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______________________________________________________________________________________ 

Abstract 
Mineral homeostasis is often disrupted in intrauterine growth retardation (IUGR) infants. Most studies 

focus on calcium or phosphorus metabolism of IUGR infants via determining serum mineral concentrations 
instead of tissues. This study was conducted to investigate the effects of IUGR on the mineralization and 
physiological functions of tissue in a piglet model. Six normal birth weight (NBW) and six IUGR neonatal 
piglets were slaughtered at 35 days. Mineral concentrations in blood and selected tissues (liver, kidney, 
lungs, heart, and longissimus dorsi muscle (LDM)), hepatic lipid, mRNA expressions of magnesium (Mg) 
metabolism, and autophagy were analysed. Results showed that IUGR pigs showed significantly lower 
phosphorus (P) in LDM, and lower Mg in the liver and LDM, and higher Mg in lungs than NBW pigs. There 
were no significant differences in concentrations of selenium (Se), calcium (Ca), copper (Cu), aluminium (Al), 
and lithium (Li) in selected tissues. IUGR pigs had similar mRNA expression of TRPM7 and MagT1 to NBW 
pigs, but significantly lower expressions of HNF1B and Mrs2 in the liver than NBW pigs. Hepatic triglyceride 
was significantly increased, and MAP1LC3B expression was significantly decreased in IUGR pigs compared 
with those of NBW pigs. These result suggested that IUGR pigs had tissue mineralization disturbance, 
especially for Mg, and liver dysfunction (increased hepatic lipid and inhibited autophagy). Hepatic Mg 
deficiency might result from increased Mg efflux via reducing HNF1B expression.  
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Introduction 
Intrauterine growth restriction (IUGR) refers to restricted growth and inhibited development of the 

embryo/foetus or impaired organs during pregnancy. Commonly, foetal weight less than 10
th
 percentile of a 

given population at the same gestational age is regarded as IUGR (Wu et al., 2006; Roman et al., 2013). 
IUGR is a severe problem in livestock. For example, in the swine industry IUGR affects more than 15% of 
new-born piglets (Wu et al., 2006). IUGR is associated with neonatal death and metabolic dysfunctions, such 
as mineral and lipid metabolic dysfunctions (Blaga et al., 2008; Li et al., 2016). Epidemiological studies 
indicate that IUGR exhibits side effects on postnatal growth, health and lipid metabolism for a long time, and 
is closely linked to hypertension, insulin resistance, and obesity in adult (Vickers, 2014). 

Minerals are commonly divided into major minerals, for example Ca, Mg and P, and trace or micro-
minerals for example iron (Fe) and Cu. They are involved in various enzyme activities and nutrient 
metabolism, which have been summarized by Gharibzahedi & Jafari (2017). Therefore, small amounts of 
minerals play an important role in livestock and the human body. Complicated processes and hormones, 
such as the parathyroid hormone, calcitriol, and sex steroids, to keep mineral homeostasis (Kovacs, 2014), 
regulate the mineral metabolism. However, IUGR is closely associated with disturbance in mineral 
homeostasis. IUGR infants fed human milk or commercial formulas show severely disturbed mineral 
homeostasis (Schanler et al., 1985; Schanler & Garza, 1988; Mataloun & Leone, 2000). Most of these 
studies focus on bone development and calcium or phosphorus metabolism via determining mineral 
concentrations in serum or bone (Prestridge et al., 1993; Li et al., 2016). However, essential minerals are 
abundant in tissues, in which they are critical for electrolyte balance and nutrient metabolism through being 
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involved in the activities of enzymes (Moltu et al., 2013; Gupta et al., 2014; Gharibzahedi & Jafari, 2017). For 
example, Mg-deficient foetal livers of IUGR mice are accompanied by low monounsaturated fatty acids 
(MUFAs), high polyunsaturated fatty acids (PUFAs), and low desaturase and elongase mRNA expression 
(Gupta et al., 2014). Therefore, it seems necessary to determine the mineral contents and their metabolism 
in tissues. However, few studies have investigated the effects of IUGR on tissue mineralization.  

It was hypothesized that IUGR might impair tissue mineralization and affect the physiological functions 
of tissues with mineral disturbance. To test this hypothesis, a pig model of IUGR was used, because pigs are 
the optimal model for human (Darragh & Moughan, 1995; Kues & Niemann, 2004; Pearce et al., 2007). After 
the liver mineral disturbance (especially for Mg) was found, Mg metabolism-related gene expressions, 
hepatic lipid, and autophagy were analysed. This study could provide additional information for neonatal 
nutrition research, especially for the IUGR infants. 
 

Materials and methods 
This study was approved by the Institutional Animal Care and Use Committee of Nanjing Agricultural 

University, China. At the time of parturition (114 days gestation), six normal birth weight (NBW) (1.54 ± 
0.01kg) and six IUGR (0.93 ± 0.02kg) Duroc × Landrace × Large White piglets were chosen from six similar 
birth order (third and fourth) sows with the same litter size (each litter 10 piglets). Each IUGR piglet and one 
same sex sibling of NBW piglets were chosen, as discussed in previous reports (Xu et al., 1994; Wu et al., 
2006). Piglets stayed with their own mothers until 14 days. After weaning, piglets were fed individually with 
water and feed ad libitum. The feed was formulated to meet or exceed the nutritional requirements of NRC 
(1998), as shown in Table 1.  

 
 
Table 1 Composition of diet (as-fed basis) for weaning piglets 
  

Ingredients ( g / 100 g ) 
 

Nutrient composition (%)  

    

Corn 40.00 Crude protein 20.20 

Rice, broken 15.00 Digestible energy (Mcal/kg) 3.40 

Soybean meal, fermented 10.00 Total calcium 0.85 

Soybean meal, de-hulled 6.00 Total phosphorus 0.70 

Spray dried animal plasma 5.00 Digestible lysine 1.45 

Whey powder 7.00 Digestible methionine +cystine 0.79 

Fish meal 4.00 Digestible threonine 0.81 

Sugar 4.50 Digestible tryptophan 0.23 

Glucose 3.00 Digestible isoleucine 0.74 

Soybean oil 1.50 Digestible leucine 1.45 

L-Lysine-HCl  0.30 Digestible valine 0.89 

L-Methionine 0.15   

L-Threonine 0.20   

L-Tryptophan 0.05   

L-Isoleucine 0.05   

L-Valine 0.05   

Salt 0.30   

Limestone 1.10   

Dicalcium phosphate 0.80   

Vitamin mixture
a
 0.20   

Mineral mixture
b
 0.80   

Total 100.00   
a
Vitamin mixture supplied per kg complete diet: vitamin A, 15,000 IU; vitamin D3, 3,000 IU; vitamin E, 150 mg; vitamin K3, 

3.00 mg; vitamin B1, 3.00 mg; vitamin B2, 6.00 mg; vitamin B6, 5.00 mg; vitamin B12, 0.03 mg; niacin, 45.00 mg; vitamin 
C, 250 mg; calcium pantothenate, 9.00 mg; folic acid, 1.00 mg; biotin, 0.30 mg; choline chloride, 500 mg. 

b
Mineral 

mixture supplied per kg complete diet: Fe, 170 mg; Cu, 150 mg; I, 0.90 mg; Se,0.20 mg; Zn, 150 mg; Mg, 68 mg; Mn, 80 
mg; Co, 0.30 mg 
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At 0, 14, and 35 days, bodyweight and average daily feed intake (ADFI) (14–35 days) were recorded. 
ADG and feed/gain ratio (F : G) were calculated. At the end of this experiment (35 days), whole blood was 
collected with heparinized tubes two hours after their last meal. All pigs were slaughtered via electrical 
stunning. Samples to determine mineral concentrations and mRNA expression were collected as described 
by Wang et al. (2016). Briefly, lungs, heart, kidney, liver, and longissimus dorsi muscle (LDM) were collected 
and stored at -20 °C to determine mineral concentration. Liver samples were frozen quickly and stored at -
80 °C to determine mRNA expression and lipid metabolism.   

The mineral concentrations (Se, P, Fe, chromium (Cr), Mg, Ca, Cu, Al, and Li) were determined as 
described by Demirbaş (1999). Briefly, tissues (2–3 g) and blood (3–3.5 ml) were digested using a mixture of 
HNO3 : HClO4 (v/v = 4 : 1). After cooling, the digest was dissolved with demineralized water to 25 ml. 
Subsequently, it was diluted to the optimal concentrations. Mineral concentrations were determined by 
inductively coupled plasma mass spectrometry (ICP-MS) (Agilent, USA). 

Total RNA of the liver was extracted with Trizol reagents, and reverse transcription was conducted as 
described by Dong et al. (2014). Briefly, after the RNA quality had been verified by a Thermo Fisher Scientific 
Nanodrop 2000 spectrophotometer (ratios of absorption including 260/280 nm and 260/230 nm between 
1.90 and 2.05) and by agarose gel electrophoresis, 2 μg RNA were incubated at 72 °C with random primer 
(Promega, Belgium) for 5 min, then incubated for 1 hour with reverse transcription mixture (Takara, Dalian, 
China). Finally, the reverse transcription was inactivated at 90 °C for 10 min. 

In this study, Mg metabolism-related gene expressions of TRPM7, MagT1, Mrs2, HNF1B, and 
autophagy-related gene expressions of MAP1LC3A, MAP1LC3B and Atg5 in the liver were determined. The 
related gene primers are listed in Table 2 and were synthesized in Invitrogen (Shanghai) Biotech Co. Ltd. 
(Shanghai, China). GAPDH was used as a housekeeping gene. Reverse transcription polymerase chain 
reaction (RT-PCR) assays were conducted with the ABI 7300 RT-PCR system with a SYBR Premix Ex 
TaqTM Kit (TakaRa, Dalian, China) according to the manufacturer’s instructions. The mRNA expressions 

were examined with ABI software and calculated with the 2-△△Ct, as previous reports (Livak & Schmittgen, 

2001). 

 
 
Table 2 Primer sequences used in quantitative real-time polymerase chain reaction assays 
 

Genes Accession No. Primers Sequences(5’--3’) bp 

     

GAPDH NM_001206359.1 
Forward CATTGCCCTCAACGACCACT 

84 
Reverse ATGAGGTCCACCACCCTGTT 

TRPM7 XM_003121515.2 
Forward CCCGATAGATGGCTACAGGC 

85 
Reverse CTGGGACATTCTCCTCACGG 

MagT1 XM_003135205.4 
Forward GCCTGTTTTTGTTACGCCCC 

77 
Reverse TGGCCTGAGGCAAGTACAAG 

HNF1B NM_213956.1 
Forward CGACAAACCACGGAAGAGGA 

157 
Reverse GGTGGCTGATGTTTACAGTGTG 

Mrs2 XM_001928036 
Forward GGCGTTTGCTGTCATTCCTC 

126 
Reverse CATCCGGTCTGAAGCTGTGT 

MAP1LC3A NM_001170827.1 
Forward GTCTACGCCTCCCAGGAAAC 

127 
Reverse CAGGGGCAGAGACAGCTTAG 

MAP1LC3B NM_001190290.1 
Forward CCACGTCCATCCCAGTGTAT 

200 
Reverse GGTTCCTGTTGAGCAGTGGT 

Atg5 NM_001037152 
Forward GACCTTCTGCACTGTCCATCA 

181 
Reverse TCCGGTTGATGGTCCAAAACT 

     

  
 

Hepatic lipid content was analysed as described by Ahn et al. (2008). Briefly, portions of liver samples 
from each pig were weighed and homogenized in Tris-HCl solution with a glass Dounce homogenizer on ice. 
The TG and CHO contents in the liver were determined with commercial kits (Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China). 
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All the data were processed with the student t-test of the SPSS statistical package (Version 20.0, 
SPSS Inc., Chicago, IL) as described by Dong et al. (2014).Results were shown as mean ± SE. P value 
below 0.05 was regarded as significant.  

 

Results 
In this study, the bodyweights of IUGR pigs were lower than NBW pigs at 0, 14 and 35 days (P < 

0.01). Compared with the NBW pigs, IUGR pigs exhibited significantly lower ADGs (0–14 days and 14–35 
days), less ADFI (14–35 days), and higher F: G (14–35 days), as shown in Table 3. 

 
 
Table 3 Effects of intrauterine growth retardation on growth performance in pigs  
 

Items
 

NBW IUGR 

   

Bodyweight (kg)   

0 days 1.54 ± 0.01
A
 0.93 ± 0.02

B
 

14 days 5.38 ± 0.06
A
 3.45 ± 0.05

B
 

35 days 9.95 ± 0.40
A
 6.03 ± 0.23

B
 

ADG (kg/d)   

0–14 days 0.27 ± 0.01
A
 0.18 ± 0.01

B
 

14–35 days 0.20 ± 0.02
A
 0.12 ± 0.01

B
 

ADFI (kg/d, 14–35d) 0.28 ± 0.02
a
 0.22 ± 0.01

b
 

F:G (14–35d) 1.40 ± 0.06
A
 1.82 ± 0.11

B
 

   

Data were expressed as means ± SE (n = 6); a–b (P <0.05) or A–B (P <0.01) with different superscripts between values 

for NBW and IUGR pigs mean significant differences 
NBW: normal birth weight; IUGR: intrauterine growth retardation; ADG: average daily gain; ADFI: average daily feed 
intake; F : G: feed/gain ratio 

 
 

The effects of IUGR on the mineral concentrations of the liver, LDM, heart, lungs and kidney are 
shown in Table 4. There were no significant differences in the Se, Ca, Cu, Al, and Li levels of these tissues 
between IUGR and NBW pigs (P >0.05). However, IUGR pigs had lower Cr (P <0.05) and Mg (P <0.01) in 
the liver and LDM, and higher Mg in the lungs (P <0.01) than NBW pigs. Lower P concentration in the LDM 
(P <0.05) and Fe concentration in the lungs (P <0.05) were found in IUGR pigs than in those of NBW pigs.  
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Table 4 Effect of intrauterine growth retardation on mineral concentrations of selected organs in pigs 
 

Items 
Liver LDM Heart Lung Kidney 

NBW IUGR NBW IUGR NBW IUGR NBW IUGR NBW IUGR 

           

Se
1
 0.023 ± 0.002 0.025 ± 0.002 0.018 ± 0.007 0.009 ± 0.002 0.017 ± 0.002 0.018 ± 0.002 0.019 ± 0.003 0.023 ± 0.003 0.063 ± 0.003 0.069 ± 0.007 

P
2
 357.02 ± 5.68 367.35 ± 6.79 350.77 ± 5.38a 324.48 ± 7.20b 245.19 ± 4.56 244.72 ± 4.84 294.31 ± 17.06 321.81 ± 8.76 326.47 ± 7.88 327.55 ± 7.71 

Fe
1
 25.12 ± 3.12 50.07 ± 7.99 48.88 ± 2.93 43.57 ± 3.32 11.41 ± 0.51 9.79 ± 0.70 91.81 ± 5.51 21.93 ± 8.76** 90.74 ± 7.78 102.84 ± 18.78 

Cr
1
 24.50 ± 1.05 21.52 ± 0.79* 15.83 ± 1.45 11.96 ± 1.12 51.05 ± 4.60 43.26 ± 0.71 26.65 ± 1.30 31.49 ± 2.65 25.18 ± 2.72 20.71 ± 0.84 

Mg
2
 15.63 ± 0.30A 14.47 ± 0.25B 18.55 ± 0.50A 16.45 ± 0.34B 21.49 ± 0.41 22.12 ± 0.43 14.16 ± 0.63A 16.70 ± 0.56B 16.10 ± 0.34 16.35 ± 0.41 

Ca
2
 3.50 ± 0.29 3.65 ± 0.14 2.62 ± 0.14 2.61 ± 0.16 4.29 ± 0.12 4.88 ± 0.29 7.12 ± 0.42 7.58 ± 0.29 5.61 ± 0.29 5.54 ± 0.19 

Cu
2
 1.25 ± 0.11 1.40 ± 0.24 0.063 ± 0.001 0.065 ± 0.003 0.319 ± 0.012 0.315 ± 0.017 0.078 ± 0.001 0.088 ± 0.001 5.76 ± 0.28 5.99 ± 0.93 

Al
1
 208.20 ± 30.29 172.00 ± 9.03 304.22 ± 47.73 349.75 ± 47.17 173.37 ± 79.95 144.55 ± 14.24 219.29 ± 27.16 213.46 ± 31.04 204.22 ± 10.60 230.16 ± 33.15 

Li
1
 4.22 ± 0.06 4.39 ± 0.17 0.63 ± 0.06 0.65 ± 0.07 3.45 ± 0.15 3.74 ± 0.09 1.68 ± 0.14 1.84 ± 0.13 1.74 ± 0.10 2.04 ± 0.01 

           

Data were expressed as means ± SE (n = 6); a–b (P <0.05) or A–B (P <0.01) with different superscripts between values for NBW and IUGR pigs means significant 
differences; 1μg/100g wet tissue weight; 2mg/100g wet tissue weight 
NBW: normal birth weight; IUGR: intrauterine growth retardation; LDM: longissimus dorsi muscle  
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There were no significant differences in concentrations of Se, P, Fe, Mg, Ca, Cu, Al and Li in blood 

between IUGR and NBW pigs (P >0.05) as stated in Table 5. However, IUGR pigs had lower blood Cr level 
compared with NBW pigs (P <0.05).  

 
 
Table 5 Effects of intrauterine growth retardation on the mineral concentration of blood in pigs 
 

Items NBW IUGR 

   

Se (μg/L) 0.06 ± 0.02 0.06 ± 0.02 

P (mg/L) 606.89 ± 14.53 600.18 ± 44.56 

Fe (μg/L) 549.32 ± 60.29 696.29 ± 47.70 

Cr (μg/L) 458.22 ± 35.62
a
 328.11 ± 41.41

b
 

Mg (mg/L) 61.84 ± 1.23 61.37 ± 3.09 

Ca (mg/L) 67.97 ± 1.25 69.26 ± 1.98 

Cu (mg/L) 1.54 ± 0.19 1.25 ± 0.10 

Al (μg/L) 499.23 ± 21.43 483.71 ± 31.00 

Li (μg/L) 36.15 ± 0.67 34.95 ± 1.67 

   

Data are expressed as means ± SE (n =6)  
a-b 

(P <0.05) different superscripts between values for NBW and IUGR pigs mean significant differences 
NBW: normal birth weight; IUGR: intrauterine growth retardation 

 
There were no differences in relative mRNA levels of TRPM7 and MagT1 between the two groups 

(P >0.05) (Figure 1). However, the relative mRNA levels of Mrs2 and HNF1B were significantly reduced in 
IUGR pigs compared with NBW pigs (P <0.05). 

 

 
Figure 1 mRNA abundance of magnesium metabolism-related genes in liver of intrauterine growth 
retardation and normal birth weight pigs 
Data expressed relative to the housekeeping gene GAPDH, normalized to the NBW group, and represent means ± SE (n 
= 6). *P <0.05, **P <0.01 
NBW: normal birth weight; IUGR: intrauterine growth retardation 
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IUGR pigs had a significantly higher hepatic TG level relative to the NBW pigs (P =0.01), while hepatic 
CHO levels in IUGR and NBW pigs were similar (P >0.05), as shown in Figure 2. The relative mRNA 
expressions of MAP1LC3B and MAP1LC3B : MAP1LC3A ratio were increased in IUGR pigs compared with 
NBW pigs (P <0.05), as shown in Figure 3. There were no significant differences in relative mRNA 
expressions of MAP1LC3A and ATG5 in the liver between IUGR and NBW pigs (P >0.05). 

 
 

 
Figure 2 Hepatic lipid in intrauterine growth retardation and normal birth weight pigs 
Data represent means ± SE (n = 6); **P <0.01 
NBW: normal birth weight; IUGR: intrauterine growth retardation; TG: triglyceride; CHO: cholesterol 

 
Figure 3 mRNA abundance of autophagy related genes in liver of intrauterine growth retardation and normal 
birth weight pigs  
Data expressed relative to the housekeeping gene GAPDH, normalized to the NBW group and represent means ± SE (n 
= 6); *P <0.05 

NBW: normal birth weight; IUGR: intrauterine growth retardation 
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Discussion 

Most essential minerals, such as Mg, as components of enzymes, are involved in major metabolic 
pathways in tissues. IUGR neonates are more susceptible to serum mineral disturbance and need long-term 
mineral supplement as they were fed on their own mother’s milk (Raupp et al., 1990; Blaga et al., 2008). It 
was further hypothesized that IUGR might impair tissue mineralization and physiological functions of tissues. 

The results of this study indicated that IUGR pigs had decreased bodyweight, lower ADGs, reduced 
ADFI (14–35 days), and higher F : G (14–35 days) than NBW pigs. These findings coincide with those of 
previous studies (Poore & Fowden, 2004; Attig et al., 2008; Zhang et al., 2014; Li et al., 2015; Zhang et al., 
2016).  

Many factors can lead to the lower ADGs of IUGR and high nutrient density is encouraged for IUGR 
infants to alter the long-term adverse effects on restricted growth, such as high protein and energy (Desai et 
al., 2005; Desai et al., 2007; Senterre & Rigo, 2011; Senterre & Rigo, 2012). However, the safety of early 
nutrient enhancement of IUGR needs to be further evaluated, as it may cause adult obesity (Desai et al., 
2005; Desai et al., 2007) and more severe mineral disturbance (Moltu et al., 2013). 

It was reported that IUGR infants had reduced serum P concentration, and showed hypophosphatemia 
(Moltu et al., 2013) and that bone mineralization was affected (Abrams et al., 1988; Li et al., 2016). In the 
present study, IUGR pigs had lower P level in the LDM than NBW pigs. However, there was no difference in 
blood P content between IUGR and NBW pigs. The time of collecting blood may partially account for the lack 
of change in blood P level, as the blood samples were collected two hours after the last meal to evaluate the 
absorption of minerals. 

Furthermore, the current results showed that IUGR and NBW pigs had similar Mg concentrations in 
the blood, heart, and kidneys. Moltu et al. (2013) reported that enhanced feeding in IUGR infants might 
cause electrolyte disturbances without affecting the serum Mg level. Dauncey et al. (1977) suggested that 
breast milk supplies enough Mg for IUGR infants by determining the serum Mg. However, IUGR pigs showed 
lower Mg concentrations in the liver and LDM, and higher Mg concentrations in the lungs than NBW pigs in 
the present study, suggesting that Mg metabolism was disturbed.  

Since the liver is an important organ that distributes Mg in tissues, the expression of Mg metabolism-
related genes in the liver was further determined. The results indicated that IUGR and NBW pigs had similar 
relative mRNA expression of TRPM7 and MagT1. TRPM7 is ubiquitous and emphasizes the role in control of 
Mg influx in individual cells (Romani, 2011). MagT1 is highly expressed in the liver and appears to be highly 
specific for Mg ion influx (Sontia & Touyz, 2007; Romani, 2011). No differences in relative mRNA expression 
of TRPM7 and MagT1 suggested that IUGR may not affect the influx of Mg in the liver. However, the 
expression of HNF1B and Mrs2 were decreased in the liver of IUGR pigs. The HNF1B was first identified in 
the liver (Cereghini et al., 1988), could bind to the FXYD2 gene, encode the γ-subunit of the Na/K-ATPase, 
and is an important molecular player in the renal Mg reabsorption (Ferre et al., 2011). The lack of Mg is often 
associated with HNF1B deficiency (Adalat et al., 2009; Heidet et al., 2010), while dietary Mg restriction could 
enhance HNF1B expression (Van Angelen et al., 2013). Reduced relative mRNA expression of HNF1B may 
increase the efflux of Mg and decrease the Mg content in the liver of IUGR pigs. The Mrs2 plays an essential 
role in regulating mitochondrial Mg homeostasis (Romani, 2011). A deficiency in Mrs2 leads to a decrease in 
total mitochondrial Mg level, a decrease in matrix-free Mg ion concentration, and the dysfunction of 
mitochondria respiration (Martin et al., 2003). In contrast, over-expression of Mrs2 markedly increased Mg 
content in mitochondria (Martin et al., 2003). Decreased expression of Mrs2 indicated Mg influx in 
mitochondria was inhibited and the dysfunction of liver mitochondria of IUGR pigs (Zhang et al., 2016; Zhang 
et al., 2017), although the mitochondria function was not determined here.  

Mg is one of the most abundant intracellular cations and is involved in over 300 enzyme activities, 
which play important roles in many functions of tissues (Swaminathan, 2003; Das, 2016). Recently, Mg 
deficiency was linked closely with incidence of IUGR, growth performance and hepatic lipid metabolic 
disorder in the rat model (Roman et al., 2013; Roman et al., 2015). Since the hepatic Mg deficiency of IUGR 
pigs was proved in the present study, the authors determined the hepatic lipid content and autophagy, which 
is critical in hepatic lipid metabolism (Liu & Czaja, 2013). In the present study, hepatic TG was increased in 
IUGR pigs, which was partly in agreement with previous reports (Gupta et al., 2014; He et al., 2015). The 
mRNA of MAP1LC3B was synthesized before the MAP1LC3 protein, which is a common indicator of 
autophagy. Determining the MAP1LC3B mRNA expression is regarded as a convenient method to monitor 
the autophagosome formation (Tsuyuki et al., 2014). In this study, the relative mRNA expressions of 
MAP1LC3B and MAP1LC3B : MAP1LC3A ratios were decreased, suggesting that the autophagy was 
inhibited in the liver of IUGR pigs. Inhibited hepatic autophagy could reduce lipolysis, lead to lipid droplet 
accumulation and elevate hepatic TG content (Singh et al., 2009a; Singh et al., 2009b; Liu & Czaja, 2013). 
These results suggested that reduced hepatic autophagy might be related to increased hepatic lipids. 
However, in future, more in-depth studies are required to investigate the possible pathways behind reduced 
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hepatic autophagy. Controlling hepatic autophagy may be a novel way to regulate hepatic lipids in IUGR 
pigs. 

 

Conclusions 
In summary, the current results revealed that IUGR still showed reduced growth performance at the 

age of 35 days, with some disturbances in tissue mineralization, especially for Mg. The possible mechanism 
for hepatic Mg deficiency might be attributed to the increased Mg efflux through reducing HNF1B expression. 
Hepatic Mg deficiency might be related to increased hepatic autophagy and lipid contents. This study will 
help researchers to uncover the critical areas of tissue mineral disturbances and their related biological 
functions in IUGR pigs that have not been explored before. However, further studies are required to 
investigate possible ways to regulate hepatic Mg metabolism and autophagy in IUGR nursery pigs. 
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