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Evaluating diagnostic tests

Appraising the predictive abilities of diagnostic tests can be
surprisingly difficult. The purpose of this article is to provide an
introduction to the principles underlying the objective evaluation
of diagnostic tests. Starting from basic concepts about probability,
Bayes’ theorem will be introduced and an explanation given as to
how it can be used in applying new information to improve the
uncertainty about a diagnosis. An approach to the application and
evaluation of diagnostic research is given. These concepts will be
explained using simple probabilistic notation applied to a 2x2 table
from which the necessary calculations can be made.

Basic concepts about probability

Probability expresses our degree of certainty about future events.
The probability (denoted P) of an event is defined as the number
of times we believe that it is likely to occur divided by the num-
ber of times that it could possibly occur.

No. of times an event is likely to occur
P = -----------------------------------------------

No. of times it could possibly occur

Conventionally, probability is expressed as a number between
0 and 1 (or as a percentage between 0 and 100%). An event
with a probability of 0 will never happen and an event with
probability 1 is certain to happen. For example when throw-
ing a dice many times, a 4 is likely to occur on average 1 in 6
times: The probability is 1/6 = 0.167 (Approximately 17% of
the time). The probability of an event not occurring is 1 – P. In
the example of the dice the probability of not throwing a 4 is 1
– 0.167 = 0.833.
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Diagnostic tests are used to help ascertain the presence or
absence of a condition (disease). There is often uncertainty
about how much reliance clinicians can place on a particular
test for the purpose of establishing a diagnosis. For example
blood concentrations of enzymes can be used to detect organ
disease. This often means that test results are considered posi-
tive or negative beyond a predefined "cut-off" value. How-
ever patients who do not have the disease may have positive
test results (false positive) and conversely, diseased persons
may have negative test results (false negative). A good test
should reliably indicate whether a disease is probable or un-
likely. The methodology that is used to evaluate the predic-
tive ability of diagnostic tests is well described in texts on
medical statistics1-6, but has received little attention in the
anaesthetic literature. Anaesthesiologists are increasingly in-
volved in perioperative patient care and often the interpreta-
tion of special investigations is crucial to making therapeutic
and prognostic decisions. Furthermore, an increasing num-
ber of anaesthesiology-related journal articles relate to the
development and evaluation of new diagnostic procedures.
For example, a search through four leading journals* reveals
that between 1991 and 2002 there were 67 articles that dis-
cussed special investigations by means of receiver operating
characteristic (ROC) curves.

* Anesthesiology, Anesthesia and Analgesia, British Journal of Anaesthesia, Ca-
nadian Journal of Anaesthesiology
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If two events are truly independent (i.e. the occurrence of
one does not influence the occurrence of the other), the prob-
ability of either one occurring is the sum of the individual
probabilities.

Thus

P(A) or P(B) = P(A) + P(B) Equation-1

Where P(A) and P(B) are the probabilities of events A and B
respectively. The dice example reveals that the probability of
throwing either a four or a six with a single throw is 1/6 + 1/6
= 1/3 or 0.33. On the other hand, the probability of two events
occurring simultaneously is the product of the individual prob-
abilities. Thus

P(A) and P(B) = P(A) x P(B) Equation-2

For example, the probability of throwing a pair of dice so that
a four and a six occur simultaneously, is given by: 1/6 x 1/6 =
1/36 = 0.028.

Another method of expressing our degree of certainty about
future events is the odds. The odds of an event is defined as
the ratio of the number of times that the event is likely to oc-
cur to the number of times that it is not likely to occur.

     P
Odds = ----------

  1 – P
    odds

Odds can be converted to probability: P =  --------------
  (1+ odds)

In the example of the dice, the odds of throwing a 4 are: 0.167
/ 0.833 = 0.2 (i.e. 1/5 or 1:5)

This can be interpreted as indicating that it is 5 times less
likely to throw a 4 with a single throw than not to throw a 4.

Conditional probabilities and the definition of

Bayes’ theorem

There are three important aspects that affect the ability of a
test to predict the presence of a condition (e.g. a disease). These
are the pretest probability, the sensitivity and the specificity.
The pretest probability denotes the probability of the disease
being present prior to testing. This could be the prevalence of
the disease in the population, or it could be the index of suspi-
cion that the clinician has estimated, based on his/her clinical
history and examination.

The sensitivity of a test is defined as the proportion of per-
sons who have the condition who test positively. This is also
known as the true positive rate (TPR). The specificity of a test
is defined as the proportion of persons without the disease
who have a negative test result. This is also termed the true
negative rate (TNR). Coupled to these two basic definitions
are the concepts of the false positive rate and the false nega-
tive rate. The false positive rate (FPR) is the proportion of
healthy persons (without the disease) who test positively. The
false negative rate (FNR) is the proportion of diseased per-
sons who test negatively. From these definitions, it can be
deduced that FNR = 1– sensitivity and FPR = 1– specificity.

These relationships are best understood (and remembered)

by constructing a 2 x 2 table (Table I). Referring to the 2 x 2
table, the columns denote the presence or absence of disease
(D+ or D-) and the rows represent the positive and negative
tests (T+ and T-). The prevalence (or pretest probability) of
the disease is given by (a+c) / (a+b+c+d), i.e. the proportion
of the population who have the disease. In probability nota-
tion this is represented by P(D+). The number of true posi-
tives (TP) is denoted by a. The sensitivity, or true positive rate
(TPR) is given by a/(a+c). Likewise, specificity, the true nega-
tive rate (TNR), is calculated as d/(d+b), and so forth for FPR
and FNR (see Table I).

In probability notation, sensitivity (or TPR) = P(T+|D+)
where the "|" is read as "given". Likewise: False positive rate
= P(T+|D-) and specificity = P(T-|D-). These are known as
conditional probabilities. A conditional probability is defined
as the probability that an event is true, on condition that an-
other event is also true. Note that this is different from the two
dice example where the two events (e.g. throwing a “4” and a
“6” simultaneously) are completely independent. On the con-
trary, P(T+|D+) expresses the probability of obtaining a posi-
tive test on condition that only patients who have the disease
are tested. This is different from the probability of obtaining a
positive test from an individual chosen from the population at
random, which in this case is given by P(T+).

The probability of event A occurring conditional upon event
B, i.e. P(A|B), is formally defined using the product rule as
described above in equation-2:

P(A and B) = P(A|B).P(B) Equation-3

Furthermore the ordering of the events is unimportant so that

P(A|B).P(B) = P(B|A).P(A) Equation-4

Solving equation-3 for the conditional probability gives:
___________________________________________________

P(A and B)
P(A|B) = -------------- Equation-5

P(B)
___________________________________________________

Equation-5 is known as Bayes’ theorem.*

Application of Bayes’ theorem to diagnostic testing

Unfortunately, sensitivity and specificity alone do not esti-
mate the likelihood of disease in a particular patient. For this
it is necessary to combine these indices with the previous
knowledge we have about the patient, in order to determine
whether a test result indicates whether the disease in ques-
tion is present or absent. What we want to know clinically, is
what is the probability of disease given a positive test? i.e.
P(D+|T+). For example, given prior knowledge about the in-
cidence of coronary heart disease in men over 50 years, we
may wish to know what the probability is of coronary heart

* Thomas Bayes (1702-1761) was a non-conformist minister from Tunbridge Wells
whose work on probability theory was discovered by his relatives after his death.
With Bayes’ theorem, one can relate the knowledge one has about prior prob-
ability of an event to the probability of that event after the addition of new
knowledge.
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disease after a positive exercise tolerance test? The prior
knowledge is expressed by the prior probability of the dis-
ease, P(D+), which is also known as the pretest probability.
As mentioned above, this may merely be the prevalence of
the disease in the population under consideration, or it may
be based upon the clinician’s index of suspicion. P(D+|T+) is
known as the posterior probability of the test, or the post-test
probability. These questions of course are about conditional
probability and therefore are appropriate for the application
of Bayes’ theorem.

By applying Bayes’ theorem to equation-5, the following
expression to calculate the posttest probability of the disease
can be derived (see Appendix).

____________________________________
P(D+).TPR

P(D+|T+) = ---------------------------------------- Equation A4
P(D+).TPR + {(1 – P(D+)).FPR}

____________________________________

Thus using Bayes’ theorem, it is possible to calculate the post-
test probability of disease, provided the following is known
with regard to a diagnostic test: the pretest probability, the
true positive rate (sensitivity), and the false positive rate (or
the specificity which is 1 – FPR).

Likewise, it is possible to calculate the probability of dis-
ease if the test result is negative:

Table I: Calculation of diagnostic accuracy parameters from a 2 x 2 table:
Tables 1(a) and 1(b) illustrate the arrangement of data into a 2 x 2 table for calculation of the indices of diagnostic accuracy.
Table 1(c) lists the various indices, together with their definitions using probability notation and the expressions for their calculation.
D+ = presence of disease; D- = absence of disease; T+ = positive test; T- = negative test.
a = true positives (TP); b = false positives (FP); c = false negatives (FN); d = true negatives (TN).
The total number of individuals who have the disease is (a + c), i.e. (TP + FN); the total number without the disease is (b + d), i.e. (TN + FP).
The total number in the sample tested are (a + b + c + d).
TP = true positives; FP = false positives; FN = false negatives; T- = true negatives.

Table 1(a) D+ D- Row total

T+ a b a+b

T- c d c+d

Column total a+c b+d

Table I(b) D+ D- Row Total

T+ TP FP TP+FP

T- FN TN FN+TN

Column total TP+FN FP+TN

Name Probability notation Calculation Synonyms / equivalents

Pretest probability P(D+) (a+c) / (a+b+c+d) Prior probability, prevalence

Sensitivity P(T+|D+) a / (a + c) True positive rate (TPR)

Specificity P(T-|D-) d / (d + b) True negative rate (TNR)

False Positive Rate (FPR) P(T+|D-) b / (b + d) 1 – specificity

False Negative Rate (FNR) P(T-|D+) c / (a + c) 1 – sensitivity

Positive predictive value P(D+|T+) a / (a + b) Posttest probability of a positive test

Negative predictive value P(D-|T-) d / (c + d)

Posttest probability of a negative test P(D+|T-) c/ (c + d)

Positive likelihood ratio (LR+) P(T+|D+) a / (a + c) sensitivity
------------ ------------- ---------------
P(T+|D-) b / (b + d) 1 - specificity

Negative likelihood ratio (LR+) P(T-|D+) c / (a + c) 1 - sensitivity
-------------- ------------ -----------------

P(T-|D-) d / (b + d) specificity

Pretest odds P(D+)
-------------
1 – P(D+)

Posttest odds of a positive or negative test Pretest odds x Likelihood ratio (Pos. or Neg.)

Odds ratio P(T+|D+) / P(T-|D+) a.d / b.c
P(T+|D-) / (PT-|D-) (Cross-product)

Table 1(c)



REVIEW

Southern African Journal of Anaesthesia & Analgesia - November 2004 10

_______________________________________
P(D+).(1 – TPR)

P(D+|T-) = ------------------------------------------------ Equation A5
P(D+).(1 - TPR + {(1 – P(D+)).(1 - FPR}

_______________________________________

Example: In a 55 year-old man with haemoptysis and a his-
tory of cigarette smoking it is estimated that the pretest prob-
ability of lung cancer is 0.4 (i.e. P(D+)). If a mass lesion is
found on chest X-ray examination, we can calculate the prob-
ability of the patient having lung cancer using equations A4
and A5, if we know the sensitivity and the specificity for that
finding. It has been established that these values are: sensitiv-
ity (TPR) = 0.6 and specificity (1 – FPR) = 0.96.

0.4 x 0.6
P(D+|T+) =--------------------------------------- = 0.91

(0.4 x 0.6) + {(1 – 0.4) x 0.04}

0.4 x 0.4
P(D+|T-) =---------------------------------------- = 0.22

(0.4 x 0.4) + {1 – 0.4)(1 – 0.04)}

Therefore, in this patient, finding a mass lesion in a chest X-
ray photograph practically rules in the presence of lung can-
cer, while the absence thereof reduces its probability by more
than half, but does not rule it out and therefore the clinician
should continue to suspect that it may indeed be present.

Bayes’ theorem: The dependence of post-test

probability upon pretest probability

Continuing with the example of the chest X-ray, the probabil-
ity of lung cancer in 55-year old non-smokers is much less
than that of smokers. Let us assume that their pretest prob-
ability is 0.001. Calculation of the post-test probability using
equations A4 and A5 now reveals that if a mass lesion is found
on chest X-ray examination, the post-test probability of lung
cancer is only 0.015 and that of a negative test is 0.004. This
example illustrates an important point, namely that the post-
test probability depends upon the pretest probability, the former
increasing as the latter increases. Examining equation-A4 re-
veals that the posttest probability, P(D+|T+), is related to the
pretest probability, P(D+) nonlinearly: Equation A4 has the
form:

ax
y = ---------

bx + c

where y is the post-test probability, P(D+|T+) and x is the pre-
test probability, P(D+). The graph of this function is a rectan-
gular hyperbola. Figure-1 depicts the post-test probability for
all possible values of the pretest probability, using the example
of an X-ray examination for lung cancer (TPR = 0.6, FPR =
0.04). The diagonal line in Figure-1, the line of identity, de-
fines a post-test probability that is equal to the pretest prob-
ability for all values of the pretest probability; i.e. denoting a
useless test. An ideal test would be for a positive test to have
post-test values of 1 for all values of the pretest probability
(i.e. lie along the upper abscissa) and for a negative test the
post-test probability would always be zero (i.e. lie along the

Figure 1: Post-test probabilities corresponding to positive and negative test re-
sults calculated for all possible pretest probabilities. The upper curve depicts
posttest probabilities for positive tests; the lower curve for negative tests. The
dotted diagonal line the line of identity, defines a posttest probability that is
equal to the pretest probability for all values of the pretest probability; i.e. de-
noting a useless test. This graph corresponds to the example of the chest X-ray
(see text) where the true positive rate = 0.6 and the false positive rate = 0.04

lower abscissa). In real life where tests are less than perfect,
the post-test probabilities for a positive result lie somewhere
above the line of identity, i.e. a meaningful positive test in-
creases the post-test probability (upper curve in Figure 1). For
a negative result, the post-test probabilities lie below the line
of identity, i.e. a negative test reduces the post-test probabil-
ity (lower curve in Figure 1). Note that the curve for a nega-
tive test is not a mirror image of that for a positive test.

Bayes’ theorem: The influence of the TPR and the

FPR on the interpretation of diagnostic tests

It is apparent from equations A4 and A5 that besides being
influenced by the pretest probability, the post-test probability
is also affected by the TPR and the FPR. This is illustrated by
Figure-2 which depicts curves for the chest X-ray example
for FPR of 0.02, 0.04 and 0.1. Note that the interpretation of a
positive test is heavily influenced by the FPR of the test,
whereas a negative test is only slightly affected.* Figure-3 il-
lustrates the influence of the TPR (sensitivity) on post-test
probabilities for TPR of 0.9, 0.6 and 0.4. Here the interpreta-
tion of a positive test is little influenced by variation in TPR
whereas a negative test is heavily influenced.

Using the 2x2 table to calculate the accuracy of

diagnostic tests

Equations A4 and A5 (derived from Bayes’ theorem) are use-
ful to demonstrate how the post-test probabilities of diagnos-
tic tests are influenced by the pretest probability the sensitiv-

* Note that  one may also state that the posttest probability is influenced by the
specificity of the test (specificity = 1 – FPR).
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ity and the specificity. However when calculating the condi-
tional probabilities of diagnostic tests, many clinicians find
it simpler to use a 2x2 table. Referring to Table I, the post-
test probability of a positive test is calculated by the expres-
sion a/(a+b), i.e. P(D+|T+). The post-test probability of a nega-

tive test is calculated by c/(c+d), i.e. P(D+|T-). If the 2x2
table comprises results from a study group, the above
calculation is termed the Positive Predictive Value (PPV).
The Negative Predictive Value (NPV) is the probability of
disease being absent in the study group, given a negative
test result, i.e. P(D-|T-).

Discriminating between sick and healthy patients:

Likelihood ratio

The usefulness of predicting posterior probabilities is lim-
ited, because of their susceptibility to influences by the prior
probability of the disease. The likelihood ratio (LR) com-
pares the probability for a positive test result in persons who
have the disease with the probability for a positive test result
in healthy persons. This ratio simplifies the calculation of
predictive values and furthermore it is independent of the
disease prevalence. There are two kinds of likelihood ratios,
positive and negative. The positive likelihood ratio (LR+) is
defined as the probability of a diseased person having a
positive test result compared to the probability of a non-
diseased person having a positive test result. The negative
likelihood (LR-) ratio is defined as the probability of a
diseased person having a negative test result compared to
the probability of a non-diseased person having a negative
test result.

In probability notation:
P(T+|D+) P(T-|D+)

LR+ = ------------- LR- = -------------
P(T+|D-) P(T-|D-)

Using the 2x2 table (Table I) the likelihood ratios can be calcu-
lated as follows:

a / (a + c) c / (a + c)
LR+ = ------------- LR- = --------------

b / (b + d) d / (b + d)

From the above definitions, it can be seen that likelihood ra-
tios can also be expressed in terms of TPR, FPR, TNR and
FNR, as well as sensitivity and specificity:

TPR FNR
LR+ = ----------------------  LR- = --------------------

FPR TNR

sensitivity (1 – sensitivity)
LR+ = ----------------------- LR- = ---------------------

(1 – specificity) specificity

Likelihood ratios are a powerful tool for discriminating between
sick and healthy patients and as mentioned, have the advantage
that they are independent of the pretest probabilities. A LR+ of
10 means that a diseased patient is 10 times more likely to have a
positive test than a healthy patient. Unfortunately they do not say
much about post-test probabilities, so that the ratios need to be
quite large in order to draw conclusions about post-test prob-
abilities (Table II). Estimating the relationship between pretest
probability, likelihood ratio and post-test probability is easily

Figure 2: Graph depicting the influence of various false positive rates (FPR) on
the relationship between posttest probabilities and pretest probabilities. (True
positive rate = 0.6)

Figure 3: Graph depicting the influence of various true positive rates (TPR) on
the relationship between posttest probabilities and pretest probabilities. (False
positive rate = 0.04)
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Figure 4: Nomogram for converting pre-test probabilities to post-test prob-
abilities for a diagnostic test result with a given likelihood ratio. (http://
www.cebm.net/likelihood_ratios.asp)

done using the nomogram of Fagan7 (Figure 4)*. Using this no-
mogram, it is possible to estimate post-test probabilities of disease
for various pretest probabilities, after you have calculated the
likelihood ratio. This powerful tool is equivalent to referring to
the graphs of conditional probabilities (Figures 1-3). Both posi-
tive and negative likelihood ratios may be employed to obtain
post-test probabilities for positive, as well as for negative test
results.

In the previously discussed example of the chest X-ray ex-

amination of a 55 year old male smoker (where prevalence
=0.4, TPR = 0.6, FPR = 0.04): LR+ = TPR / FPR = 0.6/0.04 =
15. This implies that there is a 15x greater probability that a
patient who has lung cancer will have a mass lesion on X-ray.
On the other hand, LR- = FNR / TNR = (1- TPR) / (1 – FPR)
= 0.4/0.96 = 0.42. This low value implies that a patient with-
out lung cancer has a (1 / 0.42) 2.4 x greater probability of
having a negative result than a patient with lung cancer. Re-
ferring to Table II, this implies only a small change in the
pretest estimation of the probability of lung cancer, as we al-
ready have seen in the calculation of the posttest probability
according to Bayes’ theorem.

A popular method for calculating the effect of a test result
on the likelihood of disease being present is to calculate the
post-test odds of the presence of disease8, which are defined
as follows:

Post-test odds = Pretest odds x Likelihood ratio

In the example of the chest X-ray examination the pretest odds
are: 0.4 / (1 – 0.4) = 0.4 / 0.6 = 1:1.5. After detecting a mass
lesion, the post-test odds are 0.4 / 0.6 x LR+ = 0.4 / 0.6 x 15 =
10:1. This can be interpreted as implying that in the presence
of a mass lesion there will be 10 times as many persons with
cancer than those without. If a mass lesion is not detected,
then the post-test odds are 0.4 / 0.6 x LR- = 0.4 / 0.6 x .42 =
0.28 = 1 / 3.6 or 1 : 3.6. This can be interpreted as implying
that in the absence of a mass lesion, there will be one person
who has cancer for every 3.6 persons who does not.

An example: Estimating the predictive value of a test follow-
ing a study that developed a test for difficult intubation.
Let us assume that a new test for predicting difficult intuba-
tion is reported from a study involving 1000 patients and that
100 of these patients (10%) presented difficult intubations.
The sensitivity and specificity of the test was reported to be
95% and 90% respectively. We have sufficient information to
construct a 2x2 table (Table III).

Step 1: Total number of sick persons = (prevalence x overall
total) = 100

Step 2: Total number of healthy persons = (1000 – total of
sick persons) = (1000 – 100) = 900

Step 3: True positives (TP) = (sensitivity x total of sick per-
sons) = (0.95 x 100) = 95

Step 4: False negatives (FN) = (total of sick persons – true
positives) = (100 – 95) = 5

Step 5: True negatives (TN) = (specificity x total of healthy
persons) = (0.9 x 900) = 810

Step 6: False positives (FP) = (total of healthy persons – true
negatives) = (900 – 810) = 90

Table I summarizes the predictive values that can be calculated
from a 2x2 table. Sensitivity and specificity are characteristics
of a test (not the study group to which the test is applied) and
these judgments are made prior to performing the test. The ability
of the test to predict the presence of a condition is obtained by
calculating the predictive values. The positive predictive value

* This nomogram can be downloaded from the Internet website of the Oxford-
Centre for Evidence-Based Medicine: http://www.cebm.net/likelihood_ratios.asp

Table II: Likelihood ratio as an index of the probability of disease:

Likelihood Ratio Change in disease probability

>10 or <0.1 large change

5 – 10 or 0.1 – 0.2 moderate change

2 – 5 or 0.2 – 0.5 small change

2 and 0.5 little or no change

1 no change

LR = 0 excludes disease, infinity excludes normality

Likelihood ratios (LR) need to be quite large in order to change the pretest and
posttest probabilities of disease.
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(PPV) is defined as the ratio between those subjects who actu-
ally have the disease and all the subjects who test positively. In
Table I the PPV is given by a/(a+b), i.e. PPV = TP / (TP + FP)
and it is numerically equal to the post-test probability of Bayes’
theorem. However, although numerically the same, there are
subtle differences as discussed below. The negative predictive
value (NPV) defines the ability of a negative result to define
those individuals who do not have the condition. It is defined as
the ratio between those subjects who do not have the disease to
all of those who tested negatively. In Table I it is given by d/
(c+d), i.e. NPV = TN / (TN + FN).

The results of the calculated parameters for estimating the
diagnostic accuracy of the test to predict difficult intubation*

are presented in Table IV. In our example, the positive predic-
tive value is 95 / (95 + 90) = 0.514. Therefore, if we get a

positive result, we are only 51.4% sure that there will be a
difficult intubation (not much better than flipping a coin). The
negative predictive value is 810 / (5 + 810) = 0.994. There-
fore, in this example, a negative result virtually rules out the
possibility that a difficult intubation will occur. This case in
point illustrates that a 95% sensitivity does not necessarily
mean that we have a 95% reliability for diagnosing sick per-
sons because the predictability depends on the prevalence of
the disease. As the prevalence decreases, the PPV decreases
and the NPV increases, as described above in the discussion
of Bayes’ theorem (Figure 1). The converse is true when the
prevalence increases. A low PPV implies a high false-positive
rate and it is important that persons are not unnecessarily
alarmed by the occurrence of a positive test, when in fact they
do not have the disease!

The LR+ of 9.5 indicates that a person with a difficult intu-
bation was 9.5 times more likely to have exhibited a positive
test than a person who did not have a difficult intubation. On
the other hand, the LR- of 0.056 indicates that a person with a
difficult intubation is 18 times less likely to test negatively
than a person who does not experience a difficult intubation.
The post-test odds of 1.056 provide essentially the same in-
formation as the PPV, namely that after obtaining a positive
test, there is approximately a 50:50 chance that intubation will
be difficult.

This is one of the problems that arise using screening tests
in a low prevalence environment. Although a negative test can
virtually rule out the disease, a positive test with a low PPV
does not mean very much and can lead to unnecessary anxi-
ety, as well as expensive further testing. Screening tests should
preferably have a high PPV. As a general rule, screening tests
should give the assurance that a negative result is really nega-
tive i.e. there should be very few false negative results. There-
fore a highly sensitive test is preferred. A useful acronym is
SNOUT i.e. to use a SeNsitive test to rule OUT disease. On
the other hand, if there is evidence of disease, a test that re-
sults in very few false positive results is preferred. Therefore
a highly specific test is favoured. Here the acronym is SPIN

Table III: A 2 x 2 table depicting the example of a test to predict difficult intubation (see text).

Difficult intubation (D+) Easy intubation (D-) Total

TP FP
Positive test 95 90 185

(T+) 3(sensitivity = 95% of 100) 6(900 – 810)

FN TN
Negative test 5 810 815

(T-) 4(100-95) 5(Specificity = 90% of 900)

Total 100 900 1000
1(0.1 x 1000) 2(1000 - 100)

In the example, 1000 patients were evaluated before intubation and the results are depicted in the 2 x 2 table. The superscript numbers in bold script refer to the steps described in
the text for calculating the 2 x 2 table, given the sensitivity and the specificity of the test.
TP = True Positives; FP = False Positives: FN = False Negatives; TN = True Negatives

* A useful Microsoft Excel worksheet (“diagnostic.xls) created by PM MacEneaney
and DE Malone11 can be accessed and/or downloaded from the Internet (http:/
/216.71.117.81/spreadsheets/diagnostic.xls) (or obtained from the author).  This
worksheet calculates predictive values from a 2x2 table and performs Bayesian
analysis.

Table IV: Parameters of diagnostic accuracy for the prediction of difficult in-
tubation example.

Parameter Result

Sample size 1000

Prevalence 0.1

Sensitivity 0.95

Specificity 0.90

Positive predictive value (PPV) 0.514

Negative predictive value (NPV) 0.994

Positive likelihood ratio (LR+) 9.5

Negative likelihood ratio (LR-) 0.056

Pretest odds 0.11

Posttest odds of a positive test 1.06

Posttest odds of a negative test 0.006

95% Confidence Interval (CI) for Sensitivity
Ψ

: 0.91 - 0.99

95% Confidence Interval (CI) for Specificity
ϕ
: 0.88 - 0.92

Sens x (1 – Sens)Ψ
95% CI = Sens ±  1.96 x

(TP – FN)

Spec x (1 – Spec)ϕ
95% CI = Spec ± 1.96 x

(FP – TN)
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because a SPecific test rules IN disease.
Outwardly it appears that predictive values derived from a 2 x

2 table after a study are identical to the posterior probabilities as
described above in the discussion on Bayes’ theorem: indeed they
are numerically equal. They are, however, not quite the same.
Sox et al.5 state: “Both answer the question ‘Given this test re-
sult, what is the likelihood that my patient has the disease?’ How-
ever there are important differences between posterior probabil-
ity and predictive value. Posterior probability is a far more use-
ful means of expressing uncertainty.

Predictive value is:
• Defined as the proportion of study patients with a test re-

sult who have disease (or no disease).
• Calculated from a 2 x 2 table of results in a defined popula-

tion of patients
• Dependent on the prevalence of disease in the defined

(study) population.

Posterior probability is:
• Defined as the probability of disease after new information

is taken into account.
• Calculated from Bayes’ theorem
• Dependent on the prior probability of disease, which is de-

fined as an opinion about the likelihood of an event prior
to the receipt of new information.

Thus the predictive value is an observable number obtained
from a defined population and does not necessarily apply to
another population. If the true positive rate and the false
positive rate of a clinical finding are known, posterior prob-
ability can be used to interpret the finding in any popula-
tion.” The authors discuss the pitfalls of using predictive val-
ues as surrogates for posterior probabilities. These mainly
concern the design of the study and the application of the
findings from one population to another population. Rheeder
and Ker4 have summarized guidelines on evaluating an ar-
ticle on diagnostic research from the literature9,10 and these
are presented in Table V.

As with Bayes’ theorem, calculation of likelihood ratios

from the 2 x 2 table of a study group is helpful in distinguish-
ing between sick and healthy persons and are independent of
the prevalence of the disease in question.

Evaluating diagnostic research: The dilemma of

deciding when a test is abnormal

In the preceding discussion, methods were presented whereby
it is possible to draw conclusions about the probability of dis-
ease after performing a diagnostic test. The assumption was
that an optimum cut-off value had been selected to distinguish
between positive and negative tests. This section will discuss
the problem of finding an optimum value to define the differ-
ence between positive and negative test results.

If the test is a continuous variable with a normal distribu-
tion, a perfect test can be represented by Figure 5 which illus-
trates that for an ideal test the distributions of the healthy and
the sick populations do not overlap. A “cut-off” point can there-
fore be chosen that always distinguishes perfectly between sick
and healthy individuals. Such tests are rare and often expen-
sive or dangerous. In reality, most distribution curves overlap
as depicted by Figure 6. Low values unmistakably denote ab-
sence of disease and high values unmistakably indicate dis-
ease. However, the area in which the two distribution curves
overlap, causes the greatest difficulties in interpretation.

A good test has high sensitivity (TPR) and specificity
(TNR). A test with high sensitivity is "sensitive to disease"

Figure 5: If the distributions of the healthy and the diseased populations are
completely separate, then a cut-off point may be selected whereby there would
be no false positive or false negative results.

Figure 6: In real life the distributions of the healthy and diseased populations
overlap, resulting in false positive and false negative results.

Table V: Evaluating an article on diagnostic research:

Is the study valid?
1. Was there an independent, blind comparison with a reference (gold) standard of

diagnosis?
2. Was the diagnostic test evaluated in an appropriate spectrum of patients (such

as those in whom it would be used in practice)?
3. Was the reference standard applied regardless of the diagnostic test result?

(avoiding verification bias)
4. Were the test's methods described clearly enough to permit replication?

What are the results and their level of precision?
1. In what form are the results given and how useful are they? (sensitivity /

specificity, predictive values, likelihood ratios, odds ratios)
2. Are confidence intervals provided around these mean estimates?

Can I use these results in clinical practice?
1. Will the test be reproducible and well interpreted in my practice setting?
2. Are the results applicable to my patients?
3. Will the test results change my management?
4. Will my patients be better off because of the test?
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and has a low false negative rate. A test with high specificity
is "specific to health" and has a low false positive rate. There
is, however, a trade-off between sensitivity and specificity as
is illustrated by Figure 7. Laboratories usually report normal
values as a mean and a standard deviation (SD). A reasonable
value for a cut-off point to distinguish between a normal and
an abnormal result could perhaps be 2x standard deviations
from the mean of the curve for the healthy patients. In this
example, the dark shaded area indicates the FPR and the striped
area, the FNR. It is evident that the diagnosis would be missed
in a large proportion of sick patients because of a large FNR.
If one shifts the cut-off point leftwards to decrease the FNR,
the FPR increases and vice versa.

Receiver-operating characteristic (ROC) curves

The relationship between sensitivity and specificity is well
illustrated by the use of ROC curves. The curve is obtained
by plotting the true positive rate (sensitivity) of the test for
all possible cut-off points on the ordinate versus the false posi-
tive rate (1 – specificity) on the abscissa (Figure 8). A test
that performs well in discriminating between those with and
without the disease will have a curve that deviates sharply
upwards and leftwards: i.e. the greater the area under the
curve, the better the ability of the test to distinguish between
diseased and non-diseased states. The dotted diagonal line
("the line of unity") depicts a test that cannot distinguish be-
tween individuals with and without disease (i.e. a test result
that occurs purely by chance). The diagonal line yields an
area below it of 0.5 (50%). In choosing a suitable cut-off value
from an ROC, one usually chooses a point on the ROC curve
for which the vertical distance from the point to the line of
unity is the greatest (double-headed arrow in Figure 8). It can
be seen that an ROC curve is a graphical depiction of the
positive likelihood ratio of a test {LR+ = sensitivity / (1 –
specificity)}:

The Odds Ratio

A statistic often used in case-control studies by epidemiologists
is the Odds Ratio of a test or of a risk factor. The odds of obtain-
ing a positive test result in persons who have the disease are:

Probability of obtaining a positive test result in diseased persons
-----------------------------------------------------------------------------
Probability of obtaining an negative result in diseased persons

a / (a + c)
=  ------------- = a/c

c / (a + c)

(Reminder: the odds of an event occurring is the ratio of the
probability of it occurring to the probability of it not occur-
ring). Likewise the odds of obtaining a positive result in healthy
persons is

b / (b + d)
= ----------- = b/d

d / (b + d)

The odds ratio for obtaining a positive test result is defined as
the following ratio:

Odds of obtaining a positive result in a diseased person
------------------------------------------------------------------------
Odds of obtaining a positive result in a non-diseased person

a/c
Referring to the 2 x 2 table (Table II), the odds ratio = ----- = ad/bc

b/d

The odds ratio is also known as the cross-product ratio be-
cause it can be obtained by calculating the ratio of the product
of the diagonals in a 2 x 2 table.

Figure 8: Receiver operating characteristic curve (ROC) curve. The dotted di-
agonal line indicates where a test has a 50% post-test probability, i.e. a test
that is of no use. The double-sided arrow indicates the maximum distance
from the diagonal line, an optimum cut-off point for a test.

D+ D-
T+ a b
T- c d

;

;

Figure 7: In selecting a suitable cut-off point, there is a trade-off between sen-
sitivity and specificity. Shifting the cut-off point to the left to obtain greater
sensitivity, results in a greater number of false positive tests (i.e. reduced
specificity). On the other hand, shifting the cut-off point to the right to obtain
greater specificity, results in a greater number of false negative tests (i.e. re-
duced sensitivity).
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The probability of an event A occurring conditional upon event B i.e. P(A|B) is given by
Bayes’ theorem which states:

P(A and B)
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P(B)
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P(D+ and T+)
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P(T+)
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P(T+)
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{P(T+ and D-)} (summation rule, equation-1, similar to the dice example above)

Appendix: Derivation of an expression to calculate posttest probabilities of diagnostic tests using Bayes’ theorem.
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P(T+|D+).P(D+)
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P(T+|D+).P(D+)
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P(T+|D+).P(D+) + P(T+|D-).{1 – P(D+)}

Substituting the definitions for TPR and FPR into equation A3 (Table I) we obtain:

P(D+).TPR
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P(D+).TPR
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