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Use of the gamma function in equations which describe ruminal fermentation
and -outflow rates for the prediction of voluntary intake and protein degradation
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Five models were studied for goodness of fit to in sacco organic matter disappearance. Except for the first-
order model, all the other models showed an accurate and unbiased fit, although in some cases this was
achieved by unrealistic parameter estimates or an increase in the number of parameters that need to be
estimated. The first-order model showed a biased fit as indicated by a slope which is significantly larger than 1
for the regression between observed and predicted values. Marker passage at the ileum was satisfactorily
described by the gamma retention time distribution in 90% of the cases. Only the curve of one sheep, which
had a very irregular flow pattern, could not be fitted accurately by this function. The integer form of the
gamma distribution of retention time may be used to combine outflow and fermentation in one equation. This
equation describes the disappearance of fermentable OM, when calculating intake.

Die akkuraatheid waarmee vyf modelle in sacco organiese-materiaal (OM)-verdwyning beskryf, is bepaal.
Behalwe vir die eerste-ordemodel, het al die modelle 'n akkurate en onsydige passing gelewer, hoewel dit in
sekere gevalle verkry is deur onrealistiese beramings van parameters, of deur ’n vermeerdering van die aantal
parameters wat gepas moet word. Die eerste-ordemodel het ’n sydige passing gelewer soos aangetoon deur die
helling tussen die waargenome en voorspelde waardes wat betekenisvol groter as 1 was. Die vloei van merker
by die ileum is bevredigend beskryf deur die gamma-retensietydmetode. Slegs een skaap se kurwe van merker-
uitskeiding was baie veranderlik en kon nie akkuraat deur die funksie gepas word nie. Die heeltalvorm van die
gamma-verdeling van retensietyd kan gebruik word om uitvloei en fermentasie in een vergelyking te kombi-
neer. Hierdie vergelyking beskryf die verdwyning van fermenteerbare OM wanneer inname bereken word.
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Introduction

It is a well-established fact that voluntary feed intake is a
function of rumen fill, as well as removal rates from the
rumen, in the case where intake is limited by rumen fill
(Roux & Meissner, 1984).

Both fermentation and outflow from the rumen have
been estimated by indirect methods such as the in sacco
technique (@rskov & McDonald, 1979), the in vitro
approach (Mertens & Loften, 1980), and the use of
markers (Graham & Williams, 1962). In order to estimate
voluntary feed intake from these measurements, fermen-
tation and outflow have to be combined in a single
equation, together with other variables, which would then
allow the situation in the rumen to be described at steady-
state intake. This was done by Pienaar, Roux, Morgan &
Grattarola (1980) for first-order equations. However,
both outflow and fermentation show significant deviations
from first-order kinetics (Mertens & Loften, 1980;
McDonald, 1981; Pond, Matis & Ellis, 1982; Mahlooji,
Ellis, Matis & Pond, 1984; Pienaar & Roux, 1984),
which consist of a phase of increasing activity at the
onset of both the outflow and fermentation processes.

Mertens & Loften (1980) and McDonald (1981) accom-
modated this deviation from first-order kinetics in their
models by including a lag (dead) phase at the onset of
fermentation. This correction implies that a phase of no
activity immediately precedes a phase of maximum
activity, at which a first-order kinetics set in at a specific
point in time. It is difficult to imagine such a situation in
the rumen.

The gamma function (Law & Kelton, 1982) appears to
eliminate the problems of the model of McDonald (1981),
since it does not include a lag (dead) phase. Rather, it
can accommodate a phase in which activity increases from
virtually zero to maximum. This model makes use of two
parameters, one describing shape (a) and one the scale
(B) of the curve. These two parameters give this model
more flexibility than a simple first-order model. Further-
more, some functional significance may also be ascribed
to these two parameters. The inverse of parameter B is
similar to a first-order rate constant, whereas parameter
o modifies the shape of the first-order curve. When a =
0, the equation reduces to that of a first-order curve. As o
increases, the effect of a delay (slow starting) phase is
superimposed on the parameter B and disappearance rate
is not only slowed down, especially at the onset, but is also
smoothly carried over into the later stages of fermenta-
tion. This description of events would seem to be more
appropriate than a lag phase, which is inappropriate to
rumen digestion kinetics.

The effect of o on the mean of the gamma distribution
(ax«B) may also be obtained by simply subtracting B
from the mean;

(e:B)—B. 1)
For example, if the mean of the gamma distribution
(x«B) = 48 h and B = 30 h, the effect of (@ = 1,6) on
the total curve is 48 — 30 = 18 h.

Attempts to relate fermentation rate or digestibility to
voluntary intake are not uncommon (Gill, Conrad &
Hibbs, 1969; Hovell, Ng’ambi, Barber & Kyle, 1986).
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However, since the relationships between these factors
and intake are not linear, and are influenced by many
other factors (Pienaar et al., 1980), it would seem logical
to incorporate these relevant factors into a single equation
which describes intake in terms of rumen digestion
kinetics. By doing so, the numerical relationship of these
factors to voluntary intake may be established under field
conditions. This has been done for cases where outflow
and fermentation were described in terms of first-order
equations (Pienaar et al., 1980). However, since neither
outflow nor fermentation was adequately described by
first-order equations, the data were re-examined in terms
of the intake equation derived in this paper.

In this study, the gamma function is fitted to both in
sacco OM disappearance (fermentation) and faecal
marker excretion (passage), and the goodness of fit is
demonstrated. Other functions, often used to describe
fermentation, are compared to the gamma function in
terms of accuracy of fit. General equations for intake and
protein degradation are also constructed from equations
where outflow and fermentation are described in terms of
gamma probability distributions.

Materials and Methods
Animals and diets
Fermentation study

The animals used in the fermentation studies were six
mature, rumen-cannulated sheep fed two roughage diets.
These diets consisted of either ground lucerne hay or
ground maize-cob leaves, supplemented with micro and
macro minerals, some molasses, urea and fish-meal, so as
to exceed the minimum mineral and protein requirements
for maintenance (NRC, 1975). The animals were accus-
tomed to being housed individually in metabolism crates
and to automatic feeders set to deliver six aliquots of feed,
one every 4 h.

Marker passage study

The animals used in the marker passage study were 12
mature sheep, fitted with rumen and simple ileal cannu-
lac. Although the same diets were used as in the
fermentation studies, these were fed either in a chopped
or finely ground form (Pienaar & Roux, 1984).

Experimental procedures

In sacco technique

The method described by Cronjé (1983), using defined
aperture polyester material with a pore size of 53 um, was
used. Bags were removed after 3, 6,9, 12,24,48 and 72 h
of incubation. Samples of each diet that was fed during the
fermentation studies were incubated simultaneously in

three sheep and were repeated over two periods (Mehrez
& Drskov, 1977).

Procedure for marking solid particles

The protocol previously described by Pienaar & Roux
(1984), was used. Samples of each diet were labelled with
the (°'Cr)-mordant, and were mixed into the rumen
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digesta of each sheep. Spot samples were collected
through the ileal cannulae at short intervals.

Calculations

Calculation of fermentation parameters

Fermentation rate was described by each of five models.
The first two models may be seen as first-order; one

describing fermentation up to 24 h and the other, up to
48 h:

y=ae™™ (2)
where y represents the mass of fermentable OM in the
bag, a the mass at onset of fermentation, k the first-order
rate constant and ¢ denotes time.

The third model (equation 3; McDonald, 1981), also
based on a first-order approach with rate constant ¢ and a
fraction b’ that will ferment in time, includes a rapidly
soluble fraction a or a’ as well as a lag time, t,. The
percentage (p) fermented at time t is represented by:

P1 = a fort < tg
p=a +b' (1—e ), fort>t,. 3)
The fourth, or heterogeneous rate constant model
(Mahlooji et al., 1984), may be described as a moment-
generating function of a gamma distribution with o and 8

as spread parameters, and where D denotes the digestible
fraction, T the time delay, and ¢ the time:

F(t) = Dfor 0 <t < 7 and
Ft) =D[1+B (¢ —1)] ¢ fort=r.

“

The fifth model we propose to call the gamma retention
time model. In contrast to previous descriptions, we
postulate that the disappearance of potentially fermen-
table OM may be described by a gamma probability distri-
bution (equation 5). In statistical terms, the retention time
of potentially fermentable OM follows a gamma distri-
bution. This method was preferred to the method of
Mertens & Loften (1980) as well as to that of McDonald
(1981), since it includes a time of increasing activity (called
a delay phase), instead of the lag (dead) phase used by the
others. In mathematical terms, the model may be stated
as:

Ay o (2 Te VB, ®)

where Ay = mass of OM fermented in an infinitesimal
interval of time at time = t.

The method used to calculate the two parameters of the
gamma distribution, viz. o (shape parameter) and B
(scale parameter), is based on calculating mean retention
time (MRT, Graham & Williams, 1962) as well as mean
retention in log time, In(t), by using Table 5.11 of Law
& Kelton (1982).

Goodness of fit of all the functions used to describe
fermentation was tested by comparing predicted values
calculated from estimates of the parameters of the
function studied, with actual values observed in the nylon
bags. For example, the cumulative distribution of the
gamma function was calculated from estimates of the two
parameters, o and (3, and was compared to the actual
values (mass of fermentable OM in bag).
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Goodness of fit was assessed from an evaluation of the
slope (a) and intercept (b) parameters obtained from a
linear regression of predicted values against actual
observations, where values of a = 1 and b = 0, together
with high coefficient of association (r?) values, suggest
that the model may indeed accurately reflect reality. This
approach also allows a number of graphs to be combined,
thereby increasing the statistical accuracy of the deter-
mination.

Calculation of marker passage parameters

Goodness of fit of the gamma mean retention time model
to marker passage at the ileum was also studied. It was
postulated that the time of appearance of labelled
particles at the ileum (or abomasum) follows a gamma
probability distribution. Similar to the fermentation
model, the cumulative distribution of the gamma function
was calculated from the two parameters, a and B. These
derived data were compared to actual values of marker
passage obtained at the ileum. The method used to
calculate marker passage at the ileum has been described
by Pienaar & Roux (1984), and is known as the ileal
appearance method. In short, it comprises the calculation
of marker passage from a single injection of marker into
the rumen, where spot samples of digesta were taken at
fixed time intervals, rather than total collection of digesta.
This method has been previously validated for use under
stcady-state conditions (Pienaar & Roux, 1984). The
method preferred to calculate the two parameters, a and
B, of the gamma distribution is based on calculating MRT
(Graham & Williams, 1962) as well as mean retention in
log time In(t), by using Table 5.11 of Law & Kelton
(1982). MRT is calculated according to the following
formula:

t =32 WBCH —t)(t' +1t) /3 KBC{H —1t) (6)

where C = number of counts in the sample for the interval
t' to t. For mean retention in log time, the expression
‘In[(t" + t)/2)* was substituted for (t' + t)/2 in the same
equation.

The intake equation

Feed intake was described by Roux & Meissner (1984) as
the mass of feed in the rumen divided by the MRT of feed
in the rumen. Equation 7 may be used to describe this

relationship:
n

df/dt = Z /3 pit;, Q)
i=1

where df/dt = feed intake, Z = total amount of feed in
the rumen, p; = the proportion of component i in the
feed, t; = the mean retention time of component i, and n
= total number of components. This approach is only
valid under steady-state conditions or when such condi-
tions are approximated by averaging parameters over
suitable time periods (Pienaar, Roux & Cronjé, 1989).

For the purpose of this study feed was divided into
three fractions. The first fraction was defined as the
immediately soluble, digestible fraction with a MRT =
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0 h. This fraction will not have a measurable effect on
rumen fill. The second fraction is the insoluble, potentially
digestible fraction which disappears as a result of both
fermentation and outflow from the rumen, with each
process following gamma mean retention kinetics as
described above. The third fraction is the potentially
indigestible fraction which disappears by outflow only,
and also follows gamma retention time kinetics. In a
previous paper, Pienaar, Roux & Cronjé (1989) have
shown that this may be a reasonable assumption, and
showed good agreement between in sacco OM disappear-
ance and in vivo OM disappearance, both described in
terms of MRT.

In vivo OM disappearance includes disappearance by
both fermentation and outflow, both acting independently
on the same pool of potentially fermentable OM. There-
fore, when in sacco or in vitro estimates of OM disappear-
ance have to be used to estimate in vivo disappearance
(retention time), the two gamma functions may be
combined under the assumption that they act indepen-
dently on the same pool. The general form of mean
retention times for two integer gamma functions acting
independently on the same pool, is given in Appendix 1,
equation 15. Since the general equation is not very conve-
nient to work with, it has been solved for a few situations
of oy and oy which are commonly encountered in
practice. These are presented in equations 8—11.

The situation where oy = 1 and a; = 1 is equivalent to
two first-order equations working on one pool. MRT is
given by:

t = (1/Bo+1/B1)™" ®)
where o and a, represent shape parameters and 3y and
B1 scale parameters of the gamma functions which
describe outflow and fermentation of fermentable OM,
respectively.
For the situation oy = 2, oy = 2, MRT may be
described by
t=2(1/Bo + 1/B)™" + (2/BoB:) (1/Bo + 1/B1) . ©)
For the situation oy = 2, ay = 1, MRT may be
described by

t = (1/Bo+ 1/B)™ + (1/Be) (1/Bo + 1/B1) 2, (10)
and for ag = 1, a; = 2, MRT may be described by
= (1/Bo+1/B) + (1/B) (1/Bo+ 1/B) 2. (11)

It is interesting to compare these forms of the gamma
function with that of a single gamma distribution which
has a MRT of aB. The single gamma distribution (MRT
= o) is the appropriate form to describe the outflow of
non-fermentable OM, since only one gamma acts on one
pool.

The method described above to fit the gamma function
is suitable for fitting the general form of the gamma
function and may yield non-integer values for «. Since the
equations could only be obtained in explicit mathematical
form for integer gammas it is suggested that, for the
purpose of calculating MRTs, o be rounded to both the
integer values larger and smaller than the observed value.
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The relevant 8 values may then be calculated from the
mean values as B = t/a, where a is expressed in
integer form. MRT values may then be calculated for both
sets of integer values of . An estimate of MRT may then
be obtained by interpolation. It is suggested that, until
such time as improved estimates are obtained, those found
by Pienaar et al. (1980) should be used for the outflow of
fermentable OM on chopped roughage diets. The MRT
value of 81,7 h obtained, was assumed to be a first-order
estimate, thus being associated with a value of oy = 1.

The application of these processes to obtain voluntary
feed intake or protein degradability is given in Appen-
dix 2.

Results
Fermentation

The goodness of fit of the different models to in sacco
fermentation is shown in Figures 1 to 4 and is summarized
in Table 1. The simple first-order model (Model 1) shows
values for fermentable OM in the bag up to 48 h. The
observed mass of fermentable OM plotted against the
mass predicted by the first-order equation is presented in
Figure 1.

Figure 1 shows the comparison based on 80 data points.
The mean of the observed values (Table 1) was 1004 mg,
compared to the mean of the predicted values of 897 mg.
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Figure 1 Goodness of fit of the first-order model to OM
disappearance in sacco is shown by comparing the
observed mass of fermentable OM in sacco with the mass
of fermentable OM in sacco predicted by the model.
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Although the intercept of —40,37 + 46,86 did not differ
significantly from 0, the slope of the regression (1,163
+ 0,040) differed significantly from 1 (P<0,01). This
suggests that first-order kinetics may not describe in sacco
fermentation adequately.

The model described by McDonald (1981) — Model 2,
was used to obtain observed versus predicted values for
percentage degradation in sacco. These results are presen-
ted in Figure 2. This model correlated well with observed
values, in that the intercept of —0,672 *+ 0,694 was non-
significant, the slope of 1,010 *+ 0,013 did not differ
significantly from 1, and the coefficient of association (r?)
was found to be 0,987. The mean of the predicted percen-
tage degradation was 49,3%, compared to the mean of the
observed degradation of 49,2%. It seems that the onset of
fermentation, shown at the lower percentage degradabil-
ity in Figure 2, is associated with a larger variation around
the straight line. However, the fit remains good, resulting
in an accurate and unbiased mean prediction.

The model of Mahlooji ef al. (1984) — Model 3 — was
also used to predict the mass of fermentable OM in the
bag. Once again, calculated values were compared to the
observed mass of fermentable OM in the bag. The results
are presented in Figure 3, which also shows an accurate
(close) and unbiased fit to a straight line, with a non-
significant intercept of 3,48 + 16,31 and a slope of 0,943 +
0,012 (not significantly different from 1). The coefficient
of association (r?) of the regression was found to be 0,989.
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201
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0 4 .

0 20 40 60 80
PREDICTED % DEGRADATION

-

Figure 2 Goodness of fit of the model by McDonald to
OM disappearance in sacco is shown by comparing the
observed mass of fermentable OM in sacco with the mass
of fermentable OM in sacco predicted by the model.

Table 1 Accuracy of fit of four models to in sacco fermentation and marker rate of passage

Intercept Slope Goodness of fit
Significance Significance Predicted Observed Coefficient of

Model Mean (+ SE) from 0 Mean (+ SE) from 1 mean mean association (r?)
Model 1 —40,4 * 469 NS§? 1,164 + 0,040 P = 0,0001 897,6 1004,1 0,917
Model 2 - 0,67+ 0,69 NS 1,01 + 0,013 NS 49,3 49,2 0,987
Model 3 3,48 + 16,31 NS 0,943 + 0,012 NS 1034 1043 0,989
Model 4 21,3 +£245 NS 0,987 + 0,014 NS 1087 1043 0,978
Marker

passage -43 £ 6,6 NS 0,998 + 0,22 NS 195,7 191,2 0,910

# Not significant.
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Figure 3 Goodness of fit of the model by Mahlooji et al.
(1984) to OM disappearance in sacco is shown by
comparing the observed mass of fermentable OM in sacco
with the mass of fermentable OM in sacco predicted by the
model.

The mean of the predicted values (1034 mg) was found to
be very close to that of the observed values (1043 mg).

The goodness of fit of the gamma retention time model
(Model 4) to fermentation in sacco is shown in Figure 4,
which is a summary of 12 individual curves, giving a total
of 75 data points. The linear regression resulted in an
intercept of —21,3 + 24,5 (non-significantly different from
0) and a slope of 0,980 + 0,017 (non-significantly different
from 1). Besides comparing all of the predicted values to
all observed values, the slopes and intercepts were
calculated for individual sheep and the means of slopes
and intercepts obtained. These mean values showed the
same pattern that was obtained with a common line, and a
non-significant mean intercept of 31,15 * 16,42 and a
mean slope of 0,987 + 0,014 were found. Tests based on
fitting a line common to all the data depend on
assumptions that differ from those obtained on the
average parameters from individual lines for their validity.
Hence their agreement is reassuring.
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Figure 4 Goodness of fit of the gamma distribution to
OM disappearance in sacco is shown by comparing the
observed mass of fermentable OM in sacco with the mass
of fermentable OM in sacco predicted by the model.
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All values may therefore be plotted together, resulting
in a regression with a coefficient of association (r?) of
0,987 and a mean of the observed values of 1043 mg, as
compared to the mean of 1087 mg for the predicted
values. From this, it appears that the gamma mean reten-
tion time method may also give an unbiased and accurate
fit of in sacco fermentation. It should be borne in mind
that this method fits only two parameters to the data set,
whereas some of the previous techniques fitted four
parameters.

Marker passage

Figure 5 shows observed counts in ileal digesta versus
counts calculated from the cumulative distribution of the
gamma function. Linear regression of the calculated
results of nine sheep on two diets against observed values
resulted in a non-significant intercept of —42 + 6,6
(Table 1) and a slope of 0,998 = 0,022 (non-significantly
different to 1). The total regression contains 215 data
points and the mean of the predicted counts is 195,7,
whereas that of the observed counts is 191,2. The values
obtained when data from individual sheep were used
resulted in non-significant intercepts and slopes not
different to 1, except for one sheep with a very irregular
flow pattern which the gamma distribution could not
accommodate. Nevertheless, when the values for that
sheep were also included in the regression, a coefficient of
association (r?) of 0,91 was obtained. When the values of
the sheep with the irregular flow pattern were excluded,
the slope and intercept were not significantly altered,
while the coefficient of association (r?) improved.
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Figure 5§ Goodness of fit of the gamma distribution to
marker passage in ileal digesta is shown by comparing the
observed counts in ileal digesta to the counts predicted by
the model.

Instead of merely comparing all the predicted counts to
all observed counts, the slopes and intercepts were also
calculated for individual sheep and the means of slopes
and intercepts were obtained. The mean slope (1,042 +
0,040) and intercept (—8,59 * 7.,46) obtained in this
manner, were not significantly different from 1 and 0
respectively. Tests based on fitting a common line or on
obtaining mean parameters from individual lines, depend
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on different assumptions for their validity, thereby
supporting the argument that their agreement is signifi-
cant.

Discussion

The closeness of fit of the gamma function with both
fermentation and outflow (Figures 4 & 5) shows that this
function has enough flexibility to describe both outflow
and fermentation kinetics with sufficient accuracy. The
slight bias observed in the 10 points above 2500 mg
(Figure 4), indicates the possible existence of a lag (dead)
phase in addition to the delay phase associated with the
gamma distribution. Including such a lag phase will
seriously complicate matters in the case of the gamma
distribution. A lag time plus two additional parameters
will have to be estimated by iterative least squares
methods as was done by Mahlooji et al. (1984). The effect
of the lag phase does not appear to be serious enough to
cause concern at present. This conclusion is made from
the slopes and intercepts shown in Figure 4 and Table 1.

Since MRT is calculated directly, the existence of a lag
phase will have no effect on the accuracy of estimation of
MRT. From the method used to estimate o and B (Law
& Kelton, 1982), it may be concluded that an ignored lag
phase may be the cause of bias in the separation of MRT
into the shape and scale parameters and consequently on
the calculations in which they are used individually.
However, the model fits the data with at least the same
accuracy as the generally accepted model of McDonald
(1981) and also with an accuracy that is comparable to that
of the model of Mahlooji ef al. (1984). This indicates that
the bias in the separation between a and B is probably
very small and in any case will have a very small effect on
the calculation of a combined MRT (the calculation in
which they are used individually). It may be emphasized
that this accuracy of the retention time model is obtained
from the fit of only two parameters. This is in contrast to
the four parameters used by other models. The gamma
function in the integer form (Erlanger gamma) has some
very convenient mathematical properties which allow it to
be combined in a single equation which describes intake.
The first-order model has the same mathematical
properties and was used as such by Pienaar et al. (1980).
However, the present results as well as other work (see
Introduction), have shown that it lacks flexibility to
describe outflow and fermentation accurately.

All the other more complex and also more flexible
functions such as the ones mentioned above as well as the
‘Weibull’ (Law & Kelton, 1982) can, however, not be
combined to give intake in an explicit mathematical form.
The answers will have to be obtained by numerical
integration unless it can be specified that the values for t,
are similar for both the outflow and fermentation of
fermentable OM. This is also true for the models of
Mahlooji et al. (1984) and McDonald (1981).

The methods used in this paper can also be adapted to
accommodate the Weibull distribution; maximum likeli-
hood estimators are available from Law & Kelton (1982).
However, the combination of outflow- and fermentation
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retention times described in Appendix 1, will have to be
done by numerical integration. Values similar to those
obtained with the gamma retention time distribution are
expected, since only two parameters are fitted. The
greater effort involved when fitting and using the more
complex Weibull function is therefore, unlikely to be
justified by a possible better fit.

When iterative least squares techniques are used to fit a
model with, for instance more than two parameters, as
was done by McDonald (1981), each parameter is fitted in
such a way that the best fit of the model is obtained. If
realistic estimates in functional terms are obtained for all
parameters, it shows that the model used is appropriate.
When some of the estimates are biased it shows that in
order to achieve a good fit, some of the estimates of
parameters had to compensate for others which do not
describe all aspects of the model well.

An interesting aspect was observed when parameters of
the model of McDonald (1981) was fitted with an iterative
least squares method. It showed that the value for b’,
which estimates the insoluble fermentable fraction, ten-
ded to overestimate the in vitro estimates for both lucerne
(56,1 vs. 38,5 in vitro) and maize-cob leaves (79,4 vs. 59,2
in vitro). It might be argued that the 72 h in vitro method
gives an underestimate of potential digestibility. How-
ever, the magnitude of these differences has convinced us
that the model, although it is flexible enough to describe
the fermentation curve accurately, does not always yield
accurate estimates of the functional parameters. This
happens since the model can not accommodate a phase
of increasing activity and has to apply the available
parameters to describe the whole fermentation curve.
Therefore the parameters loose some of their functional
significance. The results of Dhanoa (1988) agree very well
with this conclusion.

The first-order model has a very simple solution for

~ combining different independent processes working on

the same pool. It is, however, not suitable for describing
flow and fermentation kinetics in the rumen, since it gives
a biased fit to in sacco OM disappearance as well as
marker passage at the ileum. More complex models have
sufficient flexibility to describe both outflow and fermen-
tation accurately but some have no explicit solution for
combining the independent disappearance by both out-
flow and fermentation from the same pool of fermentable
OM. The gamma function has sufficient flexibility to
describe both outflow and fermentation accurately. The
integer form of the gamma function also has an explicit
solution for combining different independent processes
working on the same pool.

A correction for the immediately soluble fraction has
to be made when the mean retention time of fermentable
OM is calculated. When MRT is calculated for both
fermentable and non-fermentable OM and rumen fill in
terms of OM is known, OM intake may be calculated.
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Derivation of a general equation describing mean retention time for a single pool on which two gamma processes act

simultaneously

For the general approach to retention time modelling, Matis (1984) can be consulted.
Let fo(t) and f, (t) be two density functions of retention times acting independently on the same pool. It can then be

shown that the combined density function is given by

g(t) = fo(t) + £1(t) — Fo()fi(t) — folOTF1(t) oeeenrii i (12)
where Fy(t) and F;(t) are distribution functions associated with the densities fy(t) and f; (t).
Let

Fo(1) = [ () B T 00 e T B e 13)
and

(1) = [T () Bl ] T 0 T e T Bl e, (14)
then, for integer gammas, the mean retention time

E(®) = [(@0 - DIBS] ™" S -0 /XU A/By Y (x+ o) (1/Bo + 1/By) 0¥t 4

[(; = DB 2‘?:0 Ty (7Bl (Y +a)! (1/Bo + 1/B) 0D e (15)

where it is assumed that 0! = 1.
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Appendix 2
Application of the gamma retention time model to obtain intake and protein degradation
The method described by Roux & Meissner (1984) to obtain intake from its components viz. rumen fill, fermentation and
outflow, is based on the calculation of mean retention time for fermentation and outflow.
n
AE QU= Z ] Pyl eereeee e, (16)
i=1

where df/dt = rate of feed intake

Z = total amount of OM in the rumen

pi = the proportion of component i in the feed
t; = the MRT of component i

n = total number of components.

The mean retention time for the gamma distribution is t; = «;B;

where t; = the i th MRT
o; = the i th shape parameter
B: = the i th scale parameter of the gamma distribution.

In the case of fermentable OM where both outflow and fermentation act on the same pool and assuming integer
gammas with oy = 1 and o; = 2, the MRT is given as

The following equation then describes intake:

Rate of feed intake df/dt = Z/[P1 1 4 Pa o] coririiiiiiiiiiiiie e (19)
where

7. = total amount of OM in the reticulo rumen (g)

p1 = proportion of insoluble fermentable OM in the feed

p> = proportion of unfermentable OM in the feed

p3 = proportion of readily soluble OM in the feed

ap = shape parameter for outflow of fermentable OM

oy = shape parameter for fermentation of fermentable OM
o, = shape parameter for outflow of non-fermentable OM
Bo = scale parameter for outflow of fermentable OM (h)

1 = scale parameter for fermentation of fermentable OM (h)
B> = scale parameter for outflow of non-fermentable OM (h)
p1 + p2 + ps = 1 and intake is expressed in g h™!.

The effective degradability of protein, sometimes termed ‘p” (McDonald, 1981), can also be obtained from Roux &
Meissner (1984) when the gamma function is used. The symbols denote the same as above but in this case the OM of
protein is used instead of feed OM.

Effective degradability = ps + Py [1/(2B1)] t1s coereeriereieeeeeee e e e (20)
for ag = 1 and oy = 2.

For general integer values
effective degradability = p; + Py [1/(a; B E(L), ooriiiiiii e (21)
where E (t) can be obtained from Appendix 1.

This equation replaces the one published by Roux & Pienaar (1984) which is wrong.



