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Countering inbreeding with migration
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The eff'ect of migration on inbreeding is moclelled fbr small populations with immigrants from a large unrelated population.
Different migration rates and numbers fbr the two sexes are assumed, and a general recursion equation for inbreeding
progress derived, which can be shown to lead to an equilibrium inbreeding coeftlcient where the ef-fbcts of genetic clrift and
migration balance each other. For small migration rates and large numbers of breeding animals it is shown that migration of
only the scarcer sex wil l  minimize the equil ibr ium inbreeding. Migration from only one sex wil l  also be an advantage in
small  populat ions with large migration rates. In small  populat ions with large migration rates f-ewer migrants are necessary
for a given equil ibr ium inbreeding coetf icient than in large populat ions with small  migration rates. Final ly, an equation is
derived for situations where the number of femaies is so large that their contribution to inbreeding can be ignored. Simple
tables are given for the equilibrium inbreeding coefficients where the number of migrants ancl herd sizes are taken into con-
sideration. The general impression fiom these tables is that, for equal numbers of the two sexes, the provision of 2-4
migrants to a populat ion should stabi l ize inbreeding. In populat ions with low male to female rat ios, where only rhe inbreed-
ing f iom the male side is important, one or two male migrants should stabi l ize the inbreedins.

Die effek van migrasie op intel ing is gemodelleer vir kiein bevolkings niet immigrante uit  'n groot onverwante bevolking.
Verski l lende migrasietempo's en aantal le manlike en vroul ike diere is veronderstel en'n algemene rekursievergelyking vir
die vordering van intel ing is afgelei.  So'n rekursievergelyking lei tot 'n ewewigsintel ingskoeff isient waar die uitwerking
van genetiese monstering en migrasie in balans is. In die geval van klein migrasietempo's en 'n groot aantal teelcliere worcl
daar bewys dat migrasie van die geslag met die kleinste aantal teeldiere cl ie ewewigsintel ing sal minimaliseer. Migrasie van
een geslag sal ook'n voordeel h0 in klein bevolkings met groot migrasietempo's. In klein bevolkings met gepaardgaancle
groot migrasietempo's is minder migrante nodig vir 'n gegewe ewewigsintel in-qskoeff lsient as in groot bevolkings met klein
migrasietempo's. As grensgeval is 'n vergelyking afgelei waar die aantal vroulike individue so gioot is dat hulle bydrae tot
inteling weglaatbaar klein is. Gebruiksvriendelike tabelle vir ewewigsinteling word gegee waar kuclclegroottes en die aantal
migrante in ag geneem word. Die algemene indruk in hiercl ie tabel le is dat 2-4 migrante intel ing sal beheer vir ,n gelyke
aantal manlike en vroulike diere. Met groot genoeg aantalle vroulike diere, sodat hulle bydrae tot inteling negeerbaai ir,
behoo( een of twee manlike diere inteling binne aanvaarbare grense te hou.
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lntroduction

The decline in fitness associated with inbreeding in normally
cross-fertilizing organisms often necessitates its avoidance in
animal and plant breeding (Falconer, 1989) or conservation
(Frankel & soul6, l98l). These references also provide evidence
that even a small number of migrants may serve to limit inbreed-
ing.

Probably the simplest situation by which the effect of migra-
t ion on inbreeding can be modelled is that of a small  populat ion
with immigrants from a large unrelated populat ion, the size of
which is large enough so that the contribution to inbreeding from
the emigrant population can be ignored. Two practical examples
of this situation comes to mind. The f irst is that of a zoo keeping
a small  populat ion of a certain species for which a great number
of potential emigrants exists in a nature reserve. The second
example is that of a studbreeder of a popular breed.

Equi l ib r ium inbreeding coef f ic ient

The generally accepted didactic device for the crescription of
inbreeding due to f ini te populat ion size is to assume a populat ion
of N diploid parents contributing gametes to the next generation.
It is supposed that the offspring come from pairs of gameres
drawn at random from the independently large pool of gameres
to which each parent contributes equally. The following recur-
sion equation can then be derived (Crow & Kimura, l9j0)

F r =  l l 2 N  +  ( 1 -  l l 2 N ) F t _ r ,

where F, is the inbreeding coeff icient of an individual in genera-
tion t. Assume migration from a very rarge unrelated noninbrecl
populat ion, with migration rate m. Then, again fol lowing crow
and Kimura (1970) .

F, = f" l l2N + (1 *  l lz$Ft _ Je -  m)z ( l . l )

with ( l -  m)'being the probabil i ty of sampling two gametes car-
ry ing nat ive (nonmigrant )  gcnes.

The equilibrium between the opposing eff-ects of migration ancl
restr icted populat ion size on the degree of genic identi ty by
descent can be quantified by the equilibrium inbreeding coeffi-
c ient ,  F  = F,  =  Ft_ t  So lv ing for  the equi l ib r ium F f rom ( l . l )
sives

F = ( l  -  m)zl lzNlt -  ( t  -  m)21 + (t  -  rn)21 . \ t  2 t

For small  m, ( l  -  m)-2 = I
becomes

F ' = l l ( 4 m N + 1 ) .

+ 2m, approximately, and (1.2)

( 1 . 3 )

Equation ( 1.3) is rhe srandard approximation (Crow & Kimura,
1970) for the equil ibr ium inbreeding coeff icient, showing that
the l imitat ion of inbreeding by migration clepends mainly on mN
= M, the number of migrants in a population, indepenclent of the
populat ion size.
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Sex dif ferences in numbers and migration rates

By solving the relevant recursion equations i t  can be shown
(Crow & Kimura,  1970)  that  w i th  m = 0,  equat ion ( l . l )  g ives a
fair approximation to the progress in inbreeding with dift-erent
numhers o l -  two separatc  sexes in  a  smal l  popula t ion by assuming

l lN,  =  l l4N,  +  l l4N) ,  or  N.  -  4N1N' / (Nr  +  Nz) .

where Nr = number of males and N: = number of f 'emales in a
populat ion with size N = Nr + N2, and where N,, is the so-cal led
ef ' fec t ive popula t ion number  which can be subst i tu ted in  ( l . l )  in
pl i ice of N to describe inbreeding due to f ini te populat ion size.

From the equal genic contribution to off-spring by the sexes, it
is natural to define the effective migration rate (m,,) as equal to
the mean of the male and f 'emale micrat ion rates.

t t t , ,=  ( rn r+  n t . )12 .

+ l

Recursion equat ion

The probability that two genes in different individuals in genera-
tion t are both derived from the same native individual in cenera-
tion (r - 1) is

( l -  m1) /4N,  +  ( l  -  m) /4N2.

The probabil i ty of both genes
individual in generation (r - l )

m1 l4N1+  m. /4N2 . ( 1 . 7 )

The probabil i ty that two genes in difTerent individuals in genera-
t ion r are derived from dit lerent native males in generation (t  -  I  )
i s

l ( t  - m ) 2  - ( l -  m ) t N l t |  ( l  8 )

and, l ikewise, from dif ferent native females.

[ ( 1  -m)2  - (1  -  m2 ) /N2 ]14 .  ( 1 .9 )

The probability that two genes are derived fiom native males and
t-emales is

( 1  - n r ) ( l - m 1 ) 1 2 .

( l  6 )

derived from the same migrant
i s

(  1 . 4 )

Substi tut ing ff i ,  = (mr + m)12 and N" = 4NNzl(N1 + N2) in
(1 ,3) ,  and wr i t ingpr  =  Nr / (Nr  +  N: ) ;  pz= Nz/ (Nr  +  Nz)  tbr  male

and f-ernale l iequencies respectively, and mrN r = Mr = number of

rnale migrants and fit-tNt - M. = number of t'ernale migrants
gives

F  =  l l lS (p tM ,  +  p - ,Mr )  +  l \ ,  ( 1  5 )

but st i l l  based on die assumption of small  migration rates.

From equation ( 1.5) two important conclusions tbl low:

Conclusion 1: With equal numbers of the two sexes in the popu-

lat ion, the equil ibr ium inbreeding coeff icient depends asymp-

tot ical ly only on the total number of migrants, regardless of

the i r  sex.

P roo f :  W i th , r r r=  Pz=V2(1 .5 )  becomes  F  =  l l l 4 (M t  +  M)  +

l l ,  equ iva lent  to  (1 .3)  wi th  Mr  + Mz = M,  h [  be ing the to ta l

number of migrants.

Cottt : lusion 2: With unequal numbers of the two sexes in the pop-

u la t ion,  the equi l ib r ium inbreeding coef f ic ient  w i l l  be min i -

mized i f ,  fbr a f lxed number of migrants, al l  migrants are from

the scarcer sex.

Proof: Assume pz> pt and write, from M1= M - Mz,

p rMz  +  p tM t  =  p rM  +  M(pz -  p ) .

Then, since M is f lxed and (p2 - p1) posit ive, i t  is clear that

I t rMz+ ptM t  is  a  maximum i f  M,  is  as large as poss ib le ,  that  is ,

k ; .  

l f  p  1M. ,  +  pzM t  is  a  maximum, then F must  be a min i -

The foregoing two conclusions seem of great enough theoreti-

cal interest and practical importance to just i fy modell in-e a more

real ist ic biological si tuation than the one portrayed by random

union between an array of an infinite number of gametes fiom a

finite set of parents. Addit ional ly, i t  seems important to deter-

mine i f  the deflnit ion of effect ive migration rate can also be sub-

stantiated from inbreeding considerations, in addit ion to the gene

frequency considerations employed in the derivation of (1.4).

Different migration rates and numbers for the two
sexes

In the general fbrmulation N1, N2, n?;, of ld n, wi l l  be def- ined as

before, with the subscripts I  ref-err ing to males an<12 to females.
The development is closely analogous to the development of the

fbrmulas for inbreeding due to small populations with diff-erent
proport ions of the two sexes. The arguments wil l ,  therefbre, be
given in outl ine only. Detai ls can easi ly be f l l led in f iom deriva-

t ions of Crow and Kimura ( 1970).

The probabil i ty that two genes in dif ferent individuals in gen-
eration t are derived from ditferent native individuals in genera-
t i on  ( t  -  l )  i s ,  t he re fo re ,  t he  sum o f  ( 1 .8 ) ,  ( 1 .9 )  and  (1 .10 ) ,

namely,

{ t ( l -  m ) +  ( l - r r . ) 1 2 - ( l -  m 1 \ l N 1 - ( 1 -  m ) l N 2 l l 4 .  ( 1 . 1 1 )

The probabilities of native and migrant combinations are not
necessary for turther development since i t  is assumed that native
and migrant individuals are unrelated.

Let G, be the coefficient of consanguinity of two random
native individuals in generation r,  with the coeff icient of consan-
guinity being the probabil i ty of a random gene from one individ-
ual being identical by descent to a random gene from the other. I t
fbl lows by definit ion that

Ft  =  ( .1  -  m) ( l  *  m)Gt -  r , (  l .  I 2 )

since (1 - mt)Q - m) is the probabil i ty of a mating between
natives, and the coefficient of consanguinity between natives and
migrants, and of migrants alone, are assumed equal to zero.

The probabil i ty that two genes from dif ferent individuals,
derived from the same individual in the previous generation, are
identical by descent must be

l l 4 +  l l 4  + ( l l Z ) F t -  r  =  ( l / 2 ) ( l  +  F , _ , )

lbr natives in gcncration t.  and l12 l 'or micrants. since migrants
are assumed noninbred. Combining these probabil i t ies of iden-
t i t y  by  descen t  w i t h  (1 .6 ) ,  ( 1 .7 )  and  ( l . l  l )  g i ves

G,  = [ ( l  -  m) lN1+ ( l  -  m) lN2] (  +  F,_ , ) /8  +  Qnr lNl  +  mt lN. ) /8
+  { t ( l  - m ) + 1 1  - m ) ) 2 - ( l  -  m ) / N , - ( l  -  m ) / N 2 }  G t _ t / 4 .

( l .  1 3 )

Subst i tu t ing (1 .12)  in  (1 .13)  g ives a  recurs ion equat ion that  can
be solved to describe the progress in inbreeding of natives.

Equi l ib r ium equat ion

Migration is l ikely to be used fbr the l imitat ion of inbreeding,
and the l imit ing or equi l ibr ium inbreeding coeff icient is, there-
fore, of greater interest than the recursion equation. Putting F, =

Ft - r  =  Ft -2= F wi th  4  the equi l ib r ium inbreeding coef l lc ient ,  in
(1 .12 )  and  (  l .  l 3 )  t hen  g i ves

( r . 1 0 . )



t ' )
a -

F  =  ( l  -  m ) ( l  -  n t ) l l Z N , I l  - ( 1  - m , ) - )  +  ( l  -  p t n z - p . . n ) x

l 2 - ( 1  - r n ) ( t  - m ) l | ,  ( 1 . 1 4 )

with al l  terms as defined fbr (1.5).

Equation (1.14) does not appear to be direct ly amenable to the

development of general rules for the l imitat ion of inbreeding.

Therefore, a number of special cases of general interest wi l l  be

considcrcd.

Small migration rates and large numbers of breeding
animals

Assume ff t1, tn2 --+ 0, while the numbers of male and female

migrants  remain constant .  Then (1 .14)  s impl i f les  to

F = l l l h n , N . + l l . (  1 . 1 - 5 )

which immediately just i f ies the defrnit ion of the effect ive migra-

t ion rate, nt, ,= (nt,  + m.t)12, conjectured in (1.4). Hence the two

important conclusions on male and female migrants, which fol-

lows f iom (1.5), hold in general under the assumptions on which
( 1 . 1 5 ) a r e b a s e d .

Equal migration rates and numbers

The restr ict ion of separate sexes on the completely randoni union

of gametes was ignored in the derivation of ( I  .2). Therefore, a

situation with separate sexes is worth exploring, even if ffit = ffi2
= r r .  Under  th is  assumpt ion (1 .14)  reduces to

F  =  ( l  -  m )2 l l zN" l  -  ( l  -  m )21+  0  -m) [2  -  ( l  -  m )2 ] \ .  ( 1 .16 )

For  m smal l  (1 .16)  is  approx imate ly  equal  to  11.3) .  Denote the

equi l ib r ium F f rom (1.16)  by F(16)  and that  l ' rom (1.3)  by f (3) .

By straightfbrward but tedious algebra i t  can be shown that F(16)
< F(3) ,  that  is  to  say that  equat ion (1 .3)  g ives an upper  l imi t  to

the so lu t ion to  equat ion (1 .16) .  Th is  conc lus ion is  a lso i l lus t ra ted

in Table l ,  which is a tabulat ion of ( I  .  l6) in terms of numbers of

migrants and herd size, with equal numbers for the two sexes ( i .e.

Nr = Nz- N/2).The l imit value is the value obtained from (1.3),

lbr a given number of rnigrants. This table may be of value fbr

very small  herds, lor which even a small  number of migrants rep-

resent a large migration rate. For example, f  or a herd size of eight

or less, t .wo migrants per generation may be adequate, and four

rnigrants per generation may only be under consideration for

herd sizes of more than 16.

It  is of interesr, to note that (1.2) is an excel lent approximation

of  (1 .16) .  For  example,  i f  the l l rs t  l ine o f  Table  I  is  computed

trorn (1.2), total agreement wil l  be found for t igures rounded to

whole percentage values.

Table 1 Percentage inbreeding at equi l ibr ium between the
effects of migration and restr icted populat ion size with equal
numbers of the two sexes

Herd size
Migrant
number

S. Alr.Tydskr.Veek., 199 5.25(2 )

Males only

Migrants al l  males and equal populat ion numbers in the
two sexes

Equal migration rates and equal numbers for the two sexes imply
that only even numbers can appear in Table l .  Uneven numbers

of migrants can best be handled by assuming migrants are al l  of
the same sex. Consider only male migrants, that is, assume m, =

0. Then, with N' - Nz= N/2, so that p2 = l12, ( l . l . l )  reduces to

F  =  ( l  -  t n i ) l l m f i / 4 -  m , )  +  ( 2 -  m )  ( 1  +  m ) 1 2 1 .  ( 1 . 1 7 )

Table 2 is a tabulat ion of (1.17) in terms of numbers of male

migrants Mr = N,ru, and herd size. A comparison with Table I

shows an advantage in inbreeding l imitat ion in very small  popu-

lat ions with migrants al l  of the same sex, even when the numbers

of animals in the two sexes are equal. Otherwise the conclusions

emanating from Tables I and 2 are equivalent.

Table  2  Percentage inbreeding at  equ i l ib r ium between the
effects of migration and restr icted populat ion size with equal
numbers of the two sexes and with only male migration

N'lale
rnigrant
number

Herd s ize

l1  . ' l 20 .0

l l . l

1 . 1

5 . 9

3 . 0

Fewer  breeding males

Conclusion 2, emanating f iom equation (1.5), suggests that for
t-ewer breeding males than f 'emales only male migrants need to
be considered. I f  the number of t 'emales is much larser than the
number of males. i t  fol lows that

N, .  =  4Nr ,  Pz= Nr l (Nr  +  N: )  =  I  andPr  = Nr / (N1 + N. , )  =  Q.

(  1 . 1 8 )

approx imate ly .  Subst i tu t ing (1 .18)  an<l  m.  =  0  in  (1 .14)  resu l ts  in

t6

14 .0

8.',7

5 . 2

3 . 3

F  =  (1  -  m1 ) l l 2N  pn , (4  -  m1 )

For rrtr  J 0 tnd mtNl constant

F = l l (8mrN,  +  l ) .

+  ( l  -  m r z ) f .  ( 1 . 1 9 )

( 1 . 1 9 ) b e c o m e s

(  1 . 2 0 )

t6

Equat ion (1 .20)  is  equiva lent  to  (L5)  fbr  I /N.  negl ig ib le .  S ince
all  terms are posit ive i t  is immediately obvious that F(19) <
F(20) where F(19) and F(20) refer to equi l ibr ium values f iom
(1 .19 )  and  (1 .20 )  r espec t i ve l y .

Even tbr a small  number of rnigrants the migration rate may be
large for a small  number of males in the herd. Hence, Table 3
t iom equation (1.19) for large migration rates and a small
number of males in the herd may be of value. For practical con-
vcnience i t  is in terms of numbers of males in the herd and
migrant numbers. A manager can decide on a tolerable degree of
inbreeding and decide, for example, that one or two migrant
males should always be kept among thc male members ol thc
herd. The l imit values in Table 3 are from ( 1.20).

.5.9

8 . 91 .05 . 8

1 . 9

1 . 9

1 . 0

1 . 0

0.4 4 .0
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Table 3 Percentage inbreeding at  equi l ibr ium between the
effects of migration and restricted population size with male
migration and large numbers of females

Number of males in herd

Analogous to  (  1 .2)  the
(1.24)  are

F = ( l  - m , ) 2 1 { 2 N , [ 1  - ( l

A 1
+ J

equi l ib r ium so lu t ions to  (1 .23)  and

- m ) 2 ) + Q  - m , ) 2 ) ( 1 . 2 - 5 )

Migrant
number

| ,,1

Emigration from a large number of equally inbred
populat ions
Instead of emigration from a large unrelated populat ion, one can
consider emigration from a large number of equivalent small
populat ions. The assumption is, therefore, that al l  members of a
populat ion are equally inbred, but al l  migrants are unrelated to
each other and to members of the native populat ion. This situa-
t ion can be handled by a modif icat ion of ( L l3) to

G , = U  / N ,  +  l / N 2 l ( l  +  F , _ , ) / 8
+  { t ( l  - r t t ) +  ( l  - r n 2 ) l r - ( l -  m 1 \ l N 1 - ( l  -  m . , ) l N z j c t _ t 1 1 ,

( 1 . 2 t )

wh i l e  ( 1 .12 )  r ema ins  t he  same .

From (  l .2 l  )  and (  l . l2 )  the equi l ib r ium inbreeding coef f ic ient
i s

F  =  ( l  - n t 1 2 l l 2 N , , |  -  ( l  - r r ) 1 1  +  1 l  - r r 2 ) ) , ( 1 . 2 2 )

under  the same assumpt ions as (  I  .  l6 ) .  S ince N > 2,  i t  i s  apparent
that  (1 .22) ,  (1 .16)  and (1 .2)  are c lose approx imat ions to  each
other.

Thc conclusion is, therefore, that migration from a large
number of more or less equally inbred, unrelated populat ions can
be approximated f iom Tables l ,  2 and 3, which were constructed
fbr migration from a single large populat ion. In practice this
probably approximates the situation for a studbreeder in a large
brecd. The l ikely situation for endangered species and smaller
breeds wil l  be modelled in the companion art icle (Roux, 1995).

Differences between alternative solut ions

To just i fy developments in the companion art icle (Roux, 1995), i t
is important to know if  the naive general izat ions of ( I  .  l )  to thc
situation of dit ferent numbers fbr the two sexes.

o r  

F , = 1 1 1 2 N , , +  ( 1  -  l l 2 N , ) F , - r l ( 1 - m , , ) 2

F,  =  l l l2N,  +  (1  -  112N,)F,_ r l ( l  -  n1) ( l  -  n t2) ,

with al l  terms defined as for ( I  .5), can have equil ibr ium solut ions
approximately equal to the general ( 1 .  l4).

F =  ( l  - r r 1 ) ( l  - m 1 ) l { 2 N " [ 1 - ( l  -  m ) ( 1  - m ) ] +  ( l  - n 1 ) ( l  - t n ) | .

0 .26\

Certainly lor mt, f f i2 ) 0 and rf l1N1, mzNz constant ( i .25) and
(1.26) , l ike  (1  .14) ,  are  approx imare ly  equal  ro  (1 .15) .  However ,
for m1 or f tr2 a |  (1.26) is clearly a better approximation to
( L l4) than ( 1.25). This suggests that (1.26) should be pref-erred
above (1 .25)  as an approx imat ion to  (1 .14) ,  i f  tn1# f t t . t .  For  ru ,  =
nt .  ( l .25) = (1.26).I f  Tables 2 and 3 are rounded to whole per-
centage values, calculat ions from (1.26) instead of ( l .  l7) or
(L19)  g ive equiva lent  resu l ts .

Equation (1.26) is comparable to a special izat ion from a more
compfex and general model presented by Chesser et al.  (1993).
For exactly two offspring per female and the variance in the
number of f 'emales mated to a male equal to the mean, their equa-
tion (49) and ( L26) are approximately equal to each other.

Discussion

The equation ( 1.2), representing the equil ibr ium between the
eff-ects of migration and restricted population size, dates back to
Wright 's (1943) work on populat ion structure in what he termed
the island model. In this art icle Wright 's formula (1.2) fbr the
equil ibr ium inbreeding coeff icient was general ized to accommo-
date sex dif terences in populat ion numbers and migration rates
with practical appl icat ion in conservation and animal breeding in
view. Nevertheless, this general izat ion remains of l imited value
as the requirement of unrelated rnigrants may be dif f lcult  to
achieve in many practical si tuations. However, in the context of
equiprobable migration between subpopulat ions, the maximunr
dif ference ( l  -  , t)  in inbreeding coeff icients of such populat ions
and a conceptual aggregate random mating populat ion can be
shown to be asymptotical ly equal to the equil ibr ium inbreeding
coeff icient. The development of this approach is the topic of the
second art icle in this series (Roux, 1995), in which the results
from the present article will be important fbr the justification of
general izat ions al lowing practical appl icat ion in conservation
and animal breeding. Even the tables wil l  present important base-
l ines fbr the maximum difference (1 - k) mentioned above.
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