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Abstract 
Ractopamine is a beta-adrenergic agonist that increases leanness and carcass weight in finishing 

pigs. Our previous study observed that dietary ractopamine increased the abundance of several glycolytic 
enzymes in the sarcoplasmic proteome of post-rigor pork longissimus thoracis muscle. Pork 
semimembranosus is an economically important muscle and demonstrates differences in biochemistry 
compared with longissimus thoracis. Nonetheless, the effects of ractopamine on sarcoplasmic proteome of 
semimembranosus have not been evaluated yet. Therefore, this study examined the influence of 
ractopamine on sarcoplasmic proteome of post-rigor pork semimembranosus. Analyses of sarcoplasmic 
proteome of semimembranosus muscles from control (CON; diet without ractopamine) and ractopamine-fed 
(RAC; 7.4 mg/kg for 14 days followed by 10.0 mg/kg for 14 days) barrows revealed that haemoglobin subunit 
beta, alpha-crystallin B, and titin fragments were over-abundant in CON. In contrast, myosin light chain 1/3 
and tripartite motif-containing protein 72 were over-abundant in RAC. The low abundance of haemoglobin 
subunit beta and alpha crystallin B in RAC could be attributed to fibre type shift (from oxidative to glycolytic) 
in response to ractopamine. The over-abundance of MLC 1/3 and tripartite motif-containing protein 72 in 
RAC could be due to the increased myofibrillar protein synthesis and muscle mass in ractopamine-fed pigs. 
Dietary ractopamine decreased the abundance of sarcoplasmic proteins involved in oxygen transport and 
chaperone activity, but increased the abundance of proteins involved in muscle contraction and plasma 
membrane repair in pork semimembranosus muscle. 
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Introduction 
The consumer demand for meat as a source of high quality animal protein is increasing (Lusk, 2013) 

and the applications of growth technologies in livestock production play a critical role in achieving global food 
security (Johnson et al., 2013; Dunshea et al., 2016). Beta-adrenergic agonists are oral growth promotants 
approved for use in food animals (Johnson et al., 2013). Ractopamine is a beta-agonist approved for use in 
swine industry to increase growth rate, feed efficiency, carcass yield, and leanness in finishing pigs (Apple et 
al., 2007; Dunshea, 2012; Pompeu et al., 2017) in more than 25 countries, including the United States, 
Canada, Australia, Mexico, Philippines, Brazil, sand South Korea (AMI, 2012). Dietary ractopamine 
increases leanness (Boler et al., 2011) and carcass weight (Stites et al., 1991; Armstrong et al., 2004; 
Fernandez-Duenas, 2008; Needham & Hoffman, 2015) in pigs, and the increased carcass weight is a 
consequence of the increase in myofibrillar protein synthesis (Adeola et al., 1992). 

Proteomic tools are applied to characterize the role of muscle proteome in meat quality (Suman et al., 
2014; Gobert et al., 2014; Joseph et al., 2015; Schilling et al., 2017). The sarcoplasmic proteome, comprising 
30% of total muscle proteins, consists of enzymes and proteins critical to metabolism in live skeletal muscle 
and biochemical processes influencing the properties of post-rigor muscle as food (Scopes, 1970). In this 
regard, our recent study examined the effect of ractopamine on the sarcoplasmic proteome of post-rigor pig 
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longissimus thoracis and reported that ractopamine increased the abundance of glycolytic enzymes and 
chaperones (Costa-Lima et al., 2015). 

Longissimus thoracis et lumborum and semimembranosus are two economically important pork 
muscles (Jones & Burson, 2000), which demonstrate differences in biochemical properties, such as pH, 
mineral content, fatty acid profile, transcriptome, and endogenous antioxidants (Huff-Lonergan et al., 2002; 
Purchas et al., 2009; Herault et al., 2014). Therefore, it is possible that the ractopamine-induced proteome 
changes in post-rigor pork longissimus thoracis could be different from those in semimembranosus. 
Nonetheless, the influence of ractopamine on sarcoplasmic proteome of pork semimembranosus is yet to be 
evaluated. Therefore, the aim of this study was to examine the effect of ractopamine on sarcoplasmic 
proteome of post-rigor pork semimembranosus muscle. 
 

Materials and Methods 

The animal care protocol (Number: 2011A00000141) was approved by the Institutional Animal Care 
and Use Committee at The Ohio State University (Columbus, OH, USA). Purebred Berkshire pigs were used 
in this study because they are often used in branded pork programs (McMullen, 2006). Two-hundred 
purebred Berkshire pigs (barrows and gilts; average initial bodyweight of 68.9 kg) were used as previously 
described (Bohrer et al., 2013). All animals were raised under similar conditions at The Ohio State University 
Western Agricultural Research Station (South Charleston, OH, USA). The pigs were stratified based on initial 
body weight over 2 blocks and were housed in mixed-sex pens, and pens served as replicates. Each block 
consisted of 10 pens (5 pens x 2 dietary treatments). Within each dietary treatment, 4 pens had 6 barrows 
and 4 gilts, whereas 1 pen contained 5 barrows and 5 gilts. Overall pen size was 16.25 m

2
 (including 3.9 m

2
 

slatted-floor area), with each animal receiving approximately 1.63 m
2
 floor space. Each pen had a double-

nipple water drinker and a 4-hole single-sided box feeder that provided a total of 1.22 m of linear feeder 
space. Pigs were housed in a curtain-sided and naturally ventilated barn and were provided ad libitum 
access to feed and water throughout the finishing. 

Pigs were provided a 14 d adaptation period prior to the start of the treatment diets. Within each block, 
pigs in 5 pens were finished on a step-up ractopamine (Paylean; Elanco Animal Health, Greenfield, IN, USA) 
diet (RAC; 171 g/kg crude protein and 10.4 g/kg total lysine) with 7.4 mg/kg ractopamine for 14 d followed by 
10 mg/kg ractopamine for the last 14 d prior to slaughter. The pigs in the other 5 pens within the block were 
finished on a control diet (CON; 131 g/kg crude protein and 7.6 g/kg total lysine) with 0 mg/kg ractopamine. 
Diets were analysed to ensure ractopamine inclusion levels were within acceptable tolerances (75 to 125%) 
of the claim for each diet. 

Previous research documented that the effect of ractopamine on color and texture of ready-to-eat pork 
products (i.e. frankfurters) is sex-specific (Costa-Lima et al., 2014). Therefore, to avoid any potential effect of 
sex on skeletal muscle proteome, only barrows were selected for proteomic investigation. One barrow was 
randomly selected from each of the 10 pens in CON (104 kg average body weight) and RAC (107 kg 
average body weight) at the end of the 28-day feeding period, and these 20 pigs were transported to The 
Ohio State University Meat Science Laboratory. This approach provided 10 replicates (n = 10) for proteome 
analysis, of which nine were essentially the same animals used in our previous work (Costa-Lima et al., 
2015) on the effect of ractopamine on proteome of pork longissimus thoracis. The pigs were kept overnight in 
lairage with free access to water, but with no access to feed, before being humanely slaughtered. The 
carcasses were chilled for 24 h at 4 °C before fabrication. Fresh hams from the right side of the carcasses 
were collected. From the centre of the inside portion of the hams (IMPS # 402F), a 2.54-cm thick slice of 
semimembranosus muscle was removed. The muscle samples were individually vacuum-packaged, frozen 
at –80 °C, and transported in dry ice to the University of Kentucky (Lexington, KY, USA) for proteome 
analysis. 

Sarcoplasmic proteome was extracted according to the previously described method (Joseph et al., 
2012). Five grams of frozen muscle samples were homogenized in 25 mL ice-cold extraction buffer (40 mM 
Tris, 2 mM EDTA, and pH 8.0). The homogenate was centrifuged at 10,000 × g for 15 min at 4 °C. The 
supernatant (sarcoplasmic proteome extract) was filtered and utilized. The protein concentration of the 
sarcoplasmic proteome extract was determined using the Bradford assay (Bio-Rad, Hercules, CA, USA). An 
aliquot corresponding to 900 µg of protein was mixed with rehydration buffer (optimized to 7 M urea, 2 M 
thiourea, 40 g/L CHAPS, 20 mM DTT, 5 g/L Bio-Lyte 5/8 ampholyte (Bio-Rad, Hercules, CA, USA), and 0.01 
g/L Bromophenol blue) and was loaded onto immobilized pH gradient (IPG) strips (pH 5–8, 17 cm). Gels 
were subjected to passive rehydration for 16 h, and then subjected to first-dimension isoelectric focusing 
(IEF) in a Protean IEF cell system (Bio-Rad, Hercules, CA, USA) applying a linear increase in voltage initially 
and a final rapid voltage ramping to reach a total of 80 kVh. Subsequently, the IPG strips were equilibrated in 
SDS-containing buffers, first with equilibration buffer I (containing 6 M urea, 0.375 M Tris-HCl, pH 8.8, 20 g/L 
SDS, 200 g/L glycerol, 20 g/L DTT) for 15 min, followed by equilibration buffer II (containing 6 M urea, 0.375 
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M Tris-HCl, pH 8.8, 20 g/L SDS, 200 g/L glycerol, 25 g/L iodoacetamide) for 15 min. The proteins were 
resolved in the second dimension on 13.5% SDS–PAGE (38.5:1 ratio of acrylamide to bis-acrylamide) using 
Protean II XL system (Bio-Rad, Hercules, CA, USA). The gels were stained using Colloidal Coomassie Blue 
for 48 h and destained until background was cleared. Samples of both treatments (CON and RAC) were run 
under the same conditions (2 gels/pig), resulting in a total of 40 gels. 

Digital images of the stained gels were captured using Versa Doc (Bio-Rad, Hercules, CA, USA) and 
analysed using PDQuest (Bio-Rad, Hercules, CA, USA). Images were first subjected to automatic spot 
detection and matching optimized by the aid of landmark protein spots, and the matched spots were 
normalized (Meunier et al., 2005). A total of 182 spots were identified and evaluated in the image analyses. 
For each spot in a given sample, spot quantity values in duplicate gels were averaged for statistical analysis 
(Joseph et al., 2012). A protein spot was considered to be differentially abundant when it was associated 
with 1.5-fold intensity difference and 5% significance (P <0.05) level in a pairwise Student’s t-test (Joseph et 
al., 2012). 

The spots exhibiting differential abundance between the treatments were excised from the gel using 
pipet tips, placed in microtubes for destaining by two 30 min washes with 50 mM NH4HCO3/500 g/L CH3CN, 
vortexed for 10 min, and dried in a vacuum centrifuge. The respective spot was excised from the counterpart 
treatment to confirm the match. Proteins in the gel fragment were reduced by reaction with 10 mM DTT in 50 
mM NH4HCO3 solution and incubation at 57 °C for 30 min. The supernatant was discarded, and the proteins 
(present at the gel piece) were alkylated by addition of 50 mM NH4HCO3 containing 50 mM iodoacetamide 
and incubated for 30 min at 25 °C without exposure to light. Further, the gel piece was washed twice with 50 
mM NH4HCO3 and once with CH3CN, and then partially dried in a vacuum centrifuge. The dried gel piece 
was rehydrated with a solution of 40 mM NH4HCO3/90 g/L CH3CN, containing 20 mg/L of proteomic grade 
trypsin (Sigma, St. Louis, MO, USA) on ice for 1 h. An additional volume of 40 mM NH4HCO3/90 g/L CH3CN 
was added to cover the sample, and the microtube was incubated for 18 h at 37 °C. Peptides were extracted 
from the gel piece in 0.1 % trifluoroacetic acid by sonication for 10 min followed by vortexing for 10 min, and 
then the extraction was repeated using a solution on 500 g/L acetonitrile containing 1 g/L trifluoroacetic acid. 
The extracts were combined, and the volume was reduced to remove most of the acetonitrile. Peptide 
extracts were desalted and concentrated using solid phase extraction using 1 mm of Empore C-18 (3M, St. 
Paul, MN, USA) packed in a 0.1 to 10 µL pipet tip (Sarstedt, Newton, NC, USA). The peptides were eluted in 
5 µL of 500 g/L CH3CN/0.1% trifluoroacetic acid. 

An aliquot of 0.3 µL of the desalted peptide extract was spotted onto an Opti-ToF 384 well insert (AB 
Sciex, Foster City, CA, USA) with 0.3 µL of 5 g/L α-cyano-4-hydroxycinnamic acid (Aldrich, St. Louis, MO, 
USA) in 50 g/L CH3CN/1 g/L trifluoroacetic acid. Crystallized samples were washed with cold 1 g/L 
trifluoroacetic acid and were analysed using a 4800 MALDI TOF-TOF Proteomics Analyzer (AB Sciex, Foster 
City, CA, USA). An initial MALDI MS spectrum was acquired for each spot (400 laser shots/spectrum), and a 
maximum of 15 peaks with a signal-to-noise ratio of more than 20 were automatically selected for MS-MS 
analysis (1000 laser shots/spectrum) by post-source decay. The peak lists from the MS-MS spectra were 
submitted for similarity search in the National Center for Biotechnology Information (NCBI) database using 
Protein Pilot version 4.0 (AB Sciex, Foster City, CA, USA) employing relevant search parameters (Search 
type: identification; Enzyme: trypsin; Database: porcine NCBI nr; Search effort: thorough; Unused cut off > 
1.30, 95% confidence) to identify the proteins. A protein was assigned to be identified if it had at least 2.00 
unused cut off value and at least two peptides were identified with 99% confidence.  

 

Results and Discussion 
Gel image analyses identified 6 differentially abundant protein spots (Figure 1). Four protein spots 

were over-abundant (P <0.05) in CON, whereas 2 spots were over-abundant (P <0.05) in RAC. The identity 
of these proteins and their functional roles are listed in Table 1. 

Haemoglobin subunit beta was over-abundant in the CON group (Table 1). Haemoglobin is a 
tetrameric heme protein comprising 2 alpha (141 residues each) and 2 beta (146 residues each) subunits, 
and is the major oxygen carrier protein. Based on metabolism, skeletal muscles fibres are classified into 3 
types, namely oxidative, oxido-glycolytic, and glycolytic (Peter et al., 1972). Ractopamine functions as a 
repartitioning agent in skeletal muscles and activates beta-adrenergic receptors, leading to fibre type shifting 
from oxidative to glycolytic, thereby promoting glycolytic metabolism (Aalhus et al., 1992; Depreux et al., 
2002; Gunawan et al., 2007). The decreased abundance of haemoglobin in the RAC group could possibly be 
attributed to this shift in metabolism from oxidative to glycolytic metabolism in response to ractopamine 
feeding. Glycolytic metabolism has lower oxygen demand compared to oxidative, which minimizes the 
necessity for haemoglobin to transport oxygen to the skeletal muscles. 
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Figure 1 Coomassie-stained two-dimensional gel of the sarcoplasmic proteome extracted from post-rigor 
pork semimembranosus muscle. Six proteins spots differentially abundant in control and ractopamine-fed 
pigs are encircled and numbered 
 

 
Haemoglobin is a minor contributor to color of fresh meats (Mancini & Hunt, 2005; Suman & Joseph, 

2013) and previous proteomic investigation on pork semimembranosus sarcoplasm reported that 
haemoglobin was of greater abundance in dark muscles than in light muscles (Sayd et al., 2006). Several 
previous studies observed that fresh meat from pigs fed ractopamine had lower a* values (redness) than 
meat from animals raised on control diets (Uttaro et al., 1993; Armstrong et al., 2004; Carr et al., 2005a; 
2005b; Apple et al., 2008). The decreased abundance of haemoglobin subunit beta in the RAC group 
suggested that ractopamine feeding may cause a decrease in a* value of pork (Aalhus et al., 1990), 
attributing to the shift from intermediate fibres to white fibres (Depreux et al., 2002; Gunawan et al., 2007). 

Spots 3 and 4 (Fig. 1) were identified as titin fragments and were over-abundant in the CON group 
(Table 1). Titin is the largest protein in mammals and has a molecular weight of approximately 3,800 kDa; it 
is the third most abundant myofibrillar protein (Labeit et al., 1997). Although titin is a myofibrillar protein, the 
appearance of its fragments in sarcoplasm could be due to post-mortem proteolysis (Taylor et al., 1995). The 
low sequence coverage of titin (Table 1) could be attributed to multiple proteases, such as calpain 
proteinases (Huff-Lonergan et al., 2010; Lian et al., 2013), lysing the protein into small fragments and the 
large size (more than 34,000 amino acids) of titin molecules. Degradation of titin has been reported to 
increase meat tenderness (Huff-Lonergan et al., 1995), and the over-abundance of titin fragments in CON 
could be due to decreased proteolysis in the RAC group. In support, dietary ractopamine has been reported 
to decrease proteolytic activity in pork longissimus (Xiong et al., 2006). 

Myosin light chain (MLC) 1/3 was over-abundant in the RAC group (Table 1). These findings are also 
supported by Costa-Lima et al. (2015), who reported a greater abundance of MLC 1/3 in longissimus thoracis 
of ractopamine-fed pigs than in pigs fed a control diet. Myosin is a myofibrillar protein, and the hexameric 
myosin molecule consists of 2 heavy chains (MHC), 2 regulatory light chains (RLC), and 2 alkali light chains 
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(MLC 1, MLC 3) in fast-twitch skeletal muscles (Frank & Weeds, 1974). Two alkali light chains (MLC 1 and 
MLC 3) observed in the sarcoplasmic fraction in the present study could be the products of proteolytic 
cleavage, which releases the light chain sub-units from the actomyosin complex to sarcoplasm (Gerlemann 
et al., 2014). 

 
 

Table 1 Identity and functional roles of differentially abundant sarcoplasmic proteins in post-rigor 
semimembranosus muscles of ractopamine-fed Berkshire barrows 
 

Spot 
a 

      
Protein 

Accession 
No: 

ProtScore/ 
Matched 
peptides 

Sequence 
Coverage 

(%) 
Function 

Over-
abundant 

treatment 
b
 

Spot 
ratio 

        

1 
Haemoglobin subunit 

beta 
P02067 18.00/10 70.1 Oxygen transport CON 1.64 

c
 

2 Alpha-crystallin B chain Q7M2W6 8.00/5 41.7 
Chaperone 

activity 
CON 1.82 

c
 

3 Titin fragment 350593665 7.81/5 1.6 Structural protein CON 1.59 
c
 

4 Titin fragment 350593665 6.00/3 1.6 Structural protein CON 1.61 
c
 

5 Myosin light chain 1/3 A0JNJ5 11.89/8 45.4 
Muscle 

contraction 
RAC 1.59 

d
 

6 
Tripartite motif-

containing protein 72 
335284311 19.20/9 29.1 

Cell membrane 
repair 

RAC 1.52 
d
 

        
a
 Spot number refers to the numbered spots in gel image (Fig. 1). For each spot, parameters related to protein 

identification are provided (UniProt accession number; ProtScore and number of matched peptides; sequence coverage 
of peptides in tandem mass spectrometry) 
b
 CON = 0 mg/kg ractopamine in finishing diet for 28 days; RAC = 7.4 mg/kg ractopamine in finishing diet for 14 days 

followed by 10.0 mg/kg for 14 days 
c
 Spot ratio of CON/RAC 

d
 Spot ratio of RAC/CON 

 

 
Previous studies documented that dietary ractopamine increased myofibrillar protein synthesis in pork 

longissimus (Adeola et al., 1992). Furthermore, Helferich et al. (1990) observed an increase in the MLC 1/3 
RNA expression in ractopamine-fed porcine longissimus indicating protein accretion and increase in muscle 
mass. The greater abundance of MLC 1/3 in the RAC group than in the CON group observed in the present 
study could be due to the increased myofibrillar protein synthesis in response to ractopamine. Several 
proteomic investigations have been undertaken to identify the relationship between myosin light chains and 
meat quality. A positive correlation between MLC 1 and shear force has been observed in pork longissimus 
(Hwang et al., 2005). Furthermore, in beef longissimus thoracis, MLC 1 was of greater abundance in tough 
meat than in tender meat (Bjarnadottir et al., 2012). 

Tripartite motif-containing protein 72 plays a critical role in plasma membrane repair and was over-
abundant in the RAC group (Table 1). The cellular mechanism for plasma membrane repair and remodelling, 
to maintain cellular homeostasis in response to various physiological and pathological conditions, is 
conserved across eukaryotes (Han & Campbell, 2007). Tripartite motif-containing protein 72 (mitsugumin-53) 
is an essential component involved in plasma membrane repair in mouse skeletal muscle (Cai et al., 2009). It 
is well documented that dietary ractopamine increases carcass weight in finishing pigs (Stites et al., 1991; 
Armstrong et al., 2004; Fernandez-Duenas et al., 2008). Furthermore, an increase in the weight of inside 
ham (consisting of semimembranosus muscle) was observed in ractopamine-fed pigs (Boler et al., 2011). 
The increased muscle growth due to ractopamine could possibly demand increased levels of plasma 
membrane repair proteins to maintain homeostasis. Therefore, the over-abundance of tripartite motif-
containing protein 72 in RAC could be attributed to the increased muscle mass accretion in ractopamine-fed 
animals (Bohrer et al., 2013). 

 

Conclusion 
The results of the present study suggest that dietary ractopamine influences the abundance of 

proteins involved in oxygen transport, chaperone activity, and plasma membrane repair in sarcoplasmic 
proteome of pork semimembranosus muscle. This change in sarcoplasmic proteome profile may be primarily 
due to the previously documented muscle fibre type shift (from oxidative to glycolytic) and the increased 
muscle growth in response to ractopamine feeding. Additionally, the differences between the effects of 
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ractopamine on sarcoplasmic proteome in semimembranosus in the present study and those previously 
reported in longissimus thoracis (Costa-Lima et al., 2015) warrant further studies on muscle-specific effects 
of this beta agonist in pork. 
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