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In conservation and breeding, large populations are important for evolutionary viability and selection progress. On the other
hand, practical and economic rcasons may exist for populat ion subdivision. These populat ions ( islands) may be t ied
together to form effectively a single population (archipelago) by migration rates of acceptable magnitude. The acceptability
of migration rates is judged by the maximum difference ( 1 - k) in inbreeding between a subpopulation, of size N, and a con-
ceptual aggregate random matin-q population of size Nn, with n equal to the number of subpopuiations. For small migration
rates (n) and large subpopulat ion sizes this maximum diff-erence ( l  -  k) is equal to 1/{4M(n + l) /(n - l )  + I  } ,  where M=
nN, the number of migrants in each subpopulation. For large n this result is equivalent to the standard result of the limit
inbreeding coefficient of a subpopulation (single island) with migration from a very large noninbred population, ll(4M + l).
The recommendations for the limitation of inbreeding are, therefore, equivalent to the single island situation for a large
number of subpopulations, while a small number of subpopulations (n) requires less migration than a large number. For
large migration rates and small  subpopulat ion sizes exact results are avai lable. The general conclusion is that these situa-
tions require less migration for a given maximum difference (l - k) than small rates and large population sizes. The rules
for different male and f-emale migration rates are the same as for migration from a large unrelated population (single island
situation). Indeed, adjustment with a factor of (n - l) /(n + l)  al lows most conclusions on number of migrants and maximum
difference ( I - k) in inbreeding coefficients to carry over from the single island to the archipelagic situation.

In bewaring en teling is groot bevolkings nodig vir evolusionOre oorlewing en seleksievordering. Aan die anderkant mag
daar praktiese en ekonomiese redes wees vir die onderverdeling van bevolkings. Onderverdeelde bevolkings (eilande) kan
saamgebind word vir 'n enkele bevolking (argipel) deur migrasietempo's van aanvaarbare grootheidsordes. Die aanvaar-
baarheid van migrasietempo's word gemeet aan die maksimum verski l  ( l  -  k) in intel ing tussen 'n subbevolking met N lede
en'n konseptuele samegevoegde panmikt iese bevolking met Nn lede, waar n gelyk is aan die aantal subbevolkings. Vir
klein migrasietempo's (m) en groot subbevolkings is die maksimum verski l  ( l  -  k) gelyk aan l l l4M(ru + l) l@ - l)  + I  ) ,
waar M = mN, die aantal migrante in elke subbevolking. As n groot is. is hierdie resultaat gelyk aan die limiet van die
intel ingskoefl lsient van'n subbevolking (ei land) met migrasie vanaf 'n baie groot onverwante bevolking, 1l(4M + 1). In die
geval van 'n groot aantal subbevolkings is die aanbevelings vir die beperking van intel ing dus gelyk aan die standaard aan-
bevelings wat afgeiei kan word vir 'n enkele bevolking terwyl 'n klein aantal subbevolkings (rz) minder migrante nodig het.
In die geval van groot migrasietempo's en klein subbevolkings is eksakte afleidings beskikbaar. Die algemene gevolg-
trekking is dat hierdie situasie minder migrante nodig het as die teenoorgestelde geval van klein migrasietempo's en groot
aantalle in die subbevolkings. Die reels vir geslagverskille in migrasietempo's is dieselfde as vir migrasie vanaf 'n groot
onverwante bevolking na'n enkele ei land. As die aantal migrante en die maksimum verski l  ( l  -  k) met'n faktor
(n - l)l(n + l) aangepas word, kan die meeste gevolgtrekkings oor die enkeleilandmodel oorgedra word na die argipel-
model.
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lntroduction
Among reasons given for the subdivision of populat ions into
smaller breeding groups are those related to economics, space,

f 'aci l i t ies, health and exposure to a wider publ ic, as in zoos,

where the subdivision may also contain the spread of epidemics.

In conservation biology and animal breeding, on the other hand,

evolutionary and entrepreneurial arguments may be raised tor the

integration of geographically separated subpopulations into

larger breeding units, with the ultimate aim of being able to treat

a whole race, breed or species as a single breeding unit.  The

migration rates necessary to integrate subpopulations into an

effectively single breeding population then become of major

importance. Inbreeding is a reflection of effective population

size. Hence, one way of achieving an effect ively single breeding
population is to keep inbreeding in the subpopulations within

specified limits from that of a single conceptual aggregate ran-

dom mating population.

In the t irst art icle of this series (Roux, 1995) inbreeding in a

subpopulation was described for a system of migration of indi-

viduals from a large unrelated population, or from a large

number of unrelated subpopulat ions of equal size. In this situa-
t ion inbreeding in a f ini te subpopulat ion is arrested by unrelated
migrants. In contrast, small  total populat ion sizes wil l  cause sub-
populat ions to become related as a consequence of migration.
One way in which such a situation can be described is by the
finite island model (Crow, 1986), in contradist inct ion to that of
the first article, which can be described as the infinite island
model. Perhaps more apt terms would be the archipelago and sin-
gle island models of migration and inbreeding.

Chesser et al.  (1993) derived recursion formulas for the archi-
pelagic situation for dioecious organisms from which the
progress in inbreeding can be calculated. Unfortunately, the
mathematical ly expl ici t  solut ions to the recursion equations are
too complex to gain understanding of the dynamics of the situa-
t ion. Chesser et al.  (1993) circumvented the problem by the
device of deriving effective population numbers. However, using
the relevant effective population numbers to calculate the
progress in inbreeding is only sl ightly less tedious than numeri-
cal iterations based on the full recursion equations (Chesser e/
a l . ,1993) .
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In this art icle the problem wil l  be simpli f ied by an extension of

the standard monoecious approximation to the dioecious situa-

t ion. Both Kempthorne (1969) and Crow & Kimura (1970) show

that this approximation is very good, even fbr small popuiation

sizes. Furthermore, extensions to migration in the dioecious situ-

at ion wil l  be val idated by comparison to the special case of a

very large number of islands for which an exact solut ion is avai l-

able from Roux (1995).

Recursion equations and their solut ions for monoecious organ-

isms in the archipelagic situation have been obtained by Latter

( 1973) in terms of the degree of heterozygosity in subpopulat ions

or islands. As this is inconvenient for the calculat ion of inbreed-

ing coeflicients and the comparison of conclusions with the con-

ventional approach, Latter 's (1993) results wi l l  be transcribed

from heterozygosities to inbreeding coefhcients in terms of the

development found in Li (1916) and also to be found in Crow
(1986). The solut ions to the recursion equations wil l  then be used

for an explorat ion of the dynamics of inbreeding under migration

for the purpose of development of useful rules of thumb lbr

countering inbreeding by migration. Important extensions

approximating the dioecious case will be indicated for differ-

ences between the sexes in number and migration rate and vali-

dated by comparisons to solut ions from Chesser e/ c/.  (1993) and

Roux  (1995 ) .

The correction for migration in the finite island model effec-

t ively precludes self-fert i l izat ion (Crow & Kimura, 1970). The

fbrmulas for a truly monoecious situation in which self-fert i l iza-

t ion is included wil l  also be indicated.

Recursion equations and their solut ions

Exact solut ions

Consider n islands in an archipelago, each with a populat ion of

size N, so that the total populat ion number is equal to Nn. On

cach island there is a proportion of m migrants, arriving with

equal probabil i ty from the other (n - l)  members of the archipel-

ago. Let

c  =  l l ZN .

a = the probabil i ty that two random individuals from the same

populat ion were on the same island a generation earl ier;

b = the probabil i ty that two random individuals from dif ferent

islands were on the same island a generation earl ier. There-

fore, I - a and 1 - b are the probabilities that two individuals

were on different islands a generation earlier. Furthermore,

let F, be the probability in generation t that two alleles on the

same island are identical by descent, andf, the probability in

generation / that two alleles on different islands are identical

by descent.

The natural extension of the single island equation (Crow,

r986) .

F , = ( l  - r n ) 2 f c  + ( l  -  c ) F t - J ,

to the archipelagic situation is then

F r =  a f c  +  ( l  -  c ) F , - i  +  ( l  -  a ) f t - t

f ,  =  b lc  +  (1  -  c )F, -  r l  +  (1  -  b) f , -  r

( 2  l )

( )  ) \

Crow ( 1986) provides a proof that

a  = ( l  -  m)2 + mzl (n  -  I ) ,  b  =  (1  -  a) l (n  -  1) .

For further development it is more convenient to work with the

panmictic coefficients P, = | - F, and Q, = 7 - f,.Equations (2.2)

then transform to

P , = e , , P ,  t * a t t O ,  I

Q t =  a z r  P t _ r  +  a z z Q t - r  Q . 3 )

wi th

a t t = a ( l  - c ) , s p = 7 - a

a z r  =  b ( l  -  c ) ,  a z z =  ( 1  -  b ) .

The characteristic roots of the 2 x 2 matrix associated with (2.3)

are

45

Lr ,  Lz  = [ (azz + a t )  +  { (azz -  ar )z  +  4apa21} ' " ]12.

The intrapopulat ion solut ion to (2.3) is

P, = k)'' r + (P,, - k))'t 2,

with

k = (Pr- P1y).2)/(tr1 - trz)

and

P 1 =  a l r P u - t t ; , Q r y .

Assume that  P, ,  =  Qr= l ,  then

k = (Vz)  +  (Vz)(ar ,  +  2an -  az t ) l ( (an -  a1)2 I  4apa. ,1 \ ' / ' ,  (2 .6)

i f  l . r  > L" from (2.4).The theory behind (2.4-2.6) is avai lable
from Crow and Kimura (1970). Equations (2.4), (2.5) and (2.6)

are equivalent to Li 's (1916) (5a) and (5b), but simpli fy the nota-
t ional complexit ies employed by him to accommodate the possi-

bi l i ty of a balance between mutation and migration in the l imit
values of P and Q.

Asymptotic and approximate solut ions

Define

n t ' = m n l ( n - l ) . (2 .7 )

Assuming m and l /N small  enough so that squares and products

are negligible and that 16m'Nln is small  in comparison to (1 +
4m'M2. i t  fol lows from Latter (1973) that

t r r  =  I  - l l l LN(n- l ) \ l4mNl (4m'N +  l ) ) , (2 .8 )

fbr the larger root in (2.4).In a more symmetrical form (2.8) is
cqual to

t r r  =  I  - ( l l2Nn) l4m'N l (4mN+ l ) ) . (2.e)

The same assumptions as (2.8), and including only the domi-
nant terms, give the second root in (2.4) as, approximately,

( )  4 \

(2 s)

(2 .  l0 )

(2.12)

of  (2.6),  i t

(2.13)

t r z =  I  - ( 1 1 2 N ) l l  + 4 m ' N ) .

Numerical calculations show that, for small sizes of n.

t r r  =  I  - 1 l 2Nn  (2 .11 )

provides adequately accurate approximations to (2.4). For exam-
ple, for N = 32, n = 2, mN = 2, the difference between (2.4) and
(2.9)  =  -  2 .6  x  l0-  a ,  and between (2 .4)  and (2 .11)  =  2 .0  x  l0  a .

The excel lent performance of (2.11) fbr small  n, suggests
approximating the term 4Nm'l(4Nm' + l) by unity, and replacing

the factor ll(n - 1) in all terms by lln so that analogous to the

derivation of (2.9), (2.6) simpli f ies to

k = 4mNll4mN + (n - l) /(n + l) l

I f  the factor l l (n - 1) [v (2.8)] is retained in al l  terms
simpli l ies to

k  = 4mNl [4mN + lh  -  l ) /n ]21,

ins tead of  (2 .12) .  For  large n both (2 .12)  and (1 .13)  become

k=4 rnN l (4n rN+  1 ) . (2. r4)
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Asymptot ic behaviour of  panmict ic indices

Asymptotically the system (2.5) is determined by the larger root.
It is theretore of interest to compare the behaviour of

P,(  1 .5)  =  f t ( l  -  k l2Nny, (2 .  I  -5)

tbr large rr, fiom (2.9), and k = 4mNl(4mN + 1) to the panmictic

index of an ag-eregate random mating populat ion

P / 1 6 )  =  ( l -  l l Z N n / (2. r6)

Since | -  kl2Nn > I -  l l2Nn, i t  is clear that i t  may be true that

P/( l5) > P,(16) f  or t  large enough.

Using exponential approximations i t  turns out that

/  >  ( -  lnk) (2Nr t ) l ( l  -  f t ) . (2 . t7 )

l o r P , ( 1 5 )  >  P { 1 6 ) .  S i n c e  - L n k  >  ( l  - k )  f o r 0  <  k  < 1 , ( 2 . 1 1 )

implies that the smaller the value of k, the longer the t ime before

P,(15) > P,(16; and, furthermore, the t ime must be of order 2Nn

before P/(15) > P,(16). Since Nn must be large tor (2.15) to hold,

the value of t  from (2.11) may be too large to be of practical

importance for animal breeding and conservation. For r smaller

than 2Nn it would be better to control inbreeding by choosing k

as near to unity as is practical ly possible, since P,(15) --+ P{16)

l b r k - +  L
For n large (2.15) and (2.16) indicate that the relat ive asymp-

totic difference (rad) in the panmictic indices of a subpopulation

of size N relative to a single aggregate random mating population

of size Nn is

r a d < ( l  - k ) , ( 2 .  l 8 ;

with the equality holding fbr n small, f iom (2.11).

Maximum difference between inbreeding coefficients

Denote 1",  f rom (2.11) by l , (11) and ) . '  f rom (2.9) by Ll9).
From (2.5) and (2.16) the asymptotic difference (r/) in inbreeding
coeftlcients of an island subpopulation of size N and a single ran-
dom mating aggregate population of size nN is
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the maximum difference (1 - k), between a subpopulat ion o1'size
N and a conceptual aggregate random mating population of size
Nri,  is acceptably small .  Since the variance in gene frequencies
between subpopulat ions is a function of the inbreeding coeff i-
cient of a populat ion (Crow & Kimura, 1910) is i t  clear that con-
trolling subpopulation inbreeding is equivalent to controllin-e
subpopu lat ion divergence.

An addit ional consideration could be to l imit inbreeding in the
subpopulations to a rate that would allow its effects to be coun-
tered by natural select ion. Guidel ines for this approach are avai l-
able from Frankel & Soul6 (1981). In such a situation, adding
approximations of the maximum difference ( I - k) to the concep-
tual total population inbreeding coefllcient can provide a quick
l irst approximation to the rate of inbreeding, indicating the range
of migration rates necessary fbr a desired result.  T'his prel iminary
range can then be flne-tuned for a desired time interval by exact
calculat ions t iom (2.5).

Approximations
Exact calculat ions from (2.6) for N large show that ( 1 - k) from
(2.12)  is  the best  est imate o f  a  upper  l imi t  for  ( l  - , t ) .  Hencc,
trom (2.12\

I  - k  =  l l l 4 m N ( n  +  l ) l ( n -  l )  +  I  ) . ( )  1 7 \

For n large enough so that terms involving l /@ - 1) can be
ignored in relat ion to the others, (2.6) al lows simpli f icat ion to

1  -  k  =  (1  -  m)z l [ 2N{  1  -  0  -  n )2 }  +  ( l  - r r ) 2 ] , (2.24)

precisely equal to (1.2) in Roux (1994), the equil ibr ium inbreed-
ing coefl icient in the single or inf ini te island situation.

Representative exam ples

Table I gives values of ( I - k) calculated for a representative set
of parameters. I t  was calculated in the fol lowing way:

l .  M = I,  M = 2 indicates one or two migrants per subpopulat ion
of either sex. Equal numbers fbr the two sexes are assumed.

2.  The co lumns invo lv ing N = 4,8 .  32 were ca lcu la ted f rom (2.6)
forn < l0 l .  The co lumns invo lv ing the l imi t  va lues were ca l -
culated trom (2.23). The row fbr n - | = co WoS calculated
from (2.24).

Table 2 was calculated to i l lustrate that equation (2.22) repre-
sents a useful est imate of the dif ference between the inbreeding
coefficients of an aggregate population and that of subpopula-
t ions connected by migration. Note the remarkable agreement of

Table 1 Percentage values of (1 - k) for dif ferent numbers
(n) of subpopulat ions, dif ferent subpopulat ion sizes (A/1 and
different numbers of migrants per subpopulat ion (M)

N = 4  N = 8 N = 32 Limi t

n - l  M = l  M = 2  h l = l  M = 2  M = l  M = 2 A . t _ l  i r _ ' )
l v t - t t v I - -

t l  = }: f l  l )  -  t) . / ' (9) - ( l  -  k))," ' . , .

Hence,  s ince l " ' (9)  >  ) " r ( l  l )

d < ( l - k ) ( l ' r ( 9 ) - t r ' z ) .

Furthermore I > ] ,r  > ), , .  so that (2.20) implies

r /<  ( l  - k ) ) " / r ( 9 ) ,

or

d < ( l - k ) .

(2. te)

(2.20)

(2.21)

t )  ) ) l

)",  may often be near enough to unity and 1"2 small  enough fbr
(2.22) to provide a useful upper l imit for the dif l 'erence in
inbreeding coeflicients for moderate /. This can be conflrmed by
first order approximations to binomial expansions of )"1(9) and
),r( I  l )  and by the example in Table 3. That equation (2.22) is also

applicable to small population sizes and large migration rates
will be illustrated by a comparison between Tables I and 2.

Cont ro l l ing inbreeding in  subpopula t ions

Rationale

In many breeding or conservation situations, considerations
involving resource restr ict ions, evolut ionary viabi l i ty (Frankel &
Sou16,  l98 l )  or  probabi l i ty  o f  se lect ion ga in  (Nicho las,  1980)
would probably f ix the total populat ion size (Nn).In such situa-
t ions (2. l8), (2.21) and (2.22) indicate that inbreeding can be
control led in subpopulat ions by migration of such a nature that
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Table 2 Percentage inbreeding coefficients at generation 10
(t -- 10) for different numbers (n) of subpopulations of size N --
8, with one or two migrants per generation (M) compared to an
aggregate population of size Nn (M -- N(n - 1)ln), together with
the differences between aggregate and subpopulations

Inbreedins coeff icient Difference

( r r  -  I  ) M = 2  M = N ( n - l ) l n M = l  h , l = 2

47

Table 4 Percentage values of (1 - k) for different total popu-
lation sizes (Nn) different subpopulation sizes (A/) and different
numbers of migrants per subpopulation (Azt)

M = l M = 2

Nn N = 4  N = 8 N = 3 2 N = 4  N = 8 N = 3 2

r00

l 0

5

3

2

I

t 1

r 8

20

22

a A

29

6

l 0

t 5

t 9

27

24

64

96

t92

352

3200

approximately one to three percentage points between the differ-

ences in Table 2 andthe corresponding values forN= 8 of ( l  - , t)

in Table l .  This is also true for the other values of N in Table l ,

indicating that (2.22) is also applicable to small  populat ion sizes

and large migration rates.

Spec i f ic  example

Perhaps a more extensive example than the ones in Table 2 wil l

be worth while, especial ly since i t  gives an i l lustrat ion of the pos-

sible strength and uti l i ty of migration between subpopulat ions.

Consider the percentage inbreeding from (2.4), (2.5) and (2.6) in

the situation with subpopulat ion size N = 32, number of subpop-

u l a t i o n s  n - | =  1 0 0 , n u m b e r o f  m i g r t n t s M = 0 .  l l 2 ,  l , 2 , c o m -

pared to the inbreeding in a single aggregate populat ion with Nn
= 3 232, given in Table 3.

Table 3 Percentage inbreeding in a subpopulat ion of size N
- 30 compared to a single aggregate populat ion of size Nn =

3232

Number of migrants
S ing le

populat ion

Generation M = N \ n - l ) / n

from(2.6)

Note the high percentage of inbreeding in a populat ion of size

N = 32 with no migration in generation 50, and how two migrants

per generation effectively controls it. Furthermore, for all migra-

t ion numbers ( |  -  k) is an excel lent est imate of the maximum dif-

ferences with the single aggregate population.

Opt imal  decomposi t ion

One question of some importance remains. For constant total
populat ion size (Nn), what is the optimal decomposit ion into

number of subpopulations (n) and subpopulation size (M)? The

answer is in Table 4, which was constructed from Table I by

interpolation. For Nn < 100 and M = 2 the best values of Nn are

t 0

l 2

l 2

t 3

l 4

t 4

6

1,5

l 5

t6

t6

t 1

o

t 0

l 5

t 1

l 9

3

f)

6

6

1

7

along both edges, that is, either as small  or as large values as pos-
s ib le  forN,  i f  N = 2 is  exc luded,  as f rom (2.24)  ( l  -k )  might  be
equal to zero. The disadvantage of the middle values is probably
srnal l  enough, though, so that other considerations, l ike transport
cost, protection against epidemics, etc.,  could be decisive. For Nn
> 100 the lowest values of (1 - k) occur for N = 4, and with an
increase in Nn the values of 1 - k wi l l  approximate the l imit
(f i rst) l ine in Table l .

Discussion

Approximations to binomial expansions involving (2.5), (2.9)
md (2.10), confirmed by the numerical calculat ions fbr N = 32 in
the specitrc example (Table 3), show that the pattern of response
in inbreeding in a island populat ion is characterized by a rela-
t ively sharp init ial  increase under the inf luence of subpopulat ion
size (Af, fbllowed by a slower increase determined mainly by
total archipelagic populat ion size (Nn). The init ial  increase in
inbreeding is faster than that of an aggregate panmictic popula-

t ion of size Nn, while the increase may be sl ightly slower in the
later phase.

At any given generation the inbreeding coefficient of an island
subpopulation will always be larger than that of an aggregate
panmictic population of size nN. However, it follows from the
inequality (2.22) that this difference (rf will always be less than
( I - ,t) fbr small migration rates and large subpopulation sizes,
with k deflned by (2.6). However, the results from Table 2
strongly suggest that (2.22) is appl icable to al l  si tuations.

Large subpopulat ion s izes

For large subpopulation size (AD, a large number of islands (n)

and small migration rates (m) the value of the maximum differ-
ence I - k (2.23) depends only on the number of migrants, I - k
= 1l(4M + l) .  From the fol lowins table

Number of migrants I

( r  -  k ) %  2 0

25

I

it is clear that as few as two to six migrants per subpopulation per
generation wil l  go a long way to l imit inbreeding of subpopula-
tions to a value near to that of a panmictic population of size Nn.

For a small number of subpopulations n, the difference in
inbreeding coefficients between the subpopulations and aggre-
gate population will be less than (2.23). It follows that fewer
migrants wil l  be required for a given value of ( l  -  k) i f  the

8

I I

t nI T

t 1

2 l

28

l 6

t2

l 0

1

5

2

3

-5

1

9

l 0

l 0

30

-50

1 5  1 3  l l  8

3 f l  l - s  l 8  l 0

5 5  3 0  1 9  l l

0

I

I

l 0l 9

2 3 4 5 6 8 1 2

i l 8 6 - 5 4 3 2
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number of subpopulat ions decreases. For n = 3, the number of
migrants needed f or a given ( I - k) will be half that required for a
very large value of n.

Smal l  subpopula t ion s izes

For small  subpopulat ion sizes migrant rates can be large. In this

situation Table I provides values of ( l  -  k) in the somewhat
restricted situation of one or two migrants for a representative set
of values tor populat ion size (AD and number of subpopulat ions
(rr). Frorn Table I it is clear that the adjustment in migration
number for constant ( l  -  k) from (2.23) holds to a fair approxi-
mation for al l  values of N. For example, for N = 8, n - |  = e, M
- 2, ( l  -  k) is equal to J .4Vo, and this is close to the 8.3Vo from M
=  l ,  n -  I  -  2 ,  as  one  wou ld  expec t  f r om (n  -  l ) / ( n+  l )  =  l ,  i p
(2.23). For N = 32 the approximation is very good.

From (2.23\

(  I  -  f t )  -  {@ -  t ) t (n  +  t ) \  U / (4M + l )  } , (2.2s)

approximately. This suggests that (2.24) might be adjusted to

( l  -  k )  =  { (n  -  \ ) l (n  +  l ) } ( l  -  m)21[2Nl  1  -  ( l  -  rn)2  + (1  -  rn)? ]
(2.26)

as a quick lrrst approximation fbr ( I  -  /<) with small  values of n.
This can be verified for N > 6 tiorn Table I and from additional
computations. Since the equivalent equations (2.24) and (1.2)
(f  rom Roux, 1995) can be approximated by the f irst table in
Roux (1995), this table can be used for quick f irst approxima-
t ions of (1 - k) by adjusting the l imit inbreeding coeff icient

[  =  ( l  -  k ) ]  by  a  fac torof  ( rz  -  l ) / ( r t  +  l )  accord ingto (2 .26) .

Conc lus ion

The foregoing can be summarized by the fol lowing conclusion.
As the equilibrium inbreeding coefficient (D and maximum dif-
f 'erence in inbreeding between the subpopulat ions and a random
mating total population (l - k) are equivalent for a large number
of subpopulat ions (n) (equations 2.24, L2), the same conclusions
hold for ( I  -  k) in this art icle as for equi l ibr ium F in the previous

art icle (Roux, 1995). For small  values of n, both the number of
migrants (1.1) and (l - k) can be adjusted by (n - l)l(n + 1) to
cxcel lent approximations, except for N = 4 in the case of ( l  -  k).

I  ncluding self-fert i l  izat ion

The correction in (1 - m)2 in (2.1; effect ively precludes self-f-ert i-
l izat ion (Crow & Kimura, l9l0). The inclusion of self-fert i l iza-
t ion with random mating can be achieved by changing (2. I  )  to

F , =  C  +  [ ( l  -  m ) ' -  ( l  -  m ) c ] F , - 1 . (2 .21)

Where c = I lZN = probability of drawing two gametes carry-
ing copies of the same gene and ( l  -  m)2 - ( l  -  m)l2N - proba-

bility of drawing two gametes carrying copies of two different
native genes. I t  is assumed that native and migrant genes cannot
be identical by descent and that migrants are completely unre-
lated and noninbred. The extension of (2.27) to the archipelagic
s i tuat ion would change c11 in  (2 .3)  to

a l l = o - C , (2.28)

with c12, a21, a,fid a22rar\drtring the same.

The asymptot ic  so lu t ions (2 .9) ,  (2 .10)  and (2 .13)  remain the
same, since the symptotic values of c11 in (2.28) and (2.3) are
equivafent. The results in Tables 1,2 and 3, however, are no
longer appl icable. In general,  i t  appears that ( I  -  k) from (2.28)
and (2.6) is larger than (2.23) instead of smaller as with self-f'erti-
l izat ion excluded. I f  random matins with the inclusion of self-

S.Afi .Tydskr.Veek., I  995.25(2)

fert i l izat ion is important, exact calculat ions from (2.28), (2.4).
(2.5) and (2.6) are recommended fbr m large and n,N small.

Sex dif ferences in migration rates and populat ion numbers

In the derivation of (2.24) it was noted that, for a large number of
subpopulat ions, (1 - f t)  of this art icle is equivalent to the compa-
rab le  equi l ib r ium F in  Roux (1995) .  In  Roux (1995)  a  genera l
equilibrium F was derived for sex diff-erences in migration rates
and populat ion numbers. Denote male and female migration
rates and populat ion numbers by *t,  m, and, N1, N,, and deflne
l /N "=  l l 4N ,  +  1 l 4Nz . In  t he  d i scuss ion  o f  ( 1 .26 )  o f  Roux  (1995 )

it was noted that replacement of N by N" and ( | - nt)z by
( l  -  z1) ( l  -  mt)  in  (2 .2$ or  (1 .2)  resu l ted in  good approx ima-
t ions to the general (1.14). This suggests that sex dif f-erences in
numbers be taken in consideration in (2.2) trom

a  =  ( l  -  m ) ( ,  - ^ . ,  +  m 1 m . l ( n -  l )  a n d  c  =  l l L N " (2 .29 \

Values for (l - k) can be approximated fiom Tables 2 and 3 in
Roux ( 1995) in the same way as indicated for Table I from
(2.26). The adjustment by (n - l) l (n + l)  to migration numbers
for constant (1 - f t)  is also the same.

Substi tut ing Q.29) in (2.24) is approximately equal to Chesser
et al. 's (1993) equation (49), with the approximation involving
only the effect ive populat ion number, N". I f  there are exactly two
offspring per f'emale and if the variance in the number of f-emales
mated to a male is equal to the mean, Chesser et aL. 's (1993)
terms involving numbers of males and females per subpopulat ion
would approximate N".

Constant family size
The accomodation of different numbers of the two sexes in (2.29)

suggests that c = l l2N in (2.2) can be general ly replaced by c =

l lzN, to handle al l  sorts of deviat ions from simplist ic ini t ial
assumptions. In the present context the most inrportant is to note
that the maximum diff'erence ( I - k), trom (2.22) and (2.23), also
depends on N". For instance, with constant family sizes N" = 2N,
approximately, with N equal here to the census number (Falconer,
1989). This implies that (2.23) with lttN = M changes to 1 - k -

l l l8M(n -  1) /@ -  l )  +  1) ,  an apprec iab le  ga in  over  the s i tuat ion
of variable family sizes. I f  a sire is replaced by a son, and a dam
by a daughter, l /N" = 3116N t + l /16N" (Falconer, 1989). With N,
large and only male migration, the formulT ff i"  = Qn, + m..,) l2in
Roux (1994) gives I -  k - l l l (3213)M(n + l) /(n - l )  + I  ) ,
i n s t e a d o f  I  -  k =  l l l S M ( n +  l ) l Q t  -  l )  +  l ) ,  f b r  ( 2 . 2 3 ) w i t h M ,
= number  o f  male migrants .

Relat ionship of (1 - k) to Gr-

The coefficient of gene diff-erentiation, Grn is a measure of sub-
populat ion dif ferentiat ion expl icated by Nei (1915). With an
equilibrium between drift, mutation and migration

Gsr  =  l / [ 4mN{n / (n  -  1 ) } r  +  l ] ,  ( 2 .30 )

fbr mutation rates much smaller than migration rates (Takahata
& Nei, 1984: Crow, 1986). This equi l ibr ium value of G57is pre-
cisely equal to (1 - k) from (2.13). The equivalence between
(2.30) and (l - fr) from (2.13) ultimately derives from a general
correspondence between the definitions of the relative asymp-
tot ic dif ference in (2.18) and Nei 's Grr.
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