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ABSTRACT 

 

The study investigated the relationships between tunnel and ambient temperature and relative 

humidity (RH) and their effects on the performance of a tunnel solar dryer tested by drying 

peach slices. The temperature and RH showed an inverse proportion because if the ambient 

temperature increased, both the tunnel and ambient RH dropped. There was a direct 

proportion between the increasing ambient temperature and increased tunnel temperature. The 

use of treatment such as ascorbic acid or lemon juice did not have a significant effect on the 

overall drying between the yellow and white landraces. Ascorbic acid had a tendency to 

perform better than lemon juice which was also better than the untreated slices in terms of the 

taste and overall acceptability of the dried products. White peach slices were of better quality 

than yellow slices. It was concluded that solar drying is possible in the Midlands region. 

Extension officers and researchers can work hand in hand in partnerships with communities 

in implementing old and cheap but ignored technologies such as this method of food drying.  

 

Keywords: Ambient temperature, ambient RH, tunnel RH, tunnel temperature, lemon juice, 

ascorbic acid. 

 

1. INTRODUCTION 

 

Extension services and researchers working in the Impendle area of rural KwaZulu-Natal mist 

belt in South Africa are well aware that peaches are seen all over the area, whereby almost 

every homestead has one or up to 30 trees which have long been an important source of 

nutrition for the mostly impoverished households in this traditional authority area (Phillips, 

2015). However, peaches are not grown only in Impendle, since areas of Tugela Region and 

Kokstad also produce this fruit in the small-scale sector. Small scale peach growers in the 

province of KwaZulu-Natal lose a significant portion of their fruit because they lack the 

capacity and resources to harvest and use or process all the fruit which is produced within a 

short two and half months harvesting season (Phillips, 2015). Pests and diseases are always a 

problem in the small-scale farming sector where there are limitations of proper crop husbandry 

skills (Phillips, 2013; Phillips, 2015). Chemicals are also scarce or an expense (Phillips, 2013; 

Phillips, 2015). It becomes a challenge to the extensionist when farmers bring their difficulties 

such as the lack of storage facilities or that the fruit becomes spoilt. Farmers tend to leave the 
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fruit hanging on the tree even during ripening stages. This results in over-ripening, pests and 

diseases attacking, and the fruits dropping off the tree, losing their value. It is estimated that 

about 50% of food is lost by Sub-Saharan African farmers during postharvest due to a lack of 

storage facilities (Gunders, 2012). Ayua et al. (2016) reported that the reduction of postharvest 

losses in fruit and vegetables is important to ensure food security and availability now, and in 

the future. Kader and Rolle (2004) had earlier reported that there is less funding for research 

projects geared towards reducing food losses, especially in the developing countries. Mustayen, 

Mekhilef & Saidur (2014) explained that the quality and quantity of many agricultural food 

products, such as fruits, grains and vegetables are often low because of poor processing 

techniques and lack of storage facilities.  

 

Drying of agricultural products has always been considered to be an important technique of 

conserving agricultural commodities. Drying is defined as the process of moisture removal by 

simultaneous heat and mass transfer (El-Sebii & Shalaby, 2012). Open sun drying has been 

widely used in developing countries, because mechanical dryers are expensive, unaffordable 

and also require fuel to operate (El-Sebii & Shalaby, 2012). Food drying depends on a number 

of weather parameters. It has been reported that the most important weather parameters are RH, 

temperature and wind speed for evapotranspiration models (Valipour, 2014). Pangavhane, 

Sawheny & Sarsavadia (2002) explained that open sun drying food under unfavourable misty 

and cool climatic conditions such as the similar conditions in the Midlands of KwaZulu-Natal 

leads to severe losses in the quality and quantity of dried products.  

 

The introduction of solar dryers especially in areas with high RH is therefore one of the 

solutions to reduce crop losses and improve quality of dried products (Yaldiz, Erteken & Uzun, 

2001). In artificial solar food drying with improved dried product quality as opposed to open 

sun drying, air velocity and temperature are very important parameters (Banout et al., 2011). 

Furthermore, mass transfer of air and evaporation of water are a result of high heat energy 

during evaporation, which are some of the drying condition requirements that play an important 

role in ensuring that the product is dried effectively (Jain & Tiwari, 2004). Tunnel solar drying 

is one of the methods currently used by developing nations to protect and improve the quality 

of their dried agricultural products. Zomorodian, Zare & Ghasemkhani (2007) described tunnel 

drying as the absorption of solar radiation into the chamber resulting in crop temperature 

increasing and discharging long wave length radiation as the main working phenomena of the 

dryer. However, these authors further reported that although the temperature in the chamber 

may increase above that of the crop, the main limitation is moisture compressing inside the 

drying chamber. There is therefore a relationship between the weather parameters and drying 

conditions required in a solar tunnel dryer. An imbalance between the two environments may 

result in improper food drying. During the solar drying period, maximum solar radiation, 

maximum efficacy and minimum ambient moisture content should always be considered. 

According to an explanation by Jain and Tiwari (2004), drying a product enclosed in a plastic 

covering produces a greenhouse effect to trap the solar energy. However, the rate of drying 

(moisture evaporation) depends on various external parameters. Solar radiation, ambient 

temperature, wind velocity and RH, as explained by Valipour (2015), are some of the 

parameters. Instead of sun or shade drying, solar drying provides a better quality product and 

is classified into four categories (Table 1) according to the mechanism by which the energy 

used to remove moisture is transferred to the product (El-Sebaii & Shalaby, 2012). When the 

product being dried is stored under shelter during the night and being subjected to high moisture 

content or rain it can be remoistened. This will result in considerable spoilage that includes 

enzymatic reaction, growth of micro-organisms, and augmentation of mycotoxin which causes 
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reduction in product quality (Mustayen et al., 2014). There are specific requirements that 

properly designed solar drying systems such as tunnel dryers must take into account before 

drying specific crops (Gurlek, Özbalta & Gungor, 2009). These requirements include thickness 

of the product dried, season of drying and weather conditions. In order for the product to be 

dried, the ambient RH, which is weather dependant, must be lower than the moisture content 

of the product to be dried in a tunnel using solar energy.  

 

Mustayen et al. (2014) described tunnel solar drying as the most effective in terms of low costs, 

maintenance and operation, however, these authors further explained that this type of drying 

has some limitations. 

 

2. PROBLEM STATEMENT AND STUDY AIMS 

 

Agricultural researchers are mainly focusing on production, be it meat, fruit or vegetables. 

After several visits to Impendle, it was clear that farmers lose their produce. The Extension 

Services Office also approached the research team while attending farmers in the field, to come 

together and curb such fruit losses. This was brought on due to significant losses of peach fruit, 

a lack of processing techniques and facilities of the fruit in KwaZulu-Natal Midlands, and the 

fact that open sun drying may not always be a possibility due to unpredictable weather 

conditions and high moisture content.  

 

The aim of this study was to investigate drying conditions in season one and test whether or 

not tunnel solar dryer could be used to dry peach fruit during season two of the study in the 

mist belt of the Midlands in KwaZulu-Natal. However, drying is not only limited to peaches, 

but other food commodities including vegetables, mushrooms and other fruit types available in 

the region and can be dried using solar energy. 

 

3. OBJECTIVES OF THE STUDY 

 

In season one, all data parameters were collected concurrently using the local weather station 

of the Agricultural Research Council to determine ambient data. HOBO data loggers were used 

to determine tunnel data. In season two, the data collected in season one was repeated and 

peach slice drying data was also collected. 

 

3.1. Season One 

 

Objective 1: To obtain and compare data on ambient temperature and RH. 

Objective 2: To obtain and compare data on tunnel temperature and RH.  

Objective 3: To compare ambient and tunnel relationships in terms of RH and temperature. 
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Table 1: Description of four solar drying methods (El-Sebaii & Shalaby, 2012) 

Category of dryer Description 

Sun or natural dryer The material to be dried is placed directly under hostile climate 

conditions like solar radiation, ambient air temperature, RH and 

wind speed to achieve drying. 

Direct solar dryers 

 

The material to be dried is placed in an enclosure, with transparent 

covers or side panels. Heat is generated by absorption of solar 

radiation on the product itself as well as the internal surfaces of the 

drying chamber. This heat evaporates the moisture from the drying 

product and promotes the natural circulation of drying air. 

Indirect solar dryers Air is first heated in a solar air heater and then ducted to the drying 

chamber. 

Mixed-type solar 

dryers 

The combined action of the solar radiation incident directly on the 

material to be dried and the air pre-heated in the solar air heater 

furnishes the energy required for the drying process. 

 

3.2. Season Two 

 

Objective 1: To obtain data on ambient temperature and RH. 

Objective 2: To obtain data on tunnel temperature and RH. 

Objective 3: To dry white and yellow peach fruit slices with three treatments (untreated, lemon 

juice and ascorbic acid treatments) and monitor the drying patterns. 

Objective 4: To perform taste testing with a trained panellist to determine product quality and 

acceptability. 

 

4. PURPOSE 

 

To test effects of relative humidity and temperature on tunnel solar drying. 

 

5. MATERIALS AND METHODS 

 

The study was conducted over a two-year period in 2014/2015 (Season One) and 2015/2016 

(Season Two) from December to March for each period. The Research Station is located at 

30°16'E, 29°32'S and 1130 m above sea level.  

 

5.1. Experimental design 

 

One tunnel dryer x 2 peach cultivars (white and yellow peaches) x 3 pre-treatments replicated 

three times (lemon juice, ascorbic acid and control) x 2 seasons. 

 

5.1.1. Season One: 2014/2015  

 

A parabolic solar tunnel dryer was installed at Cedara Research Station in the mist belt of 

KwaZulu-Natal, South Africa, with doors facing north and the back facing south. A transparent 

200-micron plastic sheet was used to cover the tunnel. The tunnel dimensions were as follows: 

length (l) - 7 m; breadth (b) - 2.95 m; height (h) - 2.65 m; door size - 0.6 m (w) x 2.35 m (h); 

triangular ventilation at the top of the door, base - 2.1 m and height is 0.6 m. Wind speed 

averaged at 0.8 m/s, and the floor was covered with black plastic sheet. The wire was used to 
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make tray supports on the sides of the tunnel, to place loaded trays on during the drying process. 

In the middle of the tunnel, a passage stretched from the door to the back of the tunnel. On top 

of the door, a curtain was opened and placed on the tunnel roof during drying which allowed 

wet and warm air to escape the tunnel. The back vent would allow dry air to enter the tunnel 

through the 0.9 m2 air vent opening. The total drying area of the tunnel was 21 m2. Racks of 

0.30 m x 0.60 m food grade nets were constructed and used to dry peach slices.  

 

Tunnel temperature and RH were determined using four HOBO Pro v2 onset data loggers 

installed in a tunnel and were moved around to different locations of the tunnel to determine 

any variation in temperature and RH (Nishizaki & Carrington, 2014). In order to determine 

ambient temperature and RH, a Campbell Scientific CR10 Data Logger (Gush, 2008) installed 

in the local weather station was used. 

 

5.1.2. Season Two: 2015/2016  

 

The aim of season two was to test the tunnel dryer and dry peach fruit while monitoring all the 

parameters that were recorded in season one of the study. White and yellow peach landraces 

were handpicked at Impendle in KwaZulu-Natal, South Africa. After harvesting, diseased, 

spotted and bruised fruit were removed, and the remainder were stored overnight in a cold room 

with temperature and RH settings at 5°C and 85% respectively in order to acclimatise the fruit 

physiology and because drying could not be started in the afternoon. On the following day, 

fruit were removed from the cold room and allowed to reach room temperature before 

processing took place.  

 

6. RESULTS AND DISCUSSION 

 

6.1. Season One 

 

The variation of ambient temperature from 08:00 AM to 19:00 PM significantly affects the 

tunnel temperature positively (Figure 1). The increasing ambient temperature results in an 

increase in the tunnel temperature, however, the tunnel temperature remains higher than the 

ambient temperature. A similar relationship is observed from 20:00 PM to 07:00 AM whereby 

ambient temperature decreases, followed by a decrease in tunnel temperature. However, the 

tunnel temperature still remains higher that the ambient temperature during night time. At about 

05:00 AM, the ambient temperature starts to increase, and the tunnel temperature also 

increases.  

 

The ambient and tunnel RH (Figure 1) also appeared to be dependent on temperature. The 

increasing ambient temperature causes a decrease in ambient RH accompanied by a sharp 

decrease in the tunnel RH. In addition, the ambient RH was always higher than the tunnel RH. 

It is clear that the days have higher tunnel temperatures reaching 45°C, and RH above 40%, 

whereas the nights have higher ambient RH close to 100% and low ambient temperatures 

nearing 15°C.  

 

Janjai, Intawee, Kaewkiew, Sritus & Khamvongsa (2011) reported their study findings that the 

lowest RH in the tunnel is during midday. The current study shows the same evidence of the 

lowest tunnel RH at 13:00 PM, during the day. The difference is that 40% is the lowest RH, 

which is still very high for food drying. When the tunnel temperatures drop below 20°C during 

the night, the RH in the tunnel increases above 90%. Drying has been possible in tunnel dryers 
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with RH above 40%. Stiling et al. (2012) were able to dry fruit below 10% RH in the solar 

dryer and ambient RH above 20%. 

 

Kaewkiew, Nabnean and Janjai (2012) found that the RH inside the dryer was below the 

ambient RH and the current study findings were congruent with what these authors found in 

their study. Zomorodian et al. (2007) as well as Ramos, Miranda, Brandao and Silva (2010) 

explained that solar drying rate depends on the surrounding moisture content and temperature. 

The driving force of water diffusivity is the balance between the water content in each instance 

and the equilibrium water content. The moisture content of the product being dried should be 

higher than that of the surrounding environment. The drying rate decreases as the RH increases 

in the surrounding environment at a constant temperature and increases at an increasing 

temperature and constant RH (Inazu, Iwasaki & Furuta, 2002). Ramos, Brandao & Silva (2015) 

were able to successfully develop a simulation model by drying grapes daily with RH reaching 

below 10% during the day and remained below 80% during the night, and average maximum 

daily temperature of 40 °C and a minimum of 15 °C. Fudholi et al. (2014) successfully dried 

chilli in a small 2.4 m x 1.0 m x 0.6 m drying chambers with drying chamber temperature and 

RH ranging from 28°C to 55°C and 18% to 74%. 

 

 

Figure 1: The relationship of ambient and tunnel temperature and RH mean data collected 

over a four-week period  

 

Kaewkiew et al. (2012) found that the RH of the chilli was reduced to 9% in three days and 

this was possible because the RH of the moisture outside the tunnel was lower than that in the 

tunnel. Manaa, Younsi & Moummi (2013) concluded that the water content of the dried product 

was affected by several parameters including temperature of the air, speed of the air, thickness 

of the product and pre-treatment, as well as the fact that increasing the temperature of the drying 

air and reducing the thickness of the tomato slice reduces the drying time.  

 

The positive relationship between higher drying chamber temperature and lower ambient 

temperature are related to what the current study found (Figure 2 A). When the ambient 

temperature increases, tunnel temperature also increases, with the relationship strong and 

positive. The drying tunnel RH was also related to ambient temperature (Figure 2 B). When 

the ambient temperature increases, there was a decrease in tunnel RH. The limitation in the 
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current study was that the average lowest day tunnel RH was >40% and this was too high for 

drying and may result in slow drying rate and spoilage of the product being dried. However, 

the relationship trends are similar to the environmental conditions able to dry food successfully. 

The maximum average night RH was above 90% and this may result in remoistening and 

spoilage of the product being dried at night, and therefore, extra precautions are mandatory and 

must be in place before drying in the region where the study was conducted. The rainfall and 

mist have an impact on such high moisture content in the region. Ambient RH is also related 

to ambient temperature, since when the ambient temperature increases, there is a decline in 

ambient RH (Figure 2 C). The saturation of ambient air with high RH strongly affects the tunnel 

RH as it also increases (Figure 2 D). 

 

Khiari, Mihoubi, Mabrouk & Sassi (2004) reported that an optimum temperature for food water 

removal is 80°C and if higher temperatures are used, the food will cook instead of drying. 

These researchers also found that low humidity assists the drying process since food contains 

a lot of water and if the surrounding environment is humid, the drying rate is reduced, and 

increasing air flow may improve the drying process. The current study temperature remained 

below 80°C, implying that drying is still possible below 80°C, however, the time to complete 

drying may be extended with a day and a few hours. 

 

The close relationship between ambient and tunnel solar dryer temperature and RH is very 

important. Manaa et al. (2013) found while drying tomato that cultivars also affect the drying 

conditions and quality of the dried product when the temperature is above 40°C. However, 

when the temperature was below 40°C, the drying curves and product quality were similar. 
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Figure 2: The relationship between (A) ambient and tunnel temperatures, (B) ambient 

temperature and tunnel RH, (C) ambient temperature and ambient RH, and (D) ambient RH 

and tunnel RH. 

 

6.2. Season Two 

 

Figure 3 displays the drying characteristic curves of lemon juice or ascorbic acid pre-treatments 

and an untreated control of the white and yellow peach slices used for this study. The drying 

of peach slices began at the same time with an average moisture between 80 and 85% (p > 

0.05). There was a significant sharp drop during the first six hours for white control and yellow 

ascorbic acid slices (p < 0.05). However, the white lemon treated and white untreated had a 

significant drop in the first six hours, whereas white lemon, white ascorbic, yellow lemon, and 

yellow untreated were not significantly different in the first six hours (p > 0.05). The yellow 

ascorbic acid treated slices’ average was the least in the decreasing moisture content for the 

first six hours. It also started as the highest moisture content at 85%, however, it was not 

significantly different from all other treatments. The yellow control and the white ascorbic acid 

treatment followed similar trends from the 0 hour to the 22nd hour of drying (p > 0.05). Except 

for the yellow control and white ascorbic acid, all treatments were significantly different during 

the 8th hour of drying.  
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Figure 3: Drying characteristic curves of different pre-treated and untreated peach slices 

 

Moreover, there were no significant differences from the 10th hour to the 22nd hour of drying. 

The drying process was completed at 6% moisture content. From the 18th hour to the last drying 

hour, there was no change in peach mass. White lemon and the yellow lemon treatments 

showed a strong significant difference in the drying times (p < 0.001). It is evident in figure 3 

that white peach dried much quicker than yellow. The white lemon dipped slices dried at the 

fasted rate in the first six hours. The white untreated slices also dried faster in the first six hours. 

However, the yellow cultivar (treated or non-treated fruit) did not show any trend and remained 

inconclusive in the drying curves. 

 

Furthermore, figure 4 displays the results of nine hedonic scales obtained from a taste testing 

conducted by 15 trained panellists a day after drying the fruit.  
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Figure 4: Nine-point hedonic scale obtained from taste testing panellists 

 

(i) Colour: Both controls of white and yellow cultivars turned brown during the processing 

and drying period and hence they scored lowest in colour rating, followed by lemon 

juice. Ascorbic acid was significantly different from both lemon and untreated peach 

for both yellow and white cultivars. However, there was no significant difference 

between white and yellow slices in the ascorbic acid treatment. Ascorbic acid was 

above average and received a score of about 6/9 for both cultivars.  

(ii) Taste: Ascorbic acid received the highest score also in the taste. However, the control 

of white peach displayed better taste scores than lemon juice treatment in yellow 

cultivar. White cultivar treated with lemon was significantly better from both ascorbic 

acid and control for both yellow and white cultivars. 

(iii) Aroma: Ascorbic acid had no significant difference between the white and yellow 

cultivars. White slices treated with lemon was significantly better than yellow slices 

treated with lemon. Ascorbic acid had a tendency to produce better aroma as it did with 

colour and taste.  

(iv) Texture: Peach slices treated with ascorbic acid and lemon treatments in both yellow 

and white cultivars were significantly different, with white produced a higher score for 

better texture. In addition, white slices were ranked higher than yellow in texture for 

the lemon treatment. The white slices were rated significantly higher than the control 

and lemon for both white and yellow cultivars.  

(v) Mouth feel: The white slices of ascorbic acid and lemon treatments were rated with the 

highest scores for better mouth feel than the control for both white and yellow cultivars 

and were also rated higher than ascorbic acid and lemon for the yellow cultivar. 

However, white slices of ascorbic acid were also rated significantly higher than white 

slices of lemon juice. 

(vi) Overall acceptability: The white and yellow slices with ascorbic acid were not 

significantly different but were rated the highest for better acceptability. The lemon 

juice white slices were not significantly different from ascorbic acid treatments applied 
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in both yellow and white peach slices. The lemon juice treatment in yellow peach was 

not significantly different from the control of both white and yellow peach slices. 

 

7. CONCLUSION 

 

Extension and advisory service, together with researchers and small-scale farmers, can 

implement a project like this one. It was concluded that during the day, the increase in ambient 

temperature increases the tunnel temperature. There is a strong and positive relationship 

between ambient and tunnel temperatures. Increasing temperature reduces the ambient RH, 

which is associated with a decrease of the RH in the tunnel dryer. At night, the moisture content 

in the tunnel increases to very high and unacceptable levels. Farmers who adopt the technology 

must remove the drying product and keep it sealed in airtight containers or bags overnight. 

There was not much effect by the use of lemon juice, ascorbic acid or no treatment on the 

drying rate of both yellow and white slices. The white cultivar performed much better than the 

yellow cultivar when it comes to taste testing. The ascorbic acid produced better slices than 

lemon juice. The study further concluded that the drying conditions do allow the use of tunnel 

solar dryer in the Midlands of KwaZulu-Natal with a caution that produce needs to be removed 

overnight and be stored in airtight containers or plastic bags.  

 

8. RECOMMENDATIONS 

 

It is recommended that farmers utilise the inexpensive solar dryers in the midlands of 

KwaZulu-Natal Province since drying was a possibility in the mist belt, which was regarded as 

the worst-case scenario. It is important to consider the period of drying. Between December 

and March, there are rains in the Midlands and mist, however, close monitoring weather 

patterns does allow drying to take place. A farmer would need at least three to four days of no 

rain, depending on the slice thickness of their produce. Slices thinner than 4 mm shrink and 

change to black colour. It is therefore recommended to use peach quarters or slices thicker than 

5 mm. Remove the product being dried at night to avoid rewetting, which causes grey mould 

during the drying period if the product was not removed. This work stresses that farmers need 

to have a clear problem before they can accept and implement some of the research output. 
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