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ABSTRACT 

In the present investigation, we studied the effects of Viscous Dissipation and Joule Heating of 

magnetohydrodynamic (MHD) convective heat transfer over a flat porous plate. The governing 

partial differential equations is expressed into a nonlinear partial differential equation, using a 

suitable similarity transformation. A semi analytical method of Homotopy Parturbation was applied 

to solve the equation and the obtained numerical solution for the velocity, temperature and other 

parameters of the nano fluid are discussed and represented graphically. Also, the effect of other 

parameters on the velocity and temperature profiles are also presented.  

Keywords: Viscous Dissipation, Joule heating, Hartmann’s number, Temperature, Heat transfer. 

 

INTRODUCTION 

MHD flow with convective heat transfer over 

a flat porous plate is of great importance as it 

is connected to many engineering problems, its 

characteristics, play major role in industrial 

processes such as food processing, polymer 

manufacturing, geological processes in fluid 

contained in various bodies, plastic material 

production, paints production, preventive 

coating and many others. On the other hands, 

fluid flow through porous media has become 

an important topic because of the recovery of 

crude oil from the pores of the reservoir rock. 

Also, there has been several interesting studies 

on heat transfer and Joule parameter effect of 

such flow in a porous media due to its 

magnetic effect. (Makinde et al., 1998; Kumar 

et al., 2017), studied characteristic of Joule 

heating  and viscous dissipation on three 

dimensional flow of Oldroyd B nanofluid with 

thermal radiation using Runge Kutta  Fehlberg 

fourth – fifth order through  shooting method 

and concluded from their graph that at various 

B (Deborah numbers), 𝐸𝑐 number, there was 

an  increase in temperature 𝜃(𝜂) for higher 

values of the parameter R, 𝐸𝑐𝑗, 𝐸𝑐𝑟. A 

reduction in the interface heat transfer 

increases the temperature profile for the joint 

effect of joule and viscous heating. (David et 

al., 2013), studied Nonlinear MHD boundary 

layer flow of a liquid metal with heat transfer 

over a porous stretching surface with nonlinear 

radiation effects, with the used of Fourth order 

Runge Kutta shooting method along with the 

Nachtsheim Swigert iteration. Findings, 

shown that the effect of thermal radiation 

reduces the temperature and that temperature 

increases with the increase in surface 

temperature parameter. Also, the velocity 

exponent parameter decreases the velocity and 

increases the magnitude the skin friction 

coefficient for both suction and injection, 

while the thermal boundary layer thickness 

decreases with increasing prandtl number 

among others.  
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Jhankal (2017) studied application of 

homotopy perturbation method for MHD free 

convection of water at 4℃   through porous 

medium bounded by a moving vertical plate. 

Finding, shows that as the magnetic parameter 

increases, the velocity profile decreases in the 

flow region, while the temperature decreases 

with an increase in the suction parameter. 

Srinivas et al., (2018) looked at, Joule heat 

effects on unsteady MHD flow over a 

stretching sheet with viscous dissipation and 

heat source using numerical implicit finite 

difference. It was discovered that radiative 

parameter R increases the magnitude Nusselt 

number - 𝜃′′(0), and decreased the velocity 

profile. Nnenna  (2017), did a study on 

convective heat and mass transfer of MHD 

flow over a flat plate using HPM, it was 

discovered that increase in the presence of 

magnetic field parameter had an inhibitive 

effect on the fluid flow by decreasing it’s 

velocity and increasing the temperature. 

Venkata et al., (2019) studied Exact and 

Numerical Solutions for MHD Boundary 

Layer Flow of Casson Fluid over a Stretching 

Sheet with the used of Runge Kutta Forth order 

shooting method. Their conclusion is that 

velocity profile decreases along with the 

magnetic and fluid parameter increments. 

Also, velocity profile is diminished due to the 

presence of magnetic parameter for the case of 

suction while it is opposite for the case of 

injection. Hunegnaw (2021), examined 

unsteady boundary layer flow of Williamson 

nanofluids over a heated permeable stretching 

sheet embedded in a porous medium in the 

presence of viscous dissipation using fourth 

order Runge Kutta. He noticed that increase in 

magnetic parameter decreases the velocity 

profile and increase the temperatures profile. It 

was also observed that the temperature 

distribution improved significantly with 

increase in the thermal radiation parameter, 

which led to a reduction in the thermal 

boundary layer.  

The present work is aimed at examining how 

convective heat transfer of a nano fluid is 

influenced by viscous dissipation and joule 

heating when it is over a flat porous plate. 

Mathematical and physical formulation 

A steady incompressible two dimensional flow of a fluid that conduct electricity over a flat porous 

plate lying parallel to the upward vertical X axis is considered. The fluid is assume to flow with a 

uniform velocity in the direction parallel to the plate.  A transverse magnetic field 𝐵𝑜 is applied in 

the Y direction. 

To obtain the equation of flow, we made use of the Maxwell equation, Ohm’s law, the equation of 

continuity, the momentum equation with J×B body force and the energy equation with  viscous and 

porosity terms.                                                                                                                                                                                                                                     

∇ × 𝐻  = 𝐽  

∇ ∙ B  = 0  

  ∇. 𝐸⃗ =  −
𝜕𝐵⃗ 

𝜕𝑡
                                                                                                                                            1  

∇. 𝐽 ⃗⃗  = 0 

Ohm’s laws        

  𝐽 = 𝜎 (𝐸 ⃗⃗  ⃗   + 𝑈⃗⃗  × 𝐵⃗ )                                                                                                                       2                                                                              
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Continuity equation 

𝜕𝑝

𝜕𝑡
 + 𝑈(∇.𝑈) =0                                                                                                                               3 

Momentum equation 

𝜌 (
𝜕𝑈⃗⃗ 

𝜕𝑡
   + (𝑈⃗⃗ ∙ ∇)𝑈⃗⃗ ) = −∇𝑃 − 𝜌∇𝜑 +∇𝑇⃗  +𝐽 × 𝐵 +

𝜇

𝐾
𝑢                                                                 4 

Energy equation 

𝜌𝐶𝜌
𝐷𝑇

𝐷𝑡
= 𝑄∇ ∙ 𝑈⃗⃗   + 𝜇 (

𝜕𝑈

𝜕𝑦
)
2

+ 𝐾𝑇∇𝑇
2  +𝐸⃗  .𝐽                                                                                      5 

Where  

     𝐾𝑇 = Thermal conductivity 

      U = Specific internal energy 

      𝜑  = gravitational potential 

       
𝜇

𝐾
𝑢= porosity term. 

Using the assumptions and simplifications, the dimensional governing equations of continuity, 

momentum and energy are now written as: 

𝑢
𝜕𝑈

𝜕𝑋
  +v

𝜕𝑈

𝜕𝑦
= 0.                                                                                                                                5 

𝑢
𝜕𝑈

𝜕𝑥
 +v

𝜕𝑈

𝜕𝑦
 =

−1

𝜌

𝑑𝑝

𝑑𝑥
 + 𝜇

𝜕2𝑈

𝜕𝑦2  + 𝑔𝛽(𝑇 − 𝑇∞) −
𝜎𝐵𝑂

2

𝜌
 𝑢 −

𝜇

𝐾
  𝑢                                                             6 

𝑢
𝜕𝑇

𝜕𝑥
 +v

𝜕𝑇

𝜕𝑦
  =   𝛼

𝜕2𝑈

𝜕𝑦2 +
𝑄𝑂

𝜌𝐶𝜌
(𝑇 − 𝑇∞) +

𝜎𝐻2

   𝜌𝐶𝜌
𝑢2+

𝜇

𝜌𝐶𝜌
(
𝜕𝑈

𝜕𝑦
)
2

                                                                7 

 and boundary conditions   

𝑉(𝑥, 0) =𝑈(𝑥, 0) = 0        T(𝑥, 0) = 𝑇𝑤  at 𝜂 =0                                                                              8 

U(𝑥,∞) = 𝑈∞         T(𝑥,∞) →  𝑇𝑤   at   𝜂 → ∞ 

Then, 

∇ ∙ 𝑇 =  𝜇𝑓(∇
2𝑈⃗⃗ ) +(£ +

𝜇

3
)∇(∇ ∙ 𝑈⃗⃗ )                                                                                               9 

 Dimensionless variables are defined as, 

𝜂 = 𝑦√
𝑈∞

𝜇𝑥
 ,       𝜑 = √𝜇𝑥𝑈∞  f(𝜂 ),       𝜃(𝜂 ) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
,        U =  

𝜕𝜑

𝜕𝑦
                         

V =−  
𝜕𝜑

𝜕𝑥
 ,         𝛾 =

𝑥𝑄𝑂

𝑈𝜌𝐶𝜌
 ,      𝑃𝑟 =

𝜇

𝛼
 ,  𝑀2 =

𝜎𝐵𝑂𝑋
2

𝜌𝑈
 ,                                                                     10 

 𝐺𝑡 =
𝑔𝛽(𝑇𝑤−𝑇∞)

𝑈∞
2 𝑥,      J = 

𝜎𝐻2𝑈∞𝑥

𝜌𝐶𝜌(𝑇𝑤−𝑇∞)
 ,          𝐸𝐶 =    

𝑈∞
2

𝐶𝜌(𝑇𝑤− 𝑇∞)
                                

Using equation 10 in equations 6 and 7, and the boundary conditions in equation 8, we have; 

𝑓′′′+𝐺𝑡𝜃 +
𝑓𝑓′′

2
  +(𝑀2 + 𝑃𝑟𝛾)𝑓′= 0                                                                                                11 

𝜃′′  +  
𝑝𝑟𝑓𝜃′

2
 + 𝑃𝑟𝛾𝜃  + 𝑃𝑟𝐽𝑓

′2 + 𝑃𝑟𝐸𝐶𝑓′′2 =0                                                                                    12 

And the transformed boundary conditions became 

https://dx.doi.org/10.4314/sa.v21i3.14
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𝜃(0) = 1        𝜃(∞) = 0,         f= (0)        𝑓′(0)  = 0                                                                         13 

𝑓′(∞) =1                                                                                                                                           

Where prime denote differentiation with respect to  𝜂 

𝛾 = Heat generation parameter 

𝐺𝑡 =  Thermal Grashof number 

M = Hartmann number 

J = Joule parameter 

𝐸𝑐 = Viscous dissipation 

𝑃𝑟 = Prandtl number  

Analysis 

Using Homotopy Perturbation Method following the homotopy technique of He (1999) i.e; 

𝐻(𝑢, 𝑝) = [𝐿(𝑣) − 𝐿(𝑢𝑜)] + p[𝑙𝐴(𝑢) + 𝑓(𝑟)]                                                                                   14 

Equation (11) and (12) are simplfied as;                                                                                     

𝐻(𝑢, 𝑝) =(1 − 𝑝) [𝑓′′′ − 𝑓′′′
0
] + p[𝑓′′′

0
+ 𝐺𝑡𝜃 + 

1𝑓𝑓′′ 

2
 + (𝑀2 + 𝑃𝑟𝛾)𝑓′]  = 0                             15 

𝐻(𝑢, 𝑝) =(1 − 𝑝) [𝜃′′ − 𝜃′′
0] + p[𝜃′′

0 + 
1𝑃𝑟𝑓𝜃′ 

2
 + 𝑃𝑟𝛾𝜃 + 𝑃𝑟𝐽𝑓

′2 + 𝑃𝑟𝐸𝑐𝑓
′′2]  = 0                      16 

Expanding equation (15) and (16) we have; 

𝑝0𝑓0
′′′ + 𝑝1𝑓1

′′′ + 𝑝2𝑓2
′′′ + 𝑝3𝑓3

′′′ = −𝑝 [𝐺𝑡(∑𝜃) +
1

2
(𝑝0𝑓0 + 𝑝1𝑓1 + 𝑝2𝑓2 + 𝑝3𝑓3)(𝑝

0𝑓0
′′ +

𝑝1𝑓1
′′ + 𝑝2𝑓2

′′ + 𝑝3𝑓3
′′) + (𝑀2 + 𝑃𝑟𝛾)(𝑝0𝑓0

′ + 𝑝1𝑓1
′ + 𝑝2𝑓2

′ + 𝑝3𝑓3
′)]                                            17 

𝑝0𝜃0
′′ + 𝑝1𝜃1

′′ + 𝑝2𝜃2
′′ + 𝑝3𝜃3

′′ = −𝑝 [
1

2
𝑃𝑟 ∑𝐹 (𝑝0𝜃0

′ + 𝑝1𝜃1
′ + 𝑝2𝜃2

′ + 𝑝3𝜃3
′) +   𝑟𝛾(𝑝0𝜃0 +

𝑝1𝜃1 + 𝑝2𝜃2 + 𝑝3𝜃3) + 𝑃𝑟𝐽 ∑𝐹′2 + 𝑃𝑟𝐸𝑐 ∑𝐹′′2]                                                                             18 

Equate powers of 𝑝′𝑠 in equations (17) and (18) we have; 

𝑝0   𝑓0
′′′ = 0  

𝑝1    𝑓1
′′′ = − [𝐺𝑡(∑𝜃) +

1

2
𝑓0𝑓0

′′ + (𝑀2 + 𝑃𝑟𝛾)𝑓0
′ ]  

𝑝2    𝑓2
′′′ = − [

1

2
(𝑓0𝑓1

′′ + 𝑓1𝑓0
′′) + (𝑀2 + 𝑃𝑟𝛾)𝑓1

′]  

𝑝3    𝑓3
′′′ = − [

1

2
(𝑓0𝑓2

′′ + 𝑓1𝑓1
′′) + (𝑀2 + 𝑃𝑟𝛾)𝑓2

′]  

𝑝0    𝜃0
′′                                                                                                                                       19 

𝑝1   𝜃1
′′ = −[

1

2
𝑃𝑟𝜃0

′ ∑𝐹 + 𝑃𝑟𝛾𝜃0 + 𝑃𝑟𝐽 ∑𝐹′2 + 𝑃𝑟𝐸𝑐 ∑𝐹′′2  ]  

𝑝2    𝑓2
′′ = − [

1

2
𝑃𝑟𝜃1

′ ∑𝐹 + 𝑃𝑟𝛾𝜃1  ]  

𝑝3   𝜃3
′′ = − [

1

2
𝑃𝑟𝜃2

′ ∑𝐹 + 𝑃𝑟𝛾𝜃2  ]  

Thus, the solution of equation (11) and (12) are expressed as:  
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F =𝐹𝑂 + 𝑝𝐹1 + 𝑝2𝐹2 + 𝑝3𝐹3 = ∑ 𝑓𝑖
∞
𝐼=0                

𝜃 = 𝜃𝑂  + 𝑝𝜃1 + 𝑝2𝜃2 + 𝑝3𝜃3 = ∑ 𝜃 𝑖
∞
𝐼=0                                                                                       20     

RESULT AND DISCUSSION 

The governing equations (11) and (12) subject to the boundary condition equation (13) are solved 

numerically with the used of HPM. The numerical values of the velocity, temperature coefficient 

were obtained for different values of the parameters   𝐺𝑡 = 5,10,15,20.     𝐸𝑐 = 0.1, 0.5, 1, 1.5.   J= 

0.1, 0.3, 0.5, 0.7, M = 0.5, 0.6, 0.7, 0.8.    𝛾 = 0.1, 0.5, 1.0, 1.5 and 𝑃𝑟  = 0.71 using MATLAB.  

Detailed numerical results for the velocity, temperature and other parameters obtained are explained 

graphically in figures respectively. It is observed that the Hartmann’s number M decreases the 

velocity profile of the nano fluid as observed in figure 1. This is due to the rate of heat transfer at the 

surface in the presence of the magnetic Hartmann number M, thus, heat transfer rate at the surface 

decreases as M increases, showing positive agreement with Swarnalathamma (2018). Figure 2, show 

that the heat generation parameter 𝛾 caused an increase in the temperature profile of the fluid. Figure 

3 and Figure 4, show increasments in the velocity profile and temperature as a result of thermal 

Grashoff and heat generation parameters respectively. Furthermore, while the temperature profile has 

remarkable increases due to Joule heating in Figure 5, the same was found to have gradual increase 

due to viscous dissipation as noticed in figure 6. This is due to the viscous action that tend to inhibit 

the free flow of the fluid. 

         

Figure 1:   Effect of Hartmann number M on velocity profile of the nano fluid with M= 0.0, 

0.2,0.4, 0.6  at fixed value of 𝐺𝑡 = 5 and 𝛾 = 0.1  
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Figure 2:  Effect of Heat generation parameter 𝛾 on velocity profile with  𝛾= 0.1,0.5, 1.0,1,5. At fixed 

value of 𝐺𝑡 = 5 and M= 0 . 5 

 

Figure 3: Effect of Thermal Grashoff number parameter 𝐺𝑡 on velocity profile at   M= 0 . 5, 𝛾 = 0.1 
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Figure 4: Effect of Heat generation parameter 𝛾 on temperature with value of 𝐸𝑐 = 0.1 and J= 0 .3 

                              

Figure 5: Effect of Joule Heat parameter J on temperature with 𝐸𝑐 = 0.1 and 𝛾 = 0 .1 
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Figure 6:  Effect of Viscous dissipation parameter 𝐸𝑐 on temperature with value of 𝐽 = 0.3 and 𝛾 =

0.1 

CONCLUSION 

As the magnetic parameter increases, the 

velocity profile of the nano fluid decreases in 

the flow region. Joule heating affects the 

temperature in the conducting MHD fluid, the 

temperature of the fluid increased. Increase in 

the viscous dissipation parameter results in an 

increase in the nano fluid temperature. An 

increase in heat source parameter results in an 

increase in the temperature profile. An 

increase in the thermal Grashof increases the 

temperature profile of the fluid.  
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