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______________________________________________________________________________________ 

Abstract 
The study was conducted to evaluate the effects of adding a fibrolytic enzyme in combination with 

bacterial inoculants on the fermentation, chemical composition and aerobic stability of ensiled potato hash 
(PH). Potato hash silage (PHS) was produced by mixing 800 g PH/kg and 200g wheat bran (WB)/kg. The 
mixture was ensiled with either no additive or enzyme Celluclast (low or high dose) or bacterial inoculants 
(Emsilage and Silosolve). These treatment combinations were produced: i) no additive (control); ii) Celluclast 
low dose (CLD); iii) Celluclast high dose (CHD); iv) Emsilage (EMS); v) CLD + EMS; vi) CHD + EMS; vii) 
Silosolve (SLS); viii) CLD + SLS; and ix) CHD + SLS. These treatments were ensiled in 81 x 1 L anaerobic 
jars for 90 days with nine replicates per treatment. Three samples per treatment were collected before 
ensiling and after 90 days’ ensiling, were analysed for fermentation characteristics and chemical 
composition. In addition, samples of day 90 were subjected to an aerobic stability test, where they were 
exposed for five days. Enzyme addition reduced fibre, thus making more sugar available for fermentation. 
The combination of CHD and EMS reduced silage pH, thus preserving the silage compared with other 
treatment combinations. Enzyme addition (used at low and high dose), and bacterial inoculants improved 
fermentation. Enzyme addition improved the chemical composition, but impaired the aerobic stability of PHS. 
Further work to test these findings on animal performance is warranted. 
______________________________________________________________________________________
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Introduction 
Agro-industrial by-products from food processing industries can be less expensive sources of nutrients 

for ruminant feeding because of their capacity to digest fibre-rich feedstuffs (Boucque & Fiems, 1988). This 
reduces the dependency of ruminant nutrition on mixed cereals as the major energy source, which is usually 
costly, since cereals may have to be imported, especially in times of shortage (Briedenhann, 2008). Potato 
hash, a food by-product that is derived from the production of snacks in South Africa, can benefit livestock 
production. It is a mixture of potato skins, starch, fats and yellow maize, containing 700 g starch/kg dry 
matter (DM), 11.2 MJ Metabolisable energy (ME)/kg, 105 g crude protein (CP) /kg DM, 369 g Neutral 
detergent fibre (NDF)/kg DM, and 162 g Acid detergent fibre (ADF) /kg DM (Nkosi et al., 2010a). The 
production of PH is estimated at 50 tons per day, and if not effectively used, is dumped.  

Ensiling can be regarded as an efficient way of preserving high moisture by-products if all essential 
principles are followed (Cao et al., 2009). Wilkinson (2005) indicated that a content of water soluble 
carbohydrates (WSCs), low buffering capacity, 250–400 g DM/kg, and adequate population of lactic acid 
bacteria (LAB) are requirements for effective fermentation of forages. Potato hash, like other potato by-
products, contains low DM and WSCs (Nkosi et al., 2012a), which warrants the use of silage additives 
(McDonald et al., 2011). Nkosi et al. (2010b) produced silage successfully from PH by mixing with wheat 
bran (WB) as an absorbent and CP source or by producing a total mixed ration that contained 800 g/kg PH.  

Aerobic stability, defined as the number of hours it takes silage temperature to rise 2 °C above 
ambient temperature, is important because of the consequential losses of nutrients, and the development of 
moulds, which could produce mycotoxins that pose health hazards to animals and humans (Driehuis & Oude 
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Elferink, 2000). The extent of aerobic exposure can be indicated by the rate of CO2 production, a rise in 
temperature and pH, and rapid growth of yeasts and moulds (Ashbell et al., 1991). 

Well-preserved silages, particularly those inoculated with homofermentative LAB, can be prone to 
spoilage (Muck, 2010), because of lower production of VFAs that inhibit the growth of yeasts and moulds 
(Weinberg et al., 1993). However, the problem of aerobic stability can be solved with the use of L. buchneri, 
a heterolactic bacterium that converts moderate amounts of Lactic acid (LA) to Acetic acid (AA) under 
anaerobic conditions (Driehuis et al., 1999). Inoculants containing L. buchneri have improved the aerobic 
stability of various silages (Nkosi & Meeske, 2010).  

Although bacterial inoculants have been reported to improve silage fermentation and aerobic stability, 
their effects on fibre degradation are not consistent because LAB cannot effectively use fibre as an energy 
source to produce LA. Most LAB have little or no ability to degrade plant cell walls (McDonald et al., 2011). 
Potato hash contains 369 g NDF/kg DM and 162 g ADF/kg DM (Nkosi et al., 2010a). When mixed with other 
fibrous sources, the fibre content may increase, which would render PH silage unsuitable for growing 
ruminants as a sole diet or for inclusion in diets at high levels.  

It has been reported that fibrolytic enzyme application at ensiling has improved the fermentation and 
nutritive value of maize silage (Colombatto et al., 2003), Bermuda grass silage (Dean et al., 2005) and potato 
pulp (Okine et al., 2005). An improvement in silage aerobic stability due to L. buchneri and enzyme 
combination has been reported for high moisture maize silage (Taylor et al., 2000) and barley silage (Kung & 
Ranjit, 2001). However, Ebling (2002) reported that the addition of enzymes showed no further improvement 
in aerobic stability compared with the effect of L. buchneri alone in high moisture silage. 

The objective of this study was therefore to determine the effects of addition of a fibrolytic enzyme and 
bacterial inoculants on the fermentation, chemical composition and aerobic stability of ensiled PH. 

 
Materials and Methods 

Potato hash was collected from Simba (336 Andre Greyvenstein Road, Isando, Gauteng, South Africa) 
and brought to Agricultural Research Council–Animal Production Institute (ARC–API) for chemical analysis 
and silage production. PHS was produced by mixing 800 g PH/kg with 200 g WB/kg. WB, a by-product from 
milling of wheat, is a cheap feed ingredient that contains high DM. It was used to improve the DM content 
during ensiling PH (Nkosi et al., 2010a). Celluclast® 1.5 L (Novozymes, Denmark), a fibrolytic enzyme, 
contains cellulose prepared from Trichoderma reesei and has a stated enzyme activity of 1500 NCU (novo 
cellulose units) ml

-1
. Celluclast was applied at a rate of 1.1 L (1 L water mixed with 100 ml CLD, or 1.2 L (1 L 

water mixed with 200 ml CHD. These doses were used to treat 500 kg freshly mixed material. Silosolve™ AS 
200 (Chr. Hansen Inc., Animal Health and Nutrition, Czech Republic), a heterofermentative LAB inoculant, 
contains Lactobacillus plantarum (DSM 16568 at 2.5 x 10

10
 cfu/g), Enterococcus faecium (DSM 22502/ 

NCIMB 11181 at 3.8 x 10
10

 cfu/g) and Lactobacillus buchneri (DSM 22501/CCM 1819 x 6.3 x 10
10

 cfu/g). 
Five grams of Silosolve were dissolved in 1 L distilled water and used to treat 500 kg freshly mixed material. 
Emsilage (Probiokashi (Pty) Ltd, Stellenbosch, South Africa), a heterofermentative LAB inoculant, contains 
Lactobacillus plantarum, Lactobacillus fermentum and Lactobacillus lactis. An amount of 250 ml of Emsilage 
was diluted in 6.75 L water, and 2 L of this solution was used to treat 500 kg of freshly mixed PH. The control 
(untreated) silage was sprayed with 2 L distilled water per 500 kg freshly mixed material to ensure the same 
amount of moisture as in the treated silage.  

Nine treatment combinations were produced: i) no additive (control); ii) Celluclast low dose (CLD); iii) 
Celluclast high dose (CHD); iv) Emsilage (EMS); v) CLD + EMS; vi) CHD + EMS; vii) Silosolve (SLS); viii) 
CLD + SLS; and ix) CHD + SLS. The treatments were ensiled in 81 x 1.5 L anaerobic glass jars (J. Weck, 
GmBHu. Co., Wehr-Oflingen, Germany) with nine jars per treatment. Each jar was filled with approximately 
850 g (wet weight) of fresh PH material without head space. The jars were stored in the laboratory at a 
temperature of 24–28 °C to allow fermentation to occur for 90 days. Three samples per treatment were 
collected before ensiling and analysed for pH, WSCs, DM, CP, Gross energy (GE), NDF and ADF. Samples 
of Day 90 were analysed for fermentation characteristics and chemical composition. In addition, samples of 
Day 90 were subjected to an aerobic stability test in which 250 g from each jar was loosely packed in an 
open plastic jar that was covered with two layers of cheesecloth and kept at 28 °C. Thermocouples (T-type 
copper constantan, 20-gauge wire) were placed in the geometric centre of the silage mass in each jar and in 
the room where the jars were stored to record temperature. The room temperature and temperature in each 
jar were recorded simultaneously at one-hour intervals using a CR7X data logger (Campbell Scientific, 
Logan, Utah) for five days. The number of hours recorded by the data logger was regarded as the time taken 
for the silage temperature to rise 2 °C above ambient temperature. CO2 production, changes in PH and yeast 
and mould activity were determined after five days of aerobic exposure of silage using 2 L polyethylene 
terephthalate bottles according to a method described by Ashbell et al. (1991).  
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A representative 40 g (pre-ensiled and silage) sample was taken from each jar and mixed with 360 ml 
distilled water in a stomacher bag, homogenized and left at 10 °C for 24 hours (Suzuki & Lund, 1980). It was 
then homogenized for four minutes and filtered through a Whatman no. 4 filter paper (GIC Scientific, 
Midrand, South Africa). The pH was determined immediately with a pH meter (Thermo Orion Model 525, 
Thermo Fisher Scientific, Waltham, MA, USA). The filtrate was used to determine WSCs, LA, Volatile fatty 
acids (VFAs) and ammonia (NH3-N).  

The WSC fraction was determined by the phenol-sulphuric acid method of Dubois et al., (1956). LA 
was determined by the colometric method of Pryce (1969). The VFAs were analysed with a Varian 3300 
flame ionization detector (FID) gas chromatograph (Varian Associates, Inc., Palo Alto, CA, USA) by the 
procedure of Suzuki & Lund (1980). Ammonia-N was determined according to Broderick & Kang (1980).  

The DM of silage was determined by drying the samples at 60 °C to a constant mass and was 
corrected for loss of volatile fatty acids using the equation of Porter & Murray (2001), using the equation: 

 
 True DM= 19.96 + 0.9793 [0.987 (ODM60 – 0.260].  
 
After drying, the samples were ground through a 1-mm screen (Wiley Mill, Standard Model 3, Arthur H. 

Thomas., Philadelphia, PA, USA) for chemical analysis. 
NDF and ADF content were fractionated using heat-stable α-amylase (Sigma- Aldrich Co. LTD., 

Gillingham, UK, no. A-1278) with sodium sulphite according to Van Soest et al. (1991) using the Fibretech 
system equipment (Tecator Ltd, Thornbury, Bristol, UK). CP was estimated according to AOAC (1990 ID 
976.05). GE was determined with a bomb calorimeter (MS-1000 modular calorimeter, Energy 
Instrumentation, 135 Knoppieslaagte, Centurion, South Africa). Enumeration of yeasts and moulds was done 
according to the procedure of IDF (1990).  

Data on the effects of treatment combinations on fermentation, chemical composition and aerobic 
stability of the PH silage were analysed for a 3 x 3 factorial in a completely randomised design on a general 
linear model using Minitab Statistical Software Release 16 (Minitab, 2010). Tukey’s test was used to 
compare the treatment means. The model was as follows:  

 
Yijk= μ + Ei + Bj + (E×B)ij + Ԑijk  

 
Where: μ = overall mean 

Ei = effect of the i
th
 enzyme inoculant 

Bj = effect of the j
th
 bacterial inoculant 

(EB)ij = effect of interaction between the i
th
 enzyme and j

th
 bacterial inoculants 

Ԑijk = residual error 
 

Results and Discussion 
The chemical composition of pre-ensiled PH with or without WB is shown in Table 1.  
 
 

Table 1 Chemical composition (g/kg dry matter) of pre-ensiled potato hash with or without wheat bran (n = 3) 
 

Parameter Potato hash 
a
Potato hash / wheat bran mixture 

  
 

DM g/kg 188 352 

CP  84.8 152 

GE  13.9 16.3 

NDF 500 449 

ADF  146 139 

WSC  3.35 76.0 

pH 6.20 6.20 

   

DM: dry matter; CP: crude protein; GE: gross energy; NDF: amylase-treated neutral detergent fibre; ADF: acid 
detergent fibre; WSCs: water soluble carbohydrates 
a
80% potato hash: 20% wheat bran 

 
 



Mutavhatsindi et al., 2017. S. Afr. J. Anim. Sci. vol. 48 247 

 

 

The DM of a crop at ensiling has a strong influence on the rate and extent of the resulting fermentation 
(McDonald et al., 2011). A low DM content with low sugar content increases the chances of clostridial 
fermentation and subsequent poor acceptance by animals (Fraser et al., 2000). DM content of 250–400 g/kg 
in forage is required for favourable fermentation (Wilkinson, 2005). The DM of PH (188 g DM/kg) was not 
ideal for effective fermentation and warranted the addition of WB, increasing the DM to 352 g/kg, which is 
within the required range. WSCs are regarded as essential substrates for the growth of LAB to enhance 
efficient fermentation (McDonald et al., 2011). Lunden-Petersen & Lindgren (1990) recommended 60–70 g 
WSC/kg DM for well-preserved silage. The addition of WB to PH at ensiling increased WSCs to 76 g 
WSC/kg DM, making more substrate available for LAB. 

Data on the fermentation characteristics of PH after 90 days of ensiling are presented on Table 2. The 
pH, WSC, LA, AA, and PA were significantly influenced by interaction between the bacterial inoculant and 
the enzyme. It is documented (McDonald et al., 2011) that one of the most important factors affecting silage 
quality is the rate of decrease in pH of the plant material being preserved. A pH range of 3.7–4.2 is generally 
considered beneficial for forage preservation (Kung & Shaver, 2001). That of the present study was less than 
3.5, an indication of well-preserved silage.  
 
 
Table 2 Effects of enzyme and bacterial inoculants on the fermentation characteristics of potato hash after 
90 days of ensiling (n = 3) 
 

Treatment Enzyme 
Bact. 
Inoc. 

DM 
(g/kg) 

pH 
WSC 
(g/kg 
DM) 

LA 
(g/kg 
DM) 

AA 
(g/kg 
DM) 

PA 
(g/kg 
DM) 

BA 
(g/kg 
DM) 

NH3-N 
(g/kg 
TN) 

           

1 0 0 321 3.51
a
 12.7

e
 66.4

c
 6.35

ef
 1.35

b
 0.13 4.32 

2 CLD 0 317 3.36
de

 16.7
bcd

 86.7
a
 6.82

de
 0.90

d
 0.32 3.74 

3 CHD 0 327 3.37
ef
 19.5

a
 84.3

a
 7.44

bc
 0.88

d
 0.00 3.65 

4 0 EMS 327 3.34
f
 9.00

f
 86.2

a
 7.15

cd
 1.08

c
 0.25 3.93 

5 CLD EMS 381 3.42
c
 15.6

d
 77.6

b
 6.02

f
 0.79

e
 0.00 3.36 

6 CHD EMS 325 3.34
f
 17.5

bc
 61.5

d
 6.12

f
 0.69

f
 0.00 3.71 

7 0 SLS 356 3.45
b
 12.1

e
 61.9

cd
 9.64

a
 1.68

a
 0.28 4.42 

8 CLD SLS 373 3.37
d
 16.2

cd
 63.2

cd
 7.70

b
 1.70

a
 0.20 4.43 

9 CHD SLS 362 3.37
d
 18.0

ab
 60.8

d
 7.91

b
 1.67

a
 0.13 4.43 

SEM   819.5 0.000178 0.97 7.95 0.10 0.001 0.02 0.06 

Enzyme means 

0   334 3.46
a
 11.3

c
 63.2

b
 8.24

a
 1.37

a
 0.22

a
 3.93

b
 

CLD   357 3.36
b
 16.2

b
 75.8

a
 6.85

b
 1.13

b
 0.17

ab
 3.89

b
 

CHD   345 3.35
b
 18.3

a
 77.1

a
 6.64

b
 1.08

c
 0.04

b
 4.26

a
 

SEM   819.5 0.000178 0.97 7.95 0.10 0.001 0.02 0.06 

Bacterial inoculant means 

0   321
b
 3.40

a
 15.1 79.1

a
 7.39

b
 1.04

b
 0.15 3.75

b
 

EMS   351
ab

 3.37
b
 15.3 75.1

b
 6.43

c
 0.85

c
 0.08 3.94

b
 

SLS   364
a
 3.39

a
 15.5 62.0

c
 7.90

a
 1.68

a
 0.20 4.39

a
 

SEM   819.5 0.000178 0.97 7.95 0.10 0.001 0.02 0.06 

Significance           

Bact. Inoc. (B) ** ** NS ** ** ** NS ** 

Enzyme (E)   NS ** ** ** ** ** * ** 

ExB   NS ** ** ** ** ** NS NS 

           
a-f

 Means in the same column within the same section with different superscripts differ significantly (P <0.05). CLD: Celluclast low 
dose; CHD: Celluclast high dose; EMS: Emsilage; SLS: Silosolve; Bact. Inoc: bacterial inoculant; DM: dry matter; TN: total 
nitrogen; WSCs: water soluble carbohydrates; LA: lactic acid; AA: acetic acid; PA: propionic acid; BA: butyric acid; NH3-N: 
ammonia nitrogen; NS: not significant; *P <0.05; **P <0.01 
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The addition of Celluclast reduced (P <0.05) silage pH compared with other treatments. This is 
consistent with other reports (Nkosi et al., 2012b) in which silage pH was reduced with the addition of 
enzyme to forage (peas, ryegrass, wheat, sweet sorghum) at ensiling. However, the level of enzyme addition 
(CLD vs CHD) did not differ (P >0.05) in the reduction of silage pH. The reduction in pH due to Emsilage 
addition is consistent with results from another study (Pedroso et al., 2008) and could be attributed to the 
higher LA content observed in this silage (Table 2), typical of a homofermentative LAB inoculant pathway 
(Pahlow et al., 2003). 

The addition of Celluclast resulted in higher (P <0.05) residual WSC content of PH silage, indicative 
that more fibre fractions were degraded by enzyme addition to increase sugar content of ensiled PH. These 
results are consistent with those of other studies (Nadeau et al., 2000) where enzymes were reported to 
increase WSC of ensiled forages. Increasing the level of enzyme application (CHD) increased (P <0.05) the 
residual WSC content of PHS compared with CLD and the control treatments.  

The increased (P <0.05) LA observed in the EMS treatment (86.2 g LA/kg DM) was higher than the 
67.3 g LA/kg DM observed by Okine et al. (2005). This could be attributed to the differences in inoculant 
activities in the various studies. Increasing Celluclast application did not have a superior effect on LA 
production compared with the low dose, but the overall enzyme addition increased LA production compared 
with the control, consistent with findings of Chamberlain & Robertson (1992).  

The production of AA during silage production is a result of a heterofermentative pathway that leads to 
a reduction in production of aerobic microbes and increase in silage pH (McDonald et al., 2011). However, 
an increase in silage AA production leads to the inhibition of spoilage microorganisms because of its 
antifungal characteristics, thereby promoting aerobic stability (Danner et al., 2003). A concentration of more 
than 3 g AA/kg DM is enough to stabilize silage during aerobic exposure (Weissbach, 1996). The AA content 
in the current study ranged between 6.02 and 9.64 g AA/kg DM, which is higher than the AA content 
reported in the study by Ozduven et al. (2010). These variations could be attributed to the differences in 
chemical composition of the ensiled material (McDonald et al., 2011).  

The treatment combinations involving Silosolve, that is. SLS + no enzyme, SLS + CLD, and SLS + 
CHD, had increased (P <0.05) AA content compared with other treatments. However, combinations of 
enzyme and EMS, that is, CLD + EMS and CHD + EMS, had reduced (P <0.05) AA concentration compared 
with other treatment combinations. Silosolve contains L. buchneri and therefore an increase in AA was 
expected (Ranjit et al., 2002). The reduced AA with Emsilage or enzyme addition is typical of 
homofermentative LAB, which have often reduced the aerobic stability of silages because of lower 
concentrations of VFAs, which inhibit the growth of yeasts and moulds (Muck & Kung, 1997). Enzyme alone 
and EMS reduced (P <0.05) silage PA, contributing to poor aerobic stability (Muck & Kung, 1997). 

Silage Butyric acid (BA) content indicates that it has undergone a clostridial type of fermentation, 
which results in the loss of energy (McDonald et al., 2011). An amount of <0.1 g BA/kg DM is typically found 
in well-preserved silage (Kung & Shaver, 2001). Enzyme addition reduced (P <0.05) BA content compared 
with control, which is consistent with the findings of Adogla-Bessa et al., (1999). Increasing the application 
level of CHD reduced (P <0.05) silage BA concentration compared with CLD and the control. The increased 
(P <0.05) BA concentration in control silage is associated with the increased pH in this silage, typical of 
clostridial fermentation silages (McDonald et al., 2011).  

The NH3-N content in silage reflects the degree of protein degradation (Wilkinson, 2005). Well-
preserved silages should contain less than 100 g NH3-N/kg TN (McDonald et al., 2011). The concentration of 
NH3-N in the present study was less than 5 g NH3-N/kg T. CHD reduced (P <0.05) silage NH3-N and pH 
compared with control, indicating that less proteolysis has occurred in these silages. Silosolve contains L. 
buchneri and its inoculation increased (P <0.05) silage NH3-N and pH compared with control, indicating that 
proteolysis occurred with this treatment. This study contradicts the results from other studies (Kung et al., 
2007), which reported no differences in NH3-N concentration between L. buchneri control silages. Further 
research could be carried out to investigate these contradictions. 

The chemical composition of PHS produced without or with a fibrolytic enzyme and bacterial 
inoculants is presented in Table 3. The increased (P <0.05) CP concentrations in CLD and CHD compared 
with control were consistent with findings from Bermuda grass silages (Dean et al., 2005) and perennial 
ryegrass silage (Rodriguez et al., 2001). The increase in CP concentration in the CLD treatment was due to 
reduced NH3-N content in this treatment (Table 2). The increased (P <0.05) GE concentration in EMS silage 
could be attributed to the lower BA (Table 2) concentration in this silage.  

The reduced (P <0.05) fibre content with CLD and CHD silages compared with control is consistent 
with previous observations on enzyme-treated Bermuda grass silage (Dean et al., 2005), wheat silage 
(Adogla-Bessa et al., 1999), maize silage (Colombatto et al., 2004, Donmez et al., 2003), and orchard grass 
and alfalfa silages (Nadeau et al., 2000), perennial ryegrass silage (Rodriguez et al., 2001) and whole-plant 
sweet sorghum (Nkosi et al., 2012a). The reduction in fibre content (NDF and ADF) with Emsilage and 
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Silosolve could be attributed to partial hydrolysis of hemicelluloses (Muck & Kung, 1997), and is consistent 
with the results of Nkosi et al. (2011). 
 
 
Table 3 Effects of a fibrolytic enzyme and bacterial inoculants on the chemical composition of ensiled potato 
hash (n = 3) 
 

Treatment Enzyme 
Bact. 
Inoc. 

CP (g/kg DM) 
GE (MJ/kg 

DM 
NDF (g/kg DM) 

ADF (g/kg 
DM) 

       

1 0 0 141
d
 16.9

b
 443

a
 151

a
 

2 CLD 0 148
b
 17.0

b
 343

c
 111

f
 

3 CHD 0 151
a
 17.1

b
 311

d
 109

f
 

4 0 EMS 143
c
 17.6

a
 348

c
 131

d
 

5 CLD EMS 147
b
 17.5

a
 420

b
 145

c
 

6 CHD EMS 131
e
 16.0

c
 419

b
 118

e
 

7 0 SLS 123
f
 15.0

d
 356

c
 120

e
 

8 CLD SLS 121
g
 14.6

e
 454

a
 148

ab
 

9 CHD SLS 120
g
 13.7

f
 412

b
 148

ab
 

SEM   0.93 0.03 89.0 3.25 

Enzyme means     

0   135
b
 16.5

a
 406

a
 133

a
 

CLD   139
a
 16.4

a
 406

a
 135

a
 

CHD   134
c
 15.6

b
 357

b
 125

b
 

SEM   0.93 0.03 89.0 3.25 

Bacterial inoculant means     

0   147
a
 17.0

a
 436

a
 143

a
 

EMS   140
b
 17.0

a
 396

b
 137

b
 

SLS   121
c
 14.4

b
 337

c
 113

c
 

SEM   0.93 0.025 89.0 3.25 

Significance       

Bact. Inoc. (B) ** ** ** ** 

Enzyme (E)   ** ** ** ** 

ExB   ** ** ** ** 

       
a-f

 Means in the same column within a section with different superscripts differ significantly (P <0.05). CLD: Celluclast low 
dose; CHD: Celluclast high dose; EMS: Emsilage; SLS: Silosolve; Bact. Inoc.: Bacterial inoculant; DM: Dry matter; CP: 
Crude protein; GE: Gross energy; NDF: Neutral detergent fibre; ADF: Acid detergent fibre. **P <0.01 

 
 
Data on the aerobic stability of PHS treated without or with additives (fibrolytic enzyme and bacterial 

inoculants) are presented in Table 4. Aerobic deterioration of silage is a complex process and is usually 
initiated by aerobic yeasts that use residual WSCs or LA for their metabolism. After exposure to air for five 
days, silages treated with Silosolve (SLS, CLD + SLS, and CHD + SLS) showed improved (P <0.05) aerobic 
stability, as indicated by the increased (P <0.05) number of hours they remained stable, their low pH, and 
their reduced (P <0.05) CO2 and yeast and mould population compared with other silages. These results are 
consistent with those of Nkosi et al. (2012b), who reported improved aerobic stability with a 
heterofermentative LAB + enzyme addition in sweet sorghum silage. Addition of enzyme, alone or in 
combination with Emsilage, impaired the aerobic stability of silage, as indicated by higher (P <0.05) pH, CO2 
production, and yeast and mould population counts, and reduced (P <0.05) the number of hours compared 
with silages treated with Silosolve LAB inoculant. These results were inconsistent with those of Chen et al. 
(1994), who reported reduced aerobic stability owing to enzyme-inoculant addition to maize silage. 
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Table 4 Effects of a fibrolytic enzyme and bacterial inoculants on the aerobic stability of potato hash silage (n 
= 3) 
 

Treatment Enzyme Bact. Inoc. pH CO2 (g/kg DM) Hrs Yeast & Moulds 

       

1 0 0 7.07
c
 15.5

e
 63.5

d
 3x10

5bc
 

2 CLD 0 8.14
b
 29.3

b
 57.9

e
 3x10

7a
 

3 CHD 0 8.90
a
 31.5

a
 55.1

e
 3x10

7a
 

4 0 EMS 8.23
b
 18.9

d
 66.1

cd
 3x10

5bc
 

5 CLD EMS 7.30
c
 11.0

g
 76.2

b
 7x10

5b
 

6 CHD EMS 7.44
c
 26.5

c
 66.5

c
 3x10

7a
 

7 0 SLS 5.31
d
 8.43

h
 88.7

a
 2x10

c 

8 CLD SLS 7.27
c
 11.0

g
 89.0

a
 2x10

c
 

9 CHD SLS 7.12
c
 12.9

f
 88.2

a
 4x10

c
 

SEM   0.08 0.78 2.87 7x10
10

 

Enzyme means 

0   7.46
b
 15.3

c
 80.2

a
 1x10

7b
 

CLD   6.62
c
 17.7

b
 74.4

b
 2x10

7a
 

CHD   8.19
a
 22.0

a
 62.6

c
 2x10

5c
 

SEM   0.08 0.78 2.87 7x10
10

 

Bacterial inoculant means 

0   7.44 29.1
a
 58.9

c
 1x10

5c
 

EMS   7.30 12.8
b
 77.0

b
 1x10

7b
 

SLS   7.44 13.1
b
 81.3

a
 2x10

7a
 

SEM   0.08 0.78 2.87 7x10
10

 

Significance 

Enzyme (E)   ** ** ** ** 

Bact. Inoc.(B)   NS ** ** ** 

ExB   ** ** ** ** 

       
a-f

 Means in the same column within a section with different superscripts differ significantly (P <0.05).CLD: Celluclast low 
dose; CHD:  Celluclast high dose; EMS: Emsilage; SLS: Silosolve; Bact. Inoc.: Bacterial inoculant; DM: Dry matter; CO2:  
Carbon dioxide; Hrs: Hours; NS:  not significant; **P <0.01 
 
 

Conclusions 
Silages treated with a high dose of the enzyme had lower fibre content than the untreated silages, 

indicating effective fibre degradation. However, enzyme inoculation, used at low and high doses, increased 
the WSC content. Thus, it provided more substrate for the LAB, increased LA, and reduced the pH of PHS. 
Although enzyme addition improved fermentation, this resulted in silages of low aerobic stability owing to 
increased residual sugar content. Inoculation with LAB inoculants improved the fermentation process. 
However, this effect was more prominent for the homofermentative LAB inoculant, which is typical of these 
inoculants. Further work needs to be done to elucidate the effects of these silage additives on animal 
performance.  
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