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Countering inbreeding with migration
1. Migration from unrelated populations
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The effect of migration on inbreeding is modelled for small populations with immigrants from a large unrelated population.
Different migration rates and numbers for the two sexes are assumed, and a general recursion equation for inbreeding
progress derived, which can be shown to lead to an equilibrium inbreeding coefficient where the effects of genetic drift and
migration balance each other. For small migration rates and large numbers of breeding animals it is shown that migration of
only the scarcer sex will minimize the equilibrium inbreeding. Migration from only one sex will also be an advantage in
small populations with large migration rates. In small populations with large migration rates fewer migrants are necessary
for a given equilibrium inbreeding coefficient than in large populations with small migration rates. Finally. an equation is
derived for situations where the number of females is so large that their contribution to inbreeding can be ignored. Simple
tables are given for the equilibrium inbreeding coefficients where the number of migrants and herd sizes are taken into con-
sideration. The general impression from these tables is that, for equal numbers of the two sexes, the provision of 2-4
migrants to a population should stabilize inbreeding. In populations with low male to female ratios, where only the inbreed-
ing from the male side is important, one or two male migrants should stabilize the inbreeding.

Die effek van migrasie op inteling is gemodelleer vir klein bevolkings met immigrante uit 'n groot onverwante bevolking.
Verskillende migrasietempo’s en aantalle manlike en vroulike diere is veronderstel en 'n algemene rekursievergelyking vir
die vordering van inteling is afgelei. So 'n rekursievergelyking lei tot 'n ewewigsintelingskoéffisiént waar die vitwerking
van genetiese monstering en migrasie in balans is. In die geval van klein migrasietempo’s en 'n groot aantal teeldiere word
daar bewys dat migrasie van die geslag met die kleinste aantal teeldiere die ewewigsinteling sal minimaliseer. Migrasie van
een geslag sal ook 'n voordeel hé in klein bevolkings met groot migrasietempo’s. In klein bevolkings met gepaardgaande
groot migrasietempo’s is minder migrante nodig vir 'n gegewe ewewigsintelingskogéffisiént as in groot bevolkings met klein
migrasietempo’s. As grensgeval is 'n vergelyking afgelei waar die aantal vroulike individue so groot is dat hulle bydrae tot
inteling weglaatbaar klein is. Gebruiksvriendelike tabelle vir ewewigsinteling word gegee waar kuddegroottes en die aantal
migrante in ag geneem word. Die algemene indruk in hierdie tabelle is dat 2—4 migrante inteling sal beheer vir 'n gelyke
aantal manlike en vroulike diere. Met groot genoeg aantalle vroulike diere, sodat hulle bydrae tot inteling negeerbaar is,

behoort een of twee manlike diere inteling binne aanvaarbare grense te hou.
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Introduction

The decline in fitness associated with inbreeding in normally
cross-fertilizing organisms often necessitates its avoidance in
animal and plant breeding (Falconer, 1989) or conservation
(Frankel & Soulé, 1981). These references also provide evidence
that even a small number of migrants may serve to limit inbreed-
ing.

Probably the simplest situation by which the effect of migra-
tion on inbreeding can be modelled is that of a small population
with immigrants from a large unrelated population, the size of
which is large enough so that the contribution to inbreeding from
the emigrant population can be ignored. Two practical examples
of this situation comes to mind. The first is that of a zoo keeping
a small population of a certain species for which a great number
of potential emigrants exists in a nature reserve. The second
example is that of a studbreeder of a popular breed.

Equilibrium inbreeding coefficient

The generally accepted didactic device for the description of
inbreeding due to finite population size is to assume a population
of N diploid parents contributing gametes to the next generation.
It is supposed that the offspring come from pairs of gametes
drawn at random from the independently large pool of gametes
to which each parent contributes equally. The following recur-
ston equation can then be derived (Crow & Kimura, 1970)

F,= 12N+ (1 - 12N)F, _,,

where F, is the inbreeding coefficient of an individual in genera-
tion f. Assume migration from a very large unrelated noninbred
population, with migration rate m. Then, again following Crow
and Kimura (1970),

F, = [112N + (1 = 12N)F,_|](1 - m)?, (1.1

with (1— m)? being the probability of sampling two gametes car-
rying native (nonmigrant) genes.

The equilibrium between the opposing effects of migration and
restricted population size on the degree of genic identity by
descent can be quantified by the equilibrium inbreeding coeffi-
cient, F = F, = F,_,. Solving for the equilibrium F from (1.1)
gives

F=(=m¥{2N[1 -1 -m)* + (1 —m)?}. (1.2)

For small m, (1 - m)? =1 + 2m, approximately, and (1.2)
becomes

F=1/4mN + 1), (1.3)

Equation (1.3) is the standard approximation (Crow & Kimura,
1970) for the equilibrium inbreeding coefficient, showing that
the limitation of inbreeding by migration depends mainly on mN
= M, the number of migrants in a population, independent of the
population size.



S.Afr.J. Anim.Sci.,1995.25(2)

Sex differences in numbers and migration rates

By solving the relevant recursion equations it can be shown
(Crow & Kimura, 1970) that with m = 0, equation (1.1) gives a
fair approximation to the progress in inbreeding with different
numbers of two separate sexes in a small population by assuming

I/N, = 1/4N, + 1/4N,, or N, = 4N N,/(N, + N,).

where N| = number of males and N, = number of females in a
population with size N = N, + N,, and where N, is the so-called
effective population number which can be substituted in (1.1) in
place of N to describe inbreeding due to finite population size.

From the equal genic contribution to offspring by the sexes, it
is natural to define the effective migration rate (m,) as equal to
the mean of the male and female migration rates,

m, = (my + m,)/2. (1.4)

Substituting m, = (m; + my)/2 and N, = 4N|N,/(N, + N,) in
(1.3), and writing p, = N\//(N, + N,); p, = No/(N; + N,) for male
and female frequencies respectively, and m N, = M, = number of
male migrants and m,N, = M, = number of female migrants
gives

F=1/{8(p,My + p,M,) + 1}, (1.5)

but still based on die assumption of small migraticn rates.
From equation (1.5) two important conclusions follow:

Conclusion 1: With equal numbers of the two sexes in the popu-
lation, the equilibrium inbreeding coefficient depends asymp-
totically only on the total number of migrants, regardless of
their sex.

Proof: With p, = p, = V2 (1.5) becomes F = [/[4(M, + M,) +
1], equivalent to (1.3) with M, + M, = M, M being the total
number of migrants.

Conclusion 2: With unequal numbers of the two sexes in the pop-
ulation, the equilibrium inbreeding coefficient will be mini-
mized if, for a fixed number of migrants, all migrants are from
the scarcer sex.

Proot: Assume p, > p; and write, from M, = M - M,,

PiMy + poMy = p M + M (py—p)).

Then, since M is fixed and (p, — p,) positive, it is clear that
M, + p,M | is a maximum if M| is as large as possible, that is,
M, = M. If pyM, + p,M, is a maximum, then F must be a mini-
mum.

The foregoing two conclusions seem of great enough theoreti-
cal interest and practical importance to justify modelling a more
realistic biological situation than the one portrayed by random
union between an array of an infinite number of gametes from a
finite set of parents. Additionally, it seems important to deter-
mine if the definition of effective migration rate can also be sub-
stantiated from inbreeding considerations, in addition to the gene
frequency considerations employed in the derivation of (1.4).

Different migration rates and numbers for the two
sexes

In the general formulation N,, N,, m,, and m, will be defined as
before, with the subscripts 1 referring to males and 2 to females.
The development is closely analogous to the development of the
formulas for inbreeding due to small populations with different
proportions of the two sexes. The arguments will, therefore, be
given in outline only. Details can easily be filled in from deriva-
tions of Crow and Kimura (1970).
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Recursion equation

The probability that two genes in different individuals in genera-
tion ¢ are both derived from the same native individual in genera-
tion (£ — 1) is

(I=m)/AN| + (1 — m1)/4AN,. (1.6)

The probability of both genes derived from the same migrant
individual in generation (£ — 1) is

’n]/4N| + HZ:/4N2. (17)

The probability that two genes in different individuals in genera-
tion ¢ are derived from different native males in generation (z — 1)
is

[(1=m)? = (1 —=m)IN, /4 (1.8)
and, likewise, from different native females,
[(1 = mp)? = (1 — my)/N, /4. (1.9)

The probability that two genes are derived from native males and
females is

(1 =m)(1 —=my)/2. (1.10)

The probability that two genes in different individuals in gen-
eration t are derived from different native individuals in genera-
tion (t+ — 1) is, therefore, the sum of (1.8), (1.9) and (1.10),
namely,

{1 =m) + (1 =m)PP— (1 =m)IN, = (1 = m)IN,}4. (1.11)

The probabilities of native and migrant combinations are not
necessary for further development since it is assumed that native
and migrant individuals are unrelated.

Let G, be the coefficient of consanguinity of two random
native individuals in generation r, with the coefficient of consan-
guinity being the probability of a random gene from one individ-
ual being identical by descent to a random gene from the other. It
follows by definition that

Fo=(1-m)(1-m)G,_,. (1.12)

since (1 — m)(1 — m,) is the probability of a mating between
natives, and the coefficient of consanguinity between natives and
migrants, and of migrants alone, are assumed equal to zero.

The probability that two genes from different individuals,
derived from the same individual in the previous generation, are
identical by descent must be

U4+ 14+ (112)F,_, = (D1 + F,_))

for natives in generation f, and 1/2 for migrants, since migrants
are assumed noninbred. Combining these probabilities of iden-
tity by descent with (1.6), (1.7)y and (1.11) gives

G, = [(1 = mIN, + (1 = m)IN>J(1 + F,_ )8 + (m /N, + my/No)/8
+ ([ =m) + (1 —m)P~ (1 =m)IN, = (1 = m)IN,} G,_ /4.
(1.13)

Substituting (1.12) in (1.13) gives a recursion equation that can
be solved to describe the progress in inbreeding of natives.

Equilibrium equation

Migration is likely to be used for the limitation of inbreeding,
and the limiting or equilibrium inbreeding coefficient is, there-
fore, of greater interest than the recursion equation. Putting F, =
F,_, = F,_, = Fwith F, the equilibrium inbreeding coefficient, in
(1.12) and (1.13) then gives



F=(1=m)(l =m)/{2N[1 = (1 =m,)*] + (1 = pymy = pymy) x
[2= (1 =m)(1 =myl}, (1.14)

with all terms as defined for (1.5).

Equation (1.14) does not appear to be directly amenable to the
development of general rules for the limitation of inbreeding.
Therefore, a number of special cases of general interest will be
considered.

Small migration rates and large numbers of breeding
animals

Assume m,, my, — 0, while the numbers of male and female
migrants remain constant. Then (1.14) simplifies to

F=1/[4m,N, + 1], (1.15)

which immediately justifies the definition of the effective migra-
tion rate, m, = (m, + m,)/2, conjectured in (1.4). Hence the two
important conclusions on male and female migrants, which fol-
lows from (1.5), hold in general under the assumptions on which
(1.15) are based.

Equal migration rates and numbers

The restriction of separate sexes on the completely random union
of gametes was ignored in the derivation of (1.2). Therefore, a
situation with separate sexes is worth exploring, even if m; = m,
= m. Under this assumption (1.14) reduces to

F=(-m¥2NJ[1 - -m?1+(1-m[2-(1-m)}. (1.16)

For m small (1.16) is approximately equal to (1.3). Denote the
equilibrium F from (1.16) by F(16) and that from (1.3) by F(3).
By straighttorward but tedious algebra it can be shown that F(16)
< F(3), that is to say that equation (1.3) gives an upper limit to
the solution to equation (1.16). This conclusion is also illustrated
in Table 1, which is a tabulation of (1.16) in terms of numbers of
migrants and herd size, with equal numbers for the two sexes (i.e.
N, = N,= N/2). The limit value is the value obtained from (1.3),
for a given number of migrants. This table may be of value for
very small herds, for which even a small number of migrants rep-
resent a large migration rate. For example, for a herd size of eight
or less, two migrants per generation may be adequate, and four
migrants per generation may only be under consideration for
herd sizes of more than 16.

It is of interest to note that (1.2) is an excellent approximation
of (1.16). For example, if the first line of Table 1 is computed
trom (1.2), total agreement will be found for figures rounded to
whole percentage values.

Table 1 Percentage inbreeding at equilibrium between the
effects of migration and restricted population size with equal
numbers of the two sexes

Herd size

Migrant

number 2 4 6 8 16 Limit
2 0 36 5.8 7.0 89 111
4 0 1.0 1.9 37 5.9
6 0 04 1.9 4.0
8 0 1.0 30
16 0 1.5
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Males only

Migrants all males and equal population numbers in the
two sexes

Equal migration rates and equal numbers for the two sexes imply
that only even numbers can appear in Table 1. Uneven numbers
of migrants can best be handled by assuming migrants are all of
the same sex. Consider only male migrants, that is, assume m, =
0. Then, with Ny, = N, = N/2, so that p, = 1/2, (1.14) reduces to

F= —mp{mN@4—-m)+Q2-m) (1 +m)2}. (1.17)

Table 2 is a tabulation of (1.17) in terms of numbers of male
migrants M, = Nym, and herd size. A comparison with Table 1
shows an advantage in inbreeding limitation in very small popu-
lations with migrants all of the same sex, even when the numbers
of animals in the two sexes are equal. Otherwise the conclusions
emanating from Tables | and 2 are equivalent.

Table 2 Percentage inbreeding at equilibrium between the
effects of migration and restricted population size with equal
numbers of the two sexes and with only male migration

Male Herd size

migrant

number 2 4 6 8 16 Limit
1 0 10.8 14.0 15.5 17.7 20.0
2 0 4.2 6.2 8.7 11.1

3 0 23 52 7.7

4 0 33 5.9

8 0 3.0

Fewer breeding males

Conclusion 2, emanating from equation (1.5), suggests that for
fewer breeding males than females only male migrants need to
be considered. If the number of females is much larger than the
number of males, it follows that

N, = 4Ny, py = No/(N, + N>) = L and p, = N\/(N, + N) =0,
(1.18)
approximately. Substituting (1.18) and m, = 0 in (1.14) results in

F=(0-—m)/2Nm (4 —m) + (1 —m>)]. (1.19)
For m; = 0 and m N, constant (1.19) becomes
F=1/(8mN, +1). (1.20)

Equation (1.20) is equivalent to (1.5) for /N, negligible. Since
all terms are positive it is immediately obvious that F(19) <
F(20) where F(19) and F(20) refer to equilibrium values from
(1.19) and (1.20) respectively.

Even for a small number of migrants the migration rate may be
large for a small number of males in the herd. Hence, Table 3
from equation (1.19) for large migration rates and a small
number of males in the herd may be of value. For practical con-
venience it is in terms of numbers of males in the herd and
migrant numbers. A manager can decide on a tolerable degree of
inbreeding and decide, for example, that one or two migrant
males should always be kept among the male members of the
herd. The limit values in Table 3 are from (1.20).
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Table 3 Percentage inbreeding at equilibrium between the
effects of migration and restricted population size with male
migration and large numbers of females

Number of males in herd

Migrant

number 1 2 3 4 5 10 Limit
I 0 6.5 8.1 8.9 93 10.2 1.1

2 0 2.4 3.4 39 5.0 5.9
3 0 1.3 1.9 3.1 4.0
4 0 0.8 2.0 3.0
5 0 1.4 2.4
10 0 1.2

Emigration from a large number of equally inbred
populations

Instead of emigration from a large unrelated population, one can
consider emigration from a large number of equivalent small
populations. The assumption is, therefore, that all members of a
population are equally inbred, but all migrants are unrelated to
cach other and to members of the native population. This situa-
tion can be handled by a modification of (1.13) to

G, =[1/N, + IIN,](1 + F,_)/8
{0 =m) + (0 =m)P = (1 =m)INy = (1 —=my)INYG, _ /4,
(1.21)

while (1.12) remains the same.
From (1.21) and (1.12) the equilibrium inbreeding coefficient
is

F=(l —m):/{QN(.[l (1 =m)*+ (1 =m?)}, (1.22)

under the same assumptions as (1.16). Since N > 2, it is apparent
that (1.22), (1.16) and (1.2) are close approximations to each
other.

The conclusion is, therefore, that migration from a large
number of more or less equally inbred, unrelated populations can
be approximated from Tables 1, 2 and 3, which were constructed
for migration from a single large population. In practice this
probably approximates the situation for a studbreeder in a large
breed. The likely situation for endangered species and smaller
breeds will be modelled in the companion article (Roux, 1995).

Differences between alternative solutions

To justify developments in the companion article (Roux, 1995), it
is important to know if the naive generalizations of (I.1) to the
situation of different numbers for the two sexes,

Fy=[12N, + (1 = 1/2N,)F, | )(1 = m,)? (1.23)
or
Fo=[12N, + (1 = 12N)F, (1 = m))(1 = my), (1.24)

with all terms defined as for (1.5), can have equilibrium solutions
approximately equal to the general (1.14).
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Analogous to (1.2) the equilibrium solutions to (1.23) and
(1.24) are

F=(1=m)Y2N,[1 - (1 —m)*] + (1 —=m,)?} (1.25)

and

F=(0-m)(I=my)/{2N,[1 = (1 —=m )1 —my)] + (1 —m))(1 —m5)}.
(1.26)

Certainly for m;, m, = 0 and m,;N,, m,N, constant (1.25) and
(1.26), like (1.14), are approximately equal to (1.15). However,
for my or my — 1 (1.26) is clearly a better approximation to
(1.14) than (1.25). This suggests that (1.26) should be preferred
above (1.25) as an approximation to (1.14), if m, # m,. For m, =
my, (1.25) = (1.26). If Tables 2 and 3 are rounded to whole per-
centage values, calculations from (1.26) instead of (1.17) or
(1.19) give equivalent results.

Equation (1.26) is comparable to a specialization from a more
complex and general model presented by Chesser et al. (1993).
For exactly two offspring per female and the variance in the
number of females mated to a male equal to the mean, their equa-
tion (49) and (1.26) are approximately equal (o each other.

Discussion

The equation (1.2), representing the equilibrium between the
effects of migration and restricted population size, dates back to
Wright’s (1943) work on population structure in what he termed
the island model. In this article Wright’s formula (1.2) for the
equilibrium inbreeding coefficient was generalized to accommo-
date sex differences in population numbers and migration rates
with practical application in conservation and animal breeding in
view. Nevertheless, this generalization remains of limited value
as the requirement of unrelated migrants may be difficult to
achieve in many practical situations. However, in the context of
equiprobable migration between subpopulations, the maximum
difference (1 — k) in inbreeding coefficients of such populations
and a conceptual aggregate random mating population can be
shown to be asymptotically equal to the equilibrium inbreeding
coefficient. The development of this approach is the topic of the
second article in this series (Roux, 1995), in which the results
from the present article will be important for the justification of
generalizations allowing practical application in conservation
and animal breeding. Even the tables will present important base-
lines for the maximum difference (1 — k) mentioned above.
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