ISSN 1118 – 1931

MEASUREMENT OF LEAKAGE RADIATION DOSE TO PATIENTS UNDERGOING CHEST X-RAY IN SOME X-RAY FACILITIES IN WARRI TOWN. NIGERIA.

Ovwasa, S.O.^{1*}, **Akpolile, A.F¹., Agbajor, G.K¹. and Mokobia, C.E.**¹ ¹ Department of Physics, Delta State University, Abraka, Nigeria. ^{*}Email of corresponding author: <u>sylvesterovwasa@gmail.com</u>

Received: 05-07-2023 *Accepted:* 02-08-2023

https://dx.doi.org/10.4314/sa.v22i2.19 This is an Open Access article distributed under the terms of the Creative Commons Licenses [CC BY-NC-ND 4.0] http://creativecommons.org/licenses/by-nc-nd/4.0. Journal Homepage: http://www.scientia-african.uniportjournal.info Publisher: *Faculty of Science, University of Port Harcourt*.

ABSTRACT

The increase in the application of x-ray in health management has necessitated the need to determine the risk associated with its use. This study is aimed at measuring the leakage radiation dose to patients undergoing chest x-ray in twenty (20) radiological facilities in Warri, Delta State. A portable GMC-600 digital Geiger Muller Counter (serial number: 36311386254310) was used to examine the facilities. The leakage radiation was measured from both the cathode and anode terminals of the machines across the facilities studied and their mean exposure readings were obtained. The leakage radiation (mR/hr) values for the cathode terminal ranges from 0.21 - 100.27 mR/hr with an average of 26.46 mR/hr while the anode terminal is from 0.21 - 99.70 mR/hr with an average of 24.88 mR/hr. From the obtained results, it was observed that only one machine, $A_{10}(100.27$ mR/hr) exceeded the recommended limit (100 mR/hr) for leakage radiation as stipulated by American Association of Physicist in Medicine (AAPM). This indicates that the workers and members of the public in the said facility could be exposed to some level of harmful radiations.

Keywords: Leakage radiation, Dose, X-ray, Risk, ALARA.

INTRODUCTION

The most common radiographic procedure for illness screening and diagnosis is the chest xray (CXR) examination because it offers significant clinical data at a reasonable cost and little radiation exposure. Although x-rays have many advantages, their ionizing nature could be harmful to patients, medical professionals, and the general public. Scattered and leakage radiation measurements could be used to examine the safety of CXR facilities at a few public hospitals (justin et al, 2018). Background ionizing radiation from both natural and artificial radiation sources is

continuously absorbed by living things. Radiation effects are typically classified as stochastic effects (Boumala et al, 2019). Cosmic rays and terrestrial sources make up the natural radiation used to evaluate outdoor gamma exposure (Muttalip et al, 2021). Despite improvements in magnetic resonance imaging and ultrasound procedures, x-rays are still the most often used ionizing radiation in Nigerian medicine (Oluwafisoye et al., 2010). Due to the negative health effects of ionizing radiation, the majority of people, including many intellectuals, are too concerned about the risk of radiation, even in very minute quantities (ICRP 2007; Mesfin et al 2017; Ovwasa, S.O., Akpolile, A.F., Agbajor, G.K. and Mokobia, C.E.: Measurement of Leakage Radiation Dose to Patients...

Mangset and Adesida, 2019; Osward 2021). It is generally recognized that when biological tissue is exposed to ionizing radiation, complex chains of biomolecular processes can occur, leading to biological damage that relies on the dose or dose rate. An exposed atom loses orbital electrons, which leaves it positively charged. Living cells can be harmed by ionizing radiation exposure during diagnostic radiological procedures (ICRP 2007). According to the As Low as Reasonably Achievable (ALARA) principle, every effort should be taken to reduce radiation doses to workers and the general public below the necessary radiation limits. Therefore, the advantages of exposure should balance the risks of ionizing radiation exposure, while also minimizing all other exposures. A single exposure's dose might not be a hazard, but the cumulative dose from additional exposures raises the possibility of developing stochastic consequences (ICRP, 1991). By measuring the scattered radiation dose, a patient receives during an exposure, radiation workers and the general public can be protected from unnecessary exposures while also experiencing a reduction in radiation burden. This is not straightforward, though, because any estimate must take into account the energy and quantity of photons used, the size of patients, and the susceptibility of exposed tissues. (Medical/health physicists frequently carry out extensive calculations to precisely estimate the dose of radiation

received by a specific patient during a radiograph. In order to address the growing concerns about radiation-induced somatic and heritable mutations, national and international radiation protection agencies have recommended the ALARA principle for radiation workers. (ICRP, 1991).

MATERIALS AND METHODS

Description of the study area

Study Area: Warri is recognized as the commercial center of Delta state since the majority of social, economic, and industrial activity in the state take place there rather than in Asaba, the state's capital. The city serves as a transit and conference town due to its advantageous location along the boundary between Nigeria's Eastern and Western regions. Due to the presence of hydrocarbons (oil and gas) within the city and surrounding areas, many oil and gas companies have their facilities (tank farms, gas plants, oil and gas wells, maintenance workshops, and offices) in the city as well as the Warri sea port, the Warri refinery, and the Warri petrochemical company. These elements, together with the existence of an army barracks and a naval base, contribute to Warri city's dense population. With nearly a million residents, the city is the fourth-most populous in Nigeria (Agbalagba, 2017). Figure 1, Show the map of the location of the x-ray centers in Warri metropolis.

Scientia Africana, Vol. 22 (No. 2), August, 2023. Pp 219-226 © Faculty of Science, University of Port Harcourt, Printed in Nigeria

ISSN 1118 – 1931

Figure 1: Map of x-ray facilities study centers.

Table 1: Description of the studied facilities

S/N	EQUIPMENT	MANUFACTURES	MODEL	MACHINE	DATE OF
	NAME			SERIAL NUMBER	MANUFACTURE
1	COMET	COMET AG BERN	MULTISTATE 94-	MS-1	
		SWITZERLAND	118		
2	TOSHIBA	TOSHIBA ELECTRON	E/876X	14H235	AUGUST 2014
		TUBES AND DEVICES CO.			
		LTD STOCHIGI JAPAN			
3	HYUN-DAI M	HYUN DAI MEDICAL X-	BMX1100	12MU81002	MARCH 2012
	EDICAL X-RAY	RAY CO. LTD. 297-3 PAJU-			
		CITYKYONGGI-DO			
		KOREA			
4	DHANWANTARI	DHANWANTARI MEDICAL	DIAGNOSTE-100	-	2012
	MEDICAL	SYSTEM			
_	SYSTEM				
5	SIEMENS	SEIMENS GERMANY	8463468 X 1706	03055 S 02	2015
	POLIMOBILE 2				
6	PHILIPS	PHILIPS GERMANY	SUPER ROTALIX	15532	
7	CONTET OU 2007		RUT 350 10	10 ((0)	
/	COMET CH 3097	LIEDEEELD SWITZALAND	DI 9-30/50-125	42-0028	
0	CE MACIII ETT	CEC MEDICAL	MACIUETT		
0	GE MACHLETT	GEC MEDICAL	MACHLEII		
0	CENEDAI	CENEDAL ELECTRIC	16 270615D1U	056.9	DECEMBED 1002
9	GENERAL FI ECTRIC	COMPANY LAPAN	40-270013F1H	030-8	DECEMBER 1992
10	GENER AI	GENERAL ELECTRIC	46-12368633	28787/182	1003
10	ELECTRIC	COMPANY USA	TO-12500055	207074102	1775

11	GENERAL	GENERAL ELECTRIC	5331186	160/622BC1	2017
	ELECTRIC	INDUSTRIAL PARK			
		BANGALORE INDIA			
12	MINDRAY	SHENZHEN MINDRAY	CX-03	1A140641	SEPTEMBER 2014
		BIO-MEDICAL			
		ELECTRONICS CO LTD			
13	TOSHIBA	TOSHIBA ELECTRON	E7876	4G0974	AUGUST 2014
		TUBES AND DEVICES CO.			
		LTD OTAWARA-SHI			
		JAPAN			
14	TOSHIBA	TOSHIBA ELECTRONIC	E7884X	18L350	2013
		TUBES AND DEVICES CO.			
		LTD JAPAN			
15	TOSHIBA	TOSHIBA ELECTRONIC	E7884X	18H1090	2019
		TUBES AND DEVICES CO.			
		LTD JAPAN			
16	GENERAL	GENERAL ELECTRIC	OPTIMA XR	21C1988	JUNE 2018
	ELECTRIC	COMPANY, MILWAUKEE,			
		WISCONSIN U.S.A			
17	GENERAL	GENERAL ELECTRIC	E7894X	DF2402100415WK	JANUARY 2018
	ELECTRIC	COMPANY, MILWAUKEE,			
		WISCONSIN U.S.A			
18	SIEMENS POLY	SIEMENS HEALTHCARE	X22/XI01/01	240-0560-2	2020
	MOBILE PLUS	GERMANY			
19	SIEMENS POLY	SIEMENS HEALTHCARE	X22/R103	214-338-XX5	2017
	MOBILE PLUS	GERMANY			
20	ECORAY	ECORAY CO. LTD. KOREA	ULTRA 200 PLUS	ECO-M20-122-013	2019

Ovwasa, S.O., Akpolile, A.F., Agbajor, G.K. and Mokobia, C.E.: Measurement of Leakage Radiation Dose to Patients...

(i) Measurement of leakage radiation

The main equipment used are:

GQ GMC -600 PLUS radiation detector, zamo digital laser tape.

METHODS

Measurements were done in twenty (20) different x-ray facilities in Warri Delta State. Radiation detector, GMC 600 PLUS with serial number 36311386254310 by GQ Electronics, calibrated by National Institute of Radiation Protection and Research (NIRPR) with calibration certificate number: NIRPR/JUTH/22/231 was used. The lowest tube current (50 mA) station was selected that is appropriate for the ionization survey meter's response time. The highest tube potential (80 kVp) allowable was selected. Without exceeding the total heat capacity of the anode and the x-ray tube housing during the survey. With the Zamo digital tape a position on the surface of an imaginary sphere

of 1 m radius with its-center located at the focal spot was used to position the radiation detector. Exposures were made with close collimator blades or block the collimator port with at least 10 half-value layer (HVL) equivalent of lead. The leakage radiation at the selected positions was then measured. The Instantaneous dose rate (IDR) readings were taken in μ Sv/hr directly from the display screen of the radiation detector. The results were then converted from micro-Sievert per hour (μ Sv/hr) to milli-roentgen per hour (mR/hr).

RESULTS AND DISCUSSION

Results

A total of twenty (20) measurements of x-ray leakage radiation were measured in Warri metropolis, Delta State. There was visual assessment on the x-ray machines before carrying out the reading to ascertain the level of functionality of the machines at the various centers. From the assessment, all x-ray machines passed all the visual checks except for two x-ray unites, A_6 and A_{10} . The indicator lights of A_6 was not working and hence the lights brightness cannot be determined nor can the collimators field type assessed. A_{10} collimator displays sign of lights even when shutters were closed, this will surely have significant influence on the leakage radiation test. However, all the x-ray machines were functioning and in use at the time of the study. Table 2, Present the values of the leakage radiation measured from the different radiological facilities at 1 m, while Table 3, described Statistical of the x-ray facilities. Table 1, Show the description of the studied facilities. Figure 3, Show the comparison of the cathode terminal leakage radiation to standard limit and Figure 4, Show the variation of the anode terminal leakage radiation to standard limit.

X-RAY	AGE RADIATIO	TION (mR/hr)	
MACHINE	CATHODE	ANODE	MEAN
	TERMINAL	TERMINAL	
A1	6.12	4.82	5.47
A_2	0.39	0.32	0.36
A 3	37.79	37.12	37.46
A4	91.97	91.97	91.97
A5	0.21	0.21	0.21
A6	7.01	6.64	6.83
A ₇	6.82	6.63	6.73
A 8	20.11	17.68	18.90
A 9	4.07	3.13	3.60
A10	100.84	99.70	100.27
A ₁₁	11.55	11.39	11.47
A12	9.85	9.03	9.44
A ₁₃	42.03	47.12	44.58
A14	84.03	68.06	76.05
A15	32.11	31.55	31.83
A ₁₆	12.03	11.46	11.75
A17	16.33	13.76	15.05
A18	7.83	6.15	6.99
A19	16.03	12.11	14.07
A20	22.07	18.65	20.36
MINIMUM	0.21	0.21	0.21
MAXIMUM	100.84	99.7 0	100.27
MEAN	26.46	24.88	25.67

Table 2. Leakage radiation from the studied x-ray machin	Ta	'ab	le	2.	Lea	kage	radiation	from	the	studied	x-ray	machin
--	----	-----	----	----	-----	------	-----------	------	-----	---------	-------	--------

Ovwasa, S.O., Akpolile, A.F., Agbajor, G.K. and Mokobia, C.E.: Measurement of Leakage Radiation Dose to Patients...

Parameters	leakage radiation (mR/hr)	
Min	0.21	
Max	100.27	
Range	100.60	
Mean	25.67	
Standard deviation (S.D)	28.91	

Figure 3: Comparison of the cathode terminal leakage radiation to standard limit

Figure 4: Variation of the anode terminal leakage radiation to standard limit.

DISCUSSION

The leakage radiation from the cathode were; 6.12, 0.39, 37.79, 91.97, 0.21, 7.01, 6.82, 20.11, 4.07, 100.84, 11.55, 9.85, 42.03, 84.03, 32.11, 12.03, 16.33, 7.83, 16.03 and 22.07 mR/hr and anode were; 4.82, 0.32, 37.12, 91.97, 0.21, 6.64, 6.63, 17.68, 3.13, 99.70, 11.39, 9.03, 47.12, 68.06, 31.55, 11.46, 13.76, 6.15, 12.11 and 18.65 mR/hr corresponding to A_1 to A_{20} respectively. Table 2, Shows the leakage radiation from the cathode and that of the anode of the x-ray tube. The peak from the cathode was observed with facility A_{10} while A_5 was observed to have the minimum cathode leakage. The x-ray unit A₂ also shows a relatively low cathode radiation leakage 0.39 mR/hr. The peak cathode leakage radiation was closely followed by A₄ and A₁₄ with cathode leakage of 91.97 mR/hr and 84.04 mR/hr respectively. John (2018) work showed a maximum leakage radiation dose rate of 5.969 µSv/hr. This study shows higher values of leakages in all the investigated x-ray units. The mean cathode radiation leakage from this study was 26.46 mR/hr and this is within standard limit. The American Association of Physicists in Medicine (AAPM) has set a standard for the maximum permissible leakage limit, 100 mR/hr, from any give x-ray tube. From the chart, only one x-ray machine, A₁₀ failed this test and this could be as a result of the shutters that display sign of lights even when it was closed, resulting to a 5% failure rate and 95% pass rate.

CONCLUSION

The leakage radiations have a significant effect in the quality of radiographic examinations and is very important for reduction of radiation doses to patient, personnel and members of the public. Leakage radiations tests were performed on twenty (20) x-ray units among some x-ray centers in Warri metropolis in Delta State. These studies show a leakage radiation test compliance rate of 95% and 5% non-compliance rate. Conclusively, x-ray machine should have their leakage radiation check at interval at least annually to maintain consistency in which

Ovwasa, S.O., Akpolile, A.F., Agbajor, G.K. and Mokobia, C.E.: Measurement of Leakage Radiation Dose to Patients...

unnecessary and unwanted exposures are checked and corrected.

REFERENCES

- Agbalagba O. E. (2017). Assessment of excess lifetime cancer risk from gamma radiation levels in Effurun and Warri city of Delta State, Nigeria. Journal of Taibah University for Science, 11, 367-380.
- Boumala, D. B. A, Tedjani, A. M. ch, and Groetz, J.E. (2019). Annual effective dose and excess life time cancer risk assessment from tobacco plants. Journal of ScienceDirect. Doi: org/10.1016/j. pisc.2019.100394.
- International Commission on Radiological Protection. Radiological protection and safety in Medicine. ICRP Publication. Ann ICRP. 2007.
- ICRP 2007. The 2007 Recommendations of the International Commission on Ann ICRP. 37, No. 2-4, 1-332.
- International Commission on Radiological Protection (ICRP,1991) Recommendations of the International Commission Radiological Protection: ICRP 60 Annuals of ICRP (1-3).
- John Holroyd (2018). Measurement of scattered and transmitted x-rays from intra-oral and panoramic dental x-ray equipment. Official journal of the society for Radiological protection. Doi: 10.1088/1361-6498/aabce 3.
- Justin Malimban, Sarah Johnson and Alvin Baclig (2018). Measurements of the Scattered and leakage in chest x-ray facilities. Journal of physica medica. 52

(1), 134-135. Doi: org/10.1016/j.ejmp. 2018.06.343.

- Mangset W. Emmanuel and Adesida O. S, (2019). Radiographic Reject Film Analysis in Radiology Department of a Teaching Hospital in Jos, Plateau State, Nigeria, AJMP is the official journal of the Federation of African Me7dical Physics Organizations (FAMPO), 1(1): 1-7.
- Mesfin Zewdu , Elias Kadir, and Melkamu Berhane (2017). Analysis and Economic Implication of x-Ray Film Reject in Diagnostic Radiology Department of Jimma University Specialized Hospital, Southwest Ethiopia, Ethiop J Health Sci.. 2017 Jul;27(4): 421-426.
- Muttalip, Ergun Turgay. Zeynep, Acar. Zeki, Unal Yumun. Arev Artun and Erol Kam. (2021). Exposed Gamma Doses in air and Assessment of cancer risk around Gebze (Kocaeli/Turkey) Region. European journal of Science and Technology. 25, 139-144. Doi: 10.31590/ejosat.862361.
- Oluwafisoye, P., A,Olowookere, C, J., Jibiri, N. N., Bello, T. O., Alausa, S. K., Efunwole, H. O., (2010). Quality Control and Environmental Assessment of Equipment Used Diagnostic in Radiology. International Journal of Recent Research and Applied Studies (IJRRAS), 2: 148-158.
- Osward Bwanga (2021). Causes of Reject and Repeat of Digital Radiographic Images: A Literature Review to Guide the Practice of Radiography in Zambia, Medical Journal of Zambia, 48 (1): 38 – 45.