinear
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 



   
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   

       
        
       

   
    

   

   (3) 

If material incompressibility is assumed, then  

2 2
2III 1z

r dr

R dR


   
    

   
                        (4) 

The Cauchy stress for incompressible materials is  

1W W
p +2   

 
  

   I B B
I II

 ,             (5) 

where p is the unknown pressure, W is the strain energy density of the elasticity, B =F.FT is 

the left Cauchy-Green deformation tensor, F is the deformation gradient. The radii of the 

deformed and initial cylinders are related by 

2 2

z

z

rdr RdR

r R A







 
                             (6)                                                                   

where A is a constant. Using the relation (5) the nonzero components of the Cauchy (normal) 

stress in Cartesian coordinates of cylinder read (see Jian et al. (n.d)), 

2 2

2
1 2

2

2 2

1 2

2
1 2 2

,

,

1
.

rr

zz z

z

rR
p+

r R

r R
p+

R r

p




 



 

  


    
    
    

    
     

     

 
    

 
 

  

 



   (7) 

where 𝜐i are the material parameters. The equilibrium equation satisfied by Cauchy stress is 

. 0                                            (8)    

Substitute (7) into (8) to get the component of Cauchy stress in the form 

 
2

2
1 22 3 2

2rr z
z

z z

d r AA

dr r r A

 
  

 


 


 .   (9) 

Any axisymmetric deformation of a cylinder, which as well satisfies (6), has the surface 

deformation gradient given by 

s z z Z

r

R
  F e e e e                       (10)                        

and the surface left Cauchy-Green deformation tensor reads 

https://dx.doi.org/10.4314/sa.v20i3.13
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2

  .  T
s s s z z Z

r

R
 

 
   

 
B F F e e e e .     (11)                            

Informed by surface effect in elasticity theory the surface stress, σs, on elastic body satisfies 

the equation 

. . 0,s s s   n                            (12)                           

on the surface, where s  is the gradient operator on the deformed surface, 𝝇s is the external 

traction per unit area on the deformed surface, n is the unit vector along the normal direction of 

the deformed surface. With the invariants of the surface left Cauchy-Green deformation tensor 

in (3) which reads 

2
2 2I IIs z s z

r
J

R


 
    
 

,               (13)                   

where Js is the ratio of the deformed surface area to the initial surface area, substituting (13) 

into (12) gives  the surface stress in the form 

0 1s
s s s

r
k

R



  

    
  

I ,                 (14) 

where σ0 is the residual surface stress, and ks is the surface stiffness. Let p1 and p2 be pressures 

applied on the inner and outer surfaces respectively, as shown in Fig. 1(c), and assume the 

condition of equation (12) is satisfied. Then the component of the stress, σrr, at the inner and 

outer surfaces has the boundary conditions given by 

1

2

0
1

1 1 1

0
2

2 2 2

1
,

1
.

z
rr sR R

z
rr sR R

p k
r R r

p k
r R r

 


 






 
     

 

 
     

 

     (15 a, b) 

Integrate (9) to get the stress, σrr, which satisfies the boundary condition (15a) as 

 
2 22 2

20 1 1
1 1 2 2 2 2 2 2

1 1 1 1 1

1 1

2

z
rr s z z

z

R rR R
p k In

r R r r r R r

 
    



   
                  

.               (16) 

The stress, σrr, which satisfies the boundary condition (15b) is 

 
 

    

1

1 2 2 2
ˆ ˆ1 1

2 1 1 2

1
2 2 2 2 2 2 2

ˆ ˆ ˆ1 1 1

1 1 1
1

1 1
1 1 1 1 1

2 2

k
k RR R

R

R R R RR R R

p p

In

 
   


 

      


  


     

                    
                   

   (17)             

where 01 1
ˆ1

2 1 1 2 1 2 1 2 1 2

1 1 1 1
, , , .s

R kR

kR r

R R R R R R



   

   

   
        

    
Here λσ is the residual 

surface stress. 
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 This deformation-pressure relation is under non-elongation along the axial direction (in which 

λz =1). A positive surface stiffness is essential for the stiffness of the whole cylinder to increase. 

In effect, a larger pressure or tensile load is necessary to attain the same deformation of the 

cylinder without any surface effect. 

Penile response to blood flow 

The response discussed here is that which is induced by increased flow due to excitation. Blood 

supply to the penis is through the internal pudendal arteries.  In this section, penile deformation 

and buckling are considered. 

Deformation 

The following assumptions regarding the fluid shall apply: 

(i)The fluid is Newtonian, viscous, incompressible, and homogeneous.                   

(ii)The flow is axisymmetric.  

(iii)The flow in the angular direction is negligible.  

(iv)The domain under consideration contains a fully developed flow. 

It is assumed, from the standpoint of penile structure, that: 

(i) The penile shaft consists of a single artery and a single vein. (All the arteries and veins 

are normalized as the dorsal artery and the dorsal vein — the outstanding artery and vein 

respectively).  

(ii) The artery is thin-walled, elastic and with circular cross-section.  

(iii) The artery is a homogeneous, isotropic membrane shell (i.e with negligible   bending 

stress).  

In a flaccid and pendulous state, let the aspect ratio (the ratio between the radius R and the 

length L of the artery) be LR /:  and for each fixed  > 0, this state is the reference domain 

(see Figure 2) define by  

 (t) = {xℝ3:x = (rcos, rsin, z), r < R + (z, t), 0 < z < L}                           (18) 

where  is the radial displacement from the reference state. Define the arterial lateral boundary 

by 

  = {x = (R(z) cos , R(z)sin, z) ℝ3: (0, 2), z  (0, L)}                               (19) 

 

 

         

         

                       

 

 

z 

R(z) 

 

 

 
 

 

L 

 
 

 

0 

Fig. 2 Reference domain schematic 
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The reference configuration is assumed to be prestressed (it is of note that the penile shaft 

shrinks in response to variations in weather; the actual size under normal temperature is taken 

for a prestressed state).When penile stimulation occurs there is a chain of events: arterial 

dilatation results; increased blood flow into the trabeculae follows; the expansion of the 

sinusoids and accumulation of blood in the penis ensues. This results in the engorgement of the 

corpora cavernosa, the glans, and, to some extent, the corpora spongiosum. The consummation 

of all these is the penile erection.  

 The equations of flow, in the Eulerian formulation of (t) × R+, in cylindrical co-ordinate, 

(R,, Z),  which also governs flow during tumescence, read (Pedrizzetti and Dominichini 

(2003))  
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                                      (21) 

with the continuity equation,  

0









r

v

z

v

r

v rzr


  in Ωε×R+                                                                                   (22) 

In the equation above vr, vz are the radial and longitudinal components of the fluid respectively, 

 is the viscosity of the fluid, as it will be all through, p is the pressure and  is the density. 

Equation (22) represents the incompressibility condition, div v = 0. It is important to note that 

the equation of flow above holds well for increased flow that brings about the increase in 

intracavernosal pressure above the flaccid state. The increased pressure may represent average 

blood pressure values within the corpora in the course of tumescence. 

The first stage of interaction is the interface of blood with the arterial wall. The interaction has 

dual effects: the blood cells and the vessel wall deform. The action of the fluid on the wall is 

described by Milne-Thomson (1974), 

4

3
p 



 
     

 
F n q n                                                                                       (23) 

where q is the fluid velocity at X and   is the vorticity (for non-vortex flow,   = 0). 
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Fig. 3 Fluid action on the wall 
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In the cylindrical polar coordinates (R,, Z) the position vector of a point on the artery reads 

            B = R0er + Zez                                                                                                (24) 

where R0 is the reference radius, er, e  and ez are the unit base vectors in the cylindrical polar 

coordinates and Z is the axial coordinates of a material point in the natural state. Assuming the 

artery is subjected to an axial stretch ratio z and a static pressure 0 ( )P Z  then the deformation 

is described by Fung (1993), 

0 0 ( ) ,r z zr f z z z Z     r e e                                                 (25) 

where z is the axial coordinate at the intermediate configuration, r0 is the deformed end radius 

at the origin, and f(z) is the post-deformation stenosis function. The deformation stimulates an 

arc in the meridional and circumferential directions in the form (Demiray (1976)),   

         
1

20 21 ( )zds f dz   
 

,   ds = [r0 – f(z)] d,                                                                  (26)                                          

  

 

                              

         

      

                                           

 

where a prime denotes the differentiation of the corresponding field variable with respect to z. 

Suppose that there is negligible axial displacement and let v(z, t) be a finite dynamical 

displacement superimposed on the initial static deformation. The position vector r of a generic 

point on the tube is 

  r = [r0 – f(z) + v(z, t)]er + zez                                                    (27) 

Now the dynamic deformation stimulates the resulting meridional and circumferential arc 

lengths respectively: 

 

1
22

1z

v
ds f dz

z

  
     

   

,   ds = [r0 – f(z) + v(z, t)]d                      (28)  

The connected effect of meridional and circumferential changes due to tumescence is the 

mechanical compression of the emissary vein (note that there are several of such veins; here 

one vein was assumed), which drain trabeculae against the tunica albuginea. This is the 

fundament of veno-occlusion. The flow through the occluded vein may be modelled as flow 

through a critically tapered duct. The vein is considered to play a passive role in the erection 

process (Robert and Tom (2005)), and therefore the model is not considered here.   

The meridional and circumferential curves in the deformed configuration have the equivalent 

stretch ratios:                                                                                                                                                                                                                                                                                                                                                            

 

 
 

 

 

Fig.4 Wall displacement 
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The unit tangent T along the deformed meridional curve and the unit outward normal n to the 

deformed membrane are given by 

r z

v
f
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e e

n ,                         (30) 

where the function   is defined as

1
22

1
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f
z


  

     
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.  

By assuming material incompressibility, the thickness H and h, before and after final 

deformation is such that 
21

H
h   

Let M1 and M2 be membrane forces along the meridional and circumferential curves 

respectively. Consider a small tube segment located between the planes z = constant and z + dz 

= constant,  = constant and  + d  = constant. The radial motion of such a segment may be 

described by 

                
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r f v f M r f v F R
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                              (31) 

where w is the volumetric mass of the membrane material, and Fr is the radial fluid reaction 

force on inner surface of the tube given by 

               
2 2

2 2 2 2
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  

  
                                            (32) 

where E() is Young’s modulus of elasticity, h() is the wall thickness,   is the Timoshenko 

shear correction factor (see Iemma and Pontrelli (2004)), G is the shear modulus, γ ( = 0.5 for 

an incompressible material) is the Poisson ratio.  

In equation (32) above the right-hand terms are described as follows: the first term is the elastic 

response function, the second term is related to the radial pre-stress state of the tube and the 

third term is the inertia term that is proportional to the radial acceleration of the tube wall. 

If 𝜏* be the strain energy density function of the tube material, where 𝜏 is the shear modulus, 

then the membrane forces M1 and M2 are expressed in terms of the stretch ratios as  
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By using equation (33) in equation (32) the equation of the tube in the radial direction is given 

by 
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By neglecting the elastic deformations in the azimuthal direction, the evolution of the response 

of the lateral boundary to flow is of the form (Iemma and Pontrelli (2004)), Jerrold and Thomas 

(1983)) 
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                                            (35 a, b) 

where R is the arterial reference radius at rest, w is the arterial volumetric mass, 𝛽 is the forcing 

term due to the external forces, including the stress from the fluid. The inviscid fluid model 

entails βz = 0. If a negligible longitudinal deformation is assumed, eqn. (35 a) is inevitably 

satisfied. Therefore, 
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2 2 2 2
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z r z
w s r
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h G h L

t z R
  



 
   

  
.                          (36) 

The transverse elastic effect is produced by radial displacement (second term on the right-hand 

side of eqn. (36)), and represents the contribution of the restoring force due to the deformation 

of the annular sections of the vessel.  It is noteworthy that this model is based on a Lagrangian 

description of the motion of the elastic wall, referred to a material domain  (0), corresponding 

to the rest state, where vr = vz = 0.  

The effectuation of tumescence 

As earlier stated, collagen and elastin fibres permit an increase in penile girth and length during 

tumescence. The collagenous tissue is considered here as a continuum composite material 

consisting of one or numerous groups of oriented collagen fibres embedded in an extremely 

compliant isotropic solid matrix. The collagen fibre alignment is defined by the so-called 

structural or structure tensor which gives the impression as an argument of the strain energy 

function (Spencer (1992)) The kinematic model is represented by the deformation gradient F 

defined as:  

            
I, 1

( )
F( ) :=

X

n
i

i I






 

 


X
X e

X
i IE ,                                                                                                (37) 

where X is the position of a material point on the collagen fibre in the  Lagrangian (reference) 

configuration, x = ϕ(X) is its material location in the Eulerian (current) configuration. EI and ei 

are fixed orthonormal bases in the Lagrangian and Eulerian configurations, respectively. F maps 

infinitesimal line vectors from the material to spatial configuration while cofactor (F) = J·F−T 

and J = det (F), respectively, maps oriented infinitesimal surface and volume. The principle of 

material frame indifference, (Limbert (2017)), is defined by the right and left Cauchy–Green 

deformation tensors, C=FT·F and b= F·FT respectively. These tensors only contain information 

about a change in fibre length, with no local material rotations.  

https://dx.doi.org/10.4314/sa.v20i3.13
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Let g(z, t, n) be the force per unit area at point z at time t across the tunica surface element with 

unit normal n; that is to say, g is the force per unit deformed area produced by the material 

outside (the +n direction) acting on the material inside (the -n direction). By balance of linear 

momentum the response of any tunical sub-body ω ⊂ B (the tunica body) to venous 

compression obeys the continuum analog of Newton's second law (Jerrold and Thomas (1983)) 

reads: 

            ( , , )
t t t

t t

d
dz z t da dz

dt   
 


   v g n b   ,                                                                    (38) 

where b(z, t)  is the applied body forces per unit mass on the tunica, which may be negligible. 

The force g depends linearly on n if the balance of momentum holds, by Cauchy's theorem. 

Thus, there is a two-tensor 𝝉t (z, t) such that g(z, t, n) = 𝝉t (z, t)n. Substituting g = 𝝉t ·n into the 

balance of linear momentum and applying the divergence theorem gives 

           
t t t

t t t

d
dz div dz dz

dt   
 


   v b .                                                                    (39) 

The arbitrariness of ωt and conservation of mass permits Cauchy's equation of motion of the 

tunica in the form 

            t t tdiv v = b .                                                                                      (40)                                                                                                                         

where the subscript, t, relates the parameters to the tunica. Now consider the equation  
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where the Heaviside function ( )
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  ,                                                                                      (42)                 

and all t-subscripts represent tunica; ∆ht  is the change in thickness of elastic fibre within the 

tunica, ∆L is the associated change in of the penile shaft; z  is an ensemble of forcing term due 

to the external forces, including the stress from the fluid partly due to venous occlusion. Other 

quantities in (41) retain their assigned codes. Now, while the length of the flaccid penis is in the 

set (0, L), the set (0, L+∆L) represents the length (stretch) of the stiff, saturated, and erect penis 

as it angles out from the body. Equation (41) is insightful; when the forcing term applies, 

tumescence induces a reduction in the tunical thickness, ht, due to tunical elongation. Thus, 

t h
h h  indicates a reduction in the tunical thickness. In this case, ( )

z
H  = 1. When the forcing 

term is remove (i.e. ( )
z

H  = 0), as is the case of seminal ejaculation with the concomitant 

opening of the venous segment, the equation (41) reduces to  
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2 2 2 21

t tz z z
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E hv v v
h G h

t z Z
 


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                      in (0, )L   ,                                                  (43) 

which is a return to the penal flaccid state (detumescense). 



215 
 

Scientia Africana, Vol. 20 (No. 3), December, 2021. Pp 203-220 https://dx.doi.org/10.4314/sa.v20i3.17 

© Faculty of Science, University of Port Harcourt, Printed in Nigeria                                           ISSN 1118 – 1931 

 

 As a rule, a post-ejaculation virtual restorative force applies to the elastin. The tunical motion 

has the similitude of a harmonic oscillator; therefore the axial displacement, z = z(t = tunica), 

may be described by the second-order linear differential equation  

                  ( ) 0
c

z t z
m

  .                                (44) 

The general solution of equation (44) is 

             1 2( ) sin cos
c c

z t C t C t
m m

   
       

   
,                                              (45)                                                                          

where c is the force constant that depends on the fibre material, m is the elastin fibre mass. The 

displacement, z, encodes the distance and direction the fibre is deformed from its equilibrium 

length. The arbitrary constants, C1 and C2 may be determined by considering the initial 

displacement and velocity of the mass.  

Assume the following initial conditions on equation (44) 

              (0) ;    (0)z l z l    .                                                                                                                  (46) 

Then equation (45) becomes 

    1/ 2( ) sin cosz t l t l t     ,                                                                                                 (47) 

where  = c/m. Equation (47) holds well for the axial length of the penile shaft depending on 

the tunical characteristics. 

Empirical details (Veale et al.(2014)) suggest that there is a 42.94 % (approx. 2 p.d.) average 

extension of the penile shaft from a flaccid state to erect state, while the change in girth from 

the former to the later state is approximately 25.41%. (This is to say that the erect to flaccid 

length ratio, (LE/LF), is approximately 1.43:1 units, while the erect to flaccid girth ratio, (VE/VF), 

is approximately 1.25:1) 

Notion of penile and buckling  

A phenomenon of interest is the so-called penile buckling.  Fung (1993) (see Hai-Chao et al. 

(2013)) derived the buckling equation for a generic thin-walled circular cylindrical tube under 

critical transmural pressure as 

            
3

3 2

3

(12(1 ))
e crit

Eh
p p

R 
 


                                                                                (45) 

where pe is external pressure, p is internal lumen pressure. In (45) above 3 2(12(1 ))Eh E I  

encodes the flexural rigidity of the thin-walled tube, where E is Young’s modulus of the 

material, I = h3/12, is the cross-sectional area moment of inertia per unit length, h is wall 

thickness, 𝜍 is Poisson’s ratio, and R is tube median radius at zero transmural pressure. The 

penile shaft is considered as “not long”, and so are its vessels. For tubes in such category, the 

Von Mises expression for combined radial and axial critical pressure reads:         

https://dx.doi.org/10.4314/sa.v20i3.13
https://en.wikipedia.org/wiki/Differential_equation
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                                              (46) 

where n is the number of buckling waves in the circumferential direction, l1,2 = 2l1n
2 + l2,  
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. 

If the critical buckling pressure and other parameters are known, then the pressure-lumen 

relationship for arteries developed by Drzewiecki et al.(1997) may be determined by 
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                                                     (47) 

where A1 and A2 are material constants. A is the cross-sectional area, Abuc is the cross-sectional 

area at critical buckling pressure, and pbuc is the critical buckling pressure, m* is a constant.  

Udelson et al. (1998, 1999) treated penile deformation from the standpoint of column buckling. 

In the event of buckling the original shape of a structure cannot withstand added loads. 

Therefore the structure changes its shape in a bid to find a new equilibrium configuration. 

Udelson et al. (1998) described penile buckling forces as the magnitude of the axially 

compressive force applied to the glans of an erect penis, resulting in evident curving such that 

any added small force would prompt collapse (buckling) of the erect shaft. Penile buckling was 

treated with the following assumptions:  

   (i)  The shaft has a circular cylindrical form. 

   (ii) The neutral axis lies on the diameter. 

   (iii) The tissue is isotropic. 

   (iv) The modulus of elasticity, E, of the pendulous penis is the same as that of the corpora 

         cavernosa. 

   (v) The same as above holds for the volume to flaccid volume ratio, V/VF. 

   (vi)The expansion ratios of length to flaccid length (L/L F) are the same in the axial and  

 The radial directions, ( D/DF).  

The following penile buckling formula was derived [5, 6]: 
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,                   (48) 

where FBuc is the penile buckling force; D is the diameter; L is the length; ∆p is the increase in 

intracavernosal pressure above the flaccid state; ζ is the (cavernosal) Poisson’s ratio; VE/VF is 

the distensibility (i.e. erect to flaccid volume ratio); X is the cavernosal expandability and

1 E

F

V

V


 
  
 

.  In (48) the subscripts represent the following: ‘E’ = erect penis, ‘P’ = pendulous, 

‘F’ = flaccid. The only term on the right-hand side with dimensions is 2 /FD X . While D has a 

dimension of length, X has a dimension of pressure. 
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The study by Udelson et al. (1998) seems to 

indicate that the penile shaft was treated as 

a solid cylinder with constrained closed 

ends (see Udelson et al. (1998), Fig.1, p.26). 

It also depicted that for buckling to occur an 

axially compressive force must be applied 

to the glans of an erect penis. There is an 

inherent feeling that the axial compressive 

force prevailing on the buckling pipe seems 

to conflict with the fact that the ends are 

pinned or fixed. The mechanics of coition 

requires repetitive penile thrust in the 

vagina, as long as the penis is excited until 

orgasm and ejaculation occur. Internal 

pressure gradient drives the hydrodynamic 

flow that creates erection in a normal 

subject. It is also true that an erect (and stiff) 

penis angles out of the pendulous state; 

buckling analysis may well take cognizance 

of the angle. A good way to consider the 

pressure effects in pipe buckling is to 

evaluate an equivalent force in the axial 

direction related to pressure loads, as 

detailed by Craveiro and Neto (2016). 

However, this must be done with restraint 

since pipelines with no end caps subject to 

internal pressure have the tendency of 

contraction in the axial direction. In the 

absence of restriction in the pipe the 

existing tensile hoop strain generates, as a 

consequence of Poisson effect, a 

compressive strain in the axial direction. It 

was argued that the force that governs the 

buckling of pipe is not the real force 

specified by the integration of the stresses 

on the cross-section (Craveiro and Neto 

(2016), Fyrileiv O. and Leif (2005)), but by 

the so-called effective axial force, which 

becomes compressive owing to internal 

pressure. Critical internal pressure is an 

important factor in buckling. The 

longitudinal stress set up in a straight thin-

walled axially constrained pipe by internal 

pressure, p, is ϱpD/2h. The resultant force 

over a complete cross-section perpendicular 

to the tube axis is (π/4)D2p(1 – 2ϱ), which 

is compressive, and the difference between 

the compressive force (π/4)D2p carried by 

the fluid within the pipe and the tensile force 

(ϱpD/2h) (π Dh) carried by the wall of the 

pipe, υ < 1/2. The pipe may be seen as a 

column carrying this resultant compressive 

force, and buckling may occur when the 

force reaches the Euler buckling load (see 

Palmer (n.d)). This occurs when 

3
2 2

2

( ) / 8
(1 2 ) 4

4

ED h
D p

L

 
 

  
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     (49) 

where ( 3 ) / 8ED h is the flexural rigidity. 

Thus,  

 

2

2

2

1 2

EDh
p

L







                                    (50) 

Let the resultant force applied by the 

enclosed fluid pressure on the pipe wall be 

Pds. As the fluid element must be in 

equilibrium, resolving forces perpendicular 

to the pipe axis reads: 

2

4
ds D pd




 
  
 

P , 

or 

2

4
D pd ds




 
  
 

P ,            (51) 

where ds, is an element of the pipe wall and 

φ represents the inclination of the deflected 

pipe to its original line. Thus, the enclosed 

fluid exerts a lateral force on a deflected 

pipe. The magnitude of the force per unit 

length is the product of pressure and the 

cross-section and the curvature, and it acts 

in the direction of the outside of the curve. 

Analysis of buckling by investigating the 

pipe deflection from its initial position must 

be cognizant of the existence of this force. 
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SUMMARY AND DISCUSSIONS 

Penile blood flow and the reaction of the 

penile structures to flow were given a 

theoretic treatment. The flow volume was 

assumed to be on physiological increase 

owing to excitation and the erection that 

precede vaginal intromission.  The neuronal 

activities that aid the chain of events that 

culminate in erection are not within the 

purview of this work. Blood flow was seen 

to cause elastic deformation of the vascular 

and non-vascular structures of the penis. For 

ease of analysis, the myriads of the penile 

arteries and veins were normalize in each of 

the two vascular structures. This step is 

adroit since the other arteries and veins are 

tributaries to the main artery and vein 

named earlier. In treating vascular 

behaviour during tumescence and erection, 

the vein is considered a passive member. 

This is so because the vein did not elect to 

constrict during the so-called veno-

occlusion when it is pressed against the 

tunica. The tunica albuginea, which houses 

the collagen and elastin fibres is “touted” to 

be the bastion of the mechanical properties 

of the penile shaft. It is of note that the 

rheology of the entrapped blood as per 

deformation is not treated here as the 

vascular inlet, outlet, and wall boundary 

conditions are only necessary when flow 

characteristics and quantity are of the 

essence.  

The question of what determines penile 

rigidity engaged attention. Which one of 

axial compression and radial compression 

could be advanced? It is expected that 

penile (mal-) functionality be treated from 

the standpoint of the causes rather than the 

effects.  A compressive strain in the axial 

direction develops due to tensile hoop strain 

in the absence of restriction in a pipe (i.e. in 

the absence of end caps). An effective 

(virtual) axial force that becomes 

compressive, due to internal pressure, 

prevails in fluid-carrying ducts. Udelson et 

al. (1998) described penile buckling forces 

as the magnitude of the axially compressive 

force applied to the glans of an erect penis, 

resulting in evident curving such that any 

added small force would prompt collapse 

(buckling) of the erect shaft. For a virile 

subject, penile shaft buckling occurs just 

after seminal emission. After emission 

comes detumescence. The main cause of 

penile collapse is detumescence- a situation 

in which the penile artery narrows and the 

vein enlarges, thereby draining blood from 

the penis. In effect, the shaft returns its 

pendulous state. Therefore, detumescence 

implies withdrawal of force rather than a 

further application of force on the glans. 

This seems contrary to the position held by 

Udelson et al. (1998).  

The response of the tonica albuginea’s 

members−collagen and elastin to 

detumescence, which is in a sense a 

retrograde flow, is essential in determining 

their overall penile system compliance. 

When blood rheology is physiological, both 

the arterial and venous blood cannot be a 

culprit in the inability to accomplish 

tumescence and detumescence. Therefore 

the tunica albuginea and its members may 

be investigated. As a rule, the vein must be 

free from occlusion for outflow to occur. In 

the event of persisting veno-occlusion after 

seminal emission, one is left to surmise that 

the tunical restorative capability may have 

been compromised. Therefore, non-

ischaemic priapism may be blamed on the 

failure of tunical restorative capability to 

unclog the vein. It is hereby suggested, from 

the standpoint of rheology, that deliberate 

localized blood- thinning under a clinical 
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watch be conducted as a way to decongest 

the clogged vein. This would in turn 

improve the mechanics of the tunica.  

As for impotence, any or both of two main 

factors come into play: (i) inadequate blood 

inflow (which may be due to poor 

innervation, vascular insufficiencies, 

among a group of pathologies as well as 

psychological issues), (ii) no/poor veno-

occlusion. A case-by-case study is required 

to address each offending circumstance. 

Measures that improve blood flow, 

especially to the organ, are the panacea to 

inflow insufficiency. It is of note that 

frequent tunical stretch could enhance the 

elasticity of the elastin fibres. Subjects of 

(very) weak penile erection, who could 

afford the barest intromission are therefore 

most likely to attain virility through 

increased coital frequency. This is due to the 

increased stimulation of the elastin fibres 

and the associated increase in blood inflow. 
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