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In conservation and breeding, large populations are important for evolutionary viability and selection progress. On the other
hand, practical and economic reasons may exist for population subdivision. These populations (islands) may be tied
together to form effectively a single population (archipelago) by migration rates of acceptable magnitude. The acceptability
of migration rates is judged by the maximum difference (1 — k) in inbreeding between a subpopulation, of size N, and a con-
ceptual aggregate random mating population of size Nn, with n equal to the number of subpopulations. For small migration
rates (m) and large subpopulation sizes this maximum difference (1 — k) is equal to 1/{4M(n + 1)/(n - 1) + 1}, where M =
mN, the number of migrants in each subpopulation. For large n this result is equivalent to the standard result of the limit
inbreeding coefficient of a subpopulation (single island) with migration from a very large noninbred population, 1/(4M + 1).
The recommendations for the limitation of inbreeding are, therefore, equivalent to the single island situation for a large
number of subpopulations, while a small number of subpopulations (n) requires less migration than a large number. For
large migration rates and small subpopulation sizes exact results are available. The general conclusion is that these situa-
tions require less migration for a given maximum difference (1 — k) than small rates and large population sizes. The rules
for different male and female migration rates are the same as for migration from a large unrelated population (single island
situation). Indeed, adjustment with a factor of (n — 1)/(n + 1) allows most conclusions on number of migrants and maximum
difference (1 — k) in inbreeding coefficients to carry over from the single island to the archipelagic situation.

In bewaring en teling is groot bevolkings nodig vir evolusionére oorlewing en seleksievordering. Aan die anderkant mag
daar praktiese en ekonomiese redes wees vir die onderverdeling van bevolkings. Onderverdeelde bevolkings (eilande) kan
saamgebind word vir 'n enkele bevolking (argipel) deur migrasietempo’s van aanvaarbare grootheidsordes. Die aanvaar-
baarheid van migrasietempo’s word gemeet aan die maksimum verskil (1 ~ k) in inteling tussen "n subbevolking met N lede
en 'n konseptuele samegevoegde panmiktiese bevolking met Nn lede, waar n gelyk is aan die aantal subbevolkings. Vir
klein migrasietempo’s (m) en groot subbevolkings is die maksimum verskil (1 — k) gelyk aan 1/{4M(n + 1)/(n — 1) + 1},
waar M = mN, die aantal migrante in elke subbevolking. As n groot is, is hierdie resultaat gelyk aan die limiet van die
intelingskoéffisiént van *n subbevolking (eiland) met migrasie vanaf 'n baie groot onverwante bevolking. 1/(4M + 1). In die
geval van 'n groot aantal subbevolkings is die aanbevelings vir die beperking van inteling dus gelyk aan die standaard aan-
bevelings wat afgelei kan word vir "n enkele bevolking terwyl 'n klein aantal subbevolkings (n) minder migrante nodig het.
In die geval van groot migrasietempo’s en klein subbevolkings is eksakte afleidings beskikbaar. Die algemene gevolg-
trekking is dat hierdie situasie minder migrante nodig het as die teenoorgestelde geval van klein migrasietempo’s en groot
aantalle in die subbevolkings. Die reéls vir geslagverskille in migrasietempo’s is dieselfde as vir migrasie vanaf 'n groot
onverwante bevolking na 'n enkele eiland. As die aantal migrante en die maksimum verskil (1 - k) met 'n faktor
(n = 1)/(n+ 1) aangepas word, kan die meeste gevolgtrekkings oor die enkeleilandmodel oorgedra word na die argipel-
model.
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Introduction

Among reasons given for the subdivision of populations into
smaller breeding groups are those related to economics, space,
facilities, health and exposure to a wider public, as in zoos,
where the subdivision may also contain the spread of epidemics.
In conservation biology and animal breeding, on the other hand,
evolutionary and entrepreneurial arguments may be raised for the
integration of geographically separated subpopulations into
larger breeding units, with the ultimate aim of being able to treat
a whole race, breed or species as a single breeding unit. The
migration rates necessary (o integrate subpopulations into an
effectively single breeding population then become of major
importance. Inbreeding is a reflection of effective population
size. Hence, one way of achieving an effectively single breeding
population is to keep inbreeding in the subpopulations within
specified limits from that of a single conceptual aggregate ran-
dom mating population.

In the first article of this series (Roux, 1995) inbreeding in a
subpopulation was described for a system of migration of indi-
viduals from a large unrelated population, or from a large

number of unrelated subpopulations of equal size. In this situa-
tion inbreeding in a finite subpopulation is arrested by unrelated
migrants. In contrast, small total population sizes will cause sub-
populations to become related as a consequence of migration.
One way in which such a situation can be described is by the
finite island model (Crow, 1986), in contradistinction to that of
the first article, which can be described as the infinite island
model. Perhaps more apt terms would be the archipelago and sin-
gle island models of migration and inbreeding.

Chesser et al. (1993) derived recursion formulas for the archi-
pelagic situation for dioecious organisms from which the
progress in inbreeding can be calculated. Unfortunately, the
mathematically explicit solutions to the recursion equations are
too complex to gain understanding of the dynamics of the situa-
tion. Chesser et al. (1993) circumvented the problem by the
device of deriving effective population numbers. However, using
the relevant effective population numbers to calculate the
progress in inbreeding is only slightly less tedious than numeri-
cal iterations based on the full recursion equations (Chesser et
al., 1993).
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In this article the problem will be simplified by an extension of
the standard monoecious approximation to the dioecious situa-
tion. Both Kempthorne (1969) and Crow & Kimura (1970) show
that this approximation is very good, even for small popuiation
sizes. Furthermore, extensions to migration in the dioecious situ-
ation will be validated by comparison to the special case of a
very large number of islands for which an exact solution is avail-
able from Roux (1995).

Recursion equations and their solutions for monoecious organ-
isms in the archipelagic situation have been obtained by Latter
(1973) in terms of the degree of heterozygosity in subpopulations
or islands. As this is inconvenient for the calculation of inbreed-
ing coefficients and the comparison of conclusions with the con-
ventional approach, Latter’s (1993) results will be transcribed
from heterozygosities to inbreeding coefficients in terms of the
development found in Li (1976) and also to be found in Crow
(1986). The solutions to the recursion equations will then be used
for an exploration of the dynamics of inbreeding under migration
for the purpose of development of useful rules of thumb for
countering inbreeding by migration. Important extensions
approximating the dioecious case will be indicated for differ-
ences between the sexes in number and migration rate and vali-
dated by comparisons to solutions from Chesser et al. (1993) and
Roux (1995).

The correction for migration in the finite island model effec-
tively precludes self-fertilization (Crow & Kimura, 1970). The
formulas for a truly monoecious situation in which self-fertiliza-
tion is included will also be indicated.

Recursion equations and their solutions
Exact solutions

Consider n islands in an archipelago, each with a population of
size N, so that the total population number is equal to Nn. On
cach island there is a proportion of m migrants, arriving with
equal probability from the other (n — 1) members of the archipel-
ago. Let

c=1/2N.

a = the probability that two random individuals from the same
population were on the same island a generation earlier;

b = the probability that two random individuals from different
islands were on the same island a generation earlier. There-
fore, 1 —a and 1 - b are the probabilities that two individuals
were on different islands a generation earlier. Furthermore,
let F, be the probability in generation f that two alleles on the
same island are identical by descent, and f, the probability in
generation 7 that two alleles on different islands are identical
by descent.

The natural extension of the single island equation (Crow,

1986),

Fo=(1=m?c+(=-0F, ], 2.1
to the archipelagic situation is then

Fo=alc+(-0F _ ]+ -af _,
f=blc+(1=F,_ ]+ (-b),_, 22

Crow (1986) provides a proof that
a=(0=-m?+m*n-1),b=(0-a)n-1).

For further development it is more convenient to work with the
panmictic coefficients P, = 1 — F, and Q, = 1 —f,. Equations (2.2)
then transform to

P
(V]

Pi=a P_+a;,0_,

Oi=ay P_i+anQ._, (2.3)
with

ap=all -c),a,=1-a

asy =b(l —c),ap,=(1-5b).

The characteristic roots of the 2 x 2 matrix associated with (2.3)
are

hy kg =[(ag + ay) £ {(ay —ap)? + dajay ) 4)/2. (2.4)
The intrapopulation solution to (2.3) is

Py = k) + (Py— b))y, (2.5)
with

k= (P, - Pyh)l(A) —Xy)
and
Py=a, Py—anQ,
Assume that P,= Q, =1, then
k= (V) + (ba)a)) + 2a13 - an)l{(ay —ay))* + 4apay ), (2.6)

if A; > A, from (2.4). The theory behind (2.4-2.6) is available
from Crow and Kimura (1970). Equations (2.4), (2.5) and (2.6)
are equivalent to Li’s (1976) (5a) and (5b), but simplify the nota-
tional complexities employed by him to accommodate the possi-
bility of a balance between mutation and migration in the limit
values of P and Q.

Asymptotic and approximate solutions
Define

m'=mnl(n-1). 2.7

Assuming m and 1/N small enough so that squares and products
are negligible and that 16m'N/n is small in comparison to (1 +
4m'N)?, it follows from Latter (1973) that

A =1 - {1/2N(n — 1)}{4mNI(dm'N + 1)}, (2.8)
for the larger root in (2.4). In a more symmetrical form (2.8) is
cqual to

Ay = 1= (172Nn){4m'N/(d4m'N + 1)}. (2.9)

The same assumptions as (2.8), and including only the domi-
nant terms, give the second root in (2.4) as, approximately,

hy=1=(1712N){1 + 4m'N}. (2.10)

Numerical calculations show that, for small sizes of n,

A, =1-1/2Nn 2.11)

provides adequately accurate approximations to (2.4). For exam-
ple, for N =32, n =2, mN = 2, the difference between (2.4) and
(2.9)=-2.6 x 107%, and between (2.4) and (2.11) = 2.0 x 10~ *,
The excellent performance of (2.11) for small n, suggests
approximating the term 4Nm'/(4Nm' + 1) by unity, and replacing
the factor 1/(n — 1) in all terms by 1/n so that analogous to the

derivation of (2.9), (2.6) simplifies to
k = AmNI{4mN + (n— Di(n + 1)) (2.12)

If the factor 1/(n — 1) [v (2.8)] is retained in all terms of (2.6), it
simplifies to
k = 4mN/[4mN + {(n - 1)in}?], (2.13)

instead of (2.12). For large n both (2.12) and (1.13) become

k = 4mN/(4mN + 1). (2.14)
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Asymptotic behaviour of panmictic indices

Asymptotically the system (2.5) is determined by the larger root.
It is therefore of interest to compare the behaviour of

P(15) = k(1 — k/2Nn)', (2.15)

for large n, from (2.9), and k = 4mN/(4mN + 1) to the panmictic
index of an aggregate random mating population

P(16) = (1 — 1/2Nn)". (2.16)

Since 1 — k/2Nn > 1 — 1/2Nn, it is clear that it may be true that
P(15) > P,(16) for t large enough.
Using exponential approximations it turns out that

t > (= Ink)(2Nn)/(1 = k), (2.17)

for P(15) > P(16). Since - Ink > (1 — k) for 0 < k < 1, (2.17)
implies that the smaller the value of &, the longer the time before
P(15) > P(16) and, furthermore, the time must be of order 2Nn
before P(15) > P,(16). Since Nn must be large for (2.15) to hold,
the value of ¢ from (2.17) may be too large to be of practical
importance for animal breeding and conservation. For r smaller
than 2Nn it would be better to control inbreeding by choosing &
as near to unity as is practically possible, since P,(15) = P,(16)
fork — 1.

For n large (2.15) and (2.16) indicate that the relative asymp-
totic difference (rad) in the panmictic indices of a subpopulation
of size N relative to a single aggregate random mating population
of size Nn is

rad < (1 - k), (2.18)

with the equality holding for n small, from (2.11).

Maximum difference between inbreeding coefficients
Denote A, from (2.11) by A, (11) and A; from (2.9) by A,(9).
From (2.5) and (2.16) the asymptotic difference () in inbreeding
coefficients of an island subpopulation of size N and a single ran-
dom mating aggregate population of size nN is

d= 2 (11) = kM9 = (1 = k)it (2.19)
Hence, since A,(9) > A(11)

d<(1 -k (9) - \y). (2.20)
Furthermore 1 > A; > A, so that (2.20) implies

d < (1 -k, ), (2.21)
or

d<(1-k). (2.22)

A; may often be near enough to unity and A, small enough for
(2.22) to provide a useful upper limit for the difference in
inbreeding coefficients for moderate . This can be confirmed by
first order approximations to binomial expansions of A;(9) and
A (11) and by the example in Table 3. That equation (2.22) is also
applicable to small population sizes and large migration rates
will be illustrated by a comparison between Tables [ and 2.

Controlling inbreeding in subpopulations
Rationale

In many breeding or conservation situations, considerations
involving resource restrictions, evolutionary viability (Frankel &
Soulé, 1981) or probability of selection gain (Nicholas, 1980)
would probably fix the total population size (Nn). In such situa-
tions (2.18), (2.21) and (2.22) indicate that inbreeding can be
controlled in subpopulations by migration of such a nature that
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the maximum difference (1 — k), between a subpopulation of size
N and a conceptual aggregate random mating population of size
Nn, is acceptably small. Since the variance in gene frequencies
between subpopulations is a function of the inbreeding coeffi-
cient of a population (Crow & Kimura, 1970) is it clear that con-
trolling subpopulation inbreeding is equivalent to controlling
subpopulation divergence.

An additional consideration could be to limit inbreeding in the
subpopulations to a rate that would allow its effects to be coun-
tered by natural selection. Guidelines for this approach are avail-
able from Frankel & Soulé (1981). In such a situation, adding
approximations of the maximum difference (1 — k) to the concep-
tual total population inbreeding coefficient can provide a quick
first approximation to the rate of inbreeding, indicating the range
of migration rates necessary for a desired result. This preliminary
range can then be fine-tuned for a desired time interval by exact
calculations from (2.5).

Approximations

Exact calculations from (2.6) for N large show that (1 — k) from
(2.12) is the best estimate of a upper limit for (1 — k). Hence,
from (2.12)

1 —k=1/{dmNn+ )/(n-1) + 1}. (2.23)

For n large enough so that terms involving 1/(n — 1) can be
ignored in relation to the others, (2.6) allows simplification to

1-k=(1 —m)z/[QN{l —(1-m)?} + (1 —-m)?, (2.24)

precisely equal to (1.2) in Roux (1994), the equilibrium inbreed-
ing coefficient in the single or infinite island situation.

Representative examples

Table 1 gives values of (1 — k) calculated for a representative set

of parameters. It was calculated in the following way:

1. M =1, M = 2 indicates one or two migrants per subpopulation
of either sex. Equal numbers for the two sexes are assumed.

2. The columns involving N = 4, 8, 32 were calculated from (2.6)
for n < 101. The columns involving the limit values were cal-
culated from (2.23). The row for n — | = o was calculated
from (2.24).

Table 2 was calculated to illustrate that equation (2.22) repre-
sents a useful estimate of the difference between the inbreeding
coefficients of an aggregate population and that of subpopula-
tions connected by migration. Note the remarkable agreement of

Table 1 Percentage values of (1 — k) for different numbers
(n) of subpopulations, different subpopulation sizes (N) and
different numbers of migrants per subpopulation (M)

N=4 N=38 N=32 Limit
n-1 M=1 M=2 M=1 M=2 M=l M=2 M=1 M=2
@ 13.8 4.0 17.0 7.4 19.2 10.2 20.0 11.1
100 13.6 3.9 16.7 73 19.0 10.0 19.7 10.9
10 11.6 29 14.6 6.0 16.9 8.6 17.2 9.4
5 9.7 2.0 12.6 49 14.8 7.4 15.2 8.2
3 7.7 1.2 10.4 38 12.6 6.1 13.0 7.0
2 58 0.6 8.3 29 10.3 48 11.1 59
1 24 0.0 4.4 1.1 6.0 27 7.7 4.0
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Table 2 Percentage inbreeding coefficients at generation 10
(t = 10) for different numbers (n) of subpopulations of size N =
8, with one or two migrants per generation (M) compared to an
aggregate population of size Nn (M = N(n —1)/n), together with
the differences between aggregate and subpopulations

Inbreeding coefficient Difference

(n-1) M=1 M=2 M =Nn-1)n M=1 M=2
100 17 8 1 16 7
10 18 11 6 12 5
5 20 14 10 10 4
3 22 17 15 7 2
2 24 21 19 5 2
I 29 28 27 2 1

approximately one to three percentage points between the differ-
ences in Table 2 and the corresponding values for N = § of (1 — &)
in Table [. This is also true for the other values of N in Table I,
indicating that (2.22) is also applicable to small population sizes
and large migration rates.

Specific example

Perhaps a more extensive example than the ones in Table 2 will
be worth while, especially since it gives an illustration of the pos-
sible strength and utility of migration between subpopulations.
Consider the percentage inbreeding from (2.4), (2.5) and (2.6) in
the situation with subpopulation size N = 32, number of subpop-
ulations n — 1 = 100, number of migrants M = 0, 1/2, 1, 2, com-
pared to the inbreeding in a single aggregate population with Nn
= 3232, given in Table 3.

Table 3 Percentage inbreeding in a subpopulation of size N
= 30 compared to a single aggregate population of size Nn =
3232

Single
Number of migrants population
Generation 0 %] 1 2 M = Nn-Din
10 15 13 11 8 0
30 38 15 18 10 1
50 SS 30 19 11 1
-k - 33 19 10 from(2.6)

Note the high percentage of inbreeding in a population of size
N =32 with no migration in generation 50, and how two migrants
per generation effectively controls it. Furthermore, for all migra-
tion numbers (1 — k) is an excellent estimate of the maximum dif-
ferences with the single aggregate population.

Optimal decomposition

One question of some importance remains. For constant total
population size (Nn), what is the optimal decomposition into
number of subpopulations (n) and subpopulation size (N)? The
answer is in Table 4, which was constructed from Table 1 by
interpolation. For Nn < 100 and M = 2 the best values of Nn are
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Table 4 Percentage values of (1 — k) for different total popu-
lation sizes (Nn) different subpopulation sizes (N) and different
numbers of migrants per subpopulation (M)

M=1 M=2
Nn N=4 N=8 N =32 N=4 N=38 N=32
24 10 8 - 2 3 _
64 12 IN] 6 3 6 3
96 12 15 10 3 6 5
192 13 16 15 3 6 7
352 14 16 17 4 7 9
3200 14 17 19 4 7 10

along both edges, that is, either as small or as large values as pos-
sible for N, if N = 2 is excluded, as from (2.24) (1 — k) might be
equal to zero. The disadvantage of the middle values is probably
small enough, though, so that other considerations, like transport
cost, protection against epidemics, etc., could be decisive. For Nn
> 100 the lowest values of (1 — k) occur for N = 4, and with an
increase in Nn the values of 1 — k will approximate the limit
(first) line in Table 1.

Discussion

Approximations to binomial expansions involving (2.5), (2.9)
and (2.10), confirmed by the numerical calculations for N = 32 in
the specific example (Table 3), show that the pattern of response
in inbreeding in a island population is characterized by a rela-
tively sharp initial increase under the influence of subpopulation
size (N), followed by a slower increase determined mainly by
total archipelagic population size (Nn). The initial increase in
inbreeding is faster than that of an aggregate panmictic popula-
tion of size Nn, while the increase may be slightly slower in the
later phase.

At any given generation the inbreeding coefficient of an island
subpopulation will always be larger than that of an aggregate
panmictic population of size nN. However, it follows from the
inequality (2.22) that this difference (d) will always be less than
(1 - k) for small migration rates and large subpopulation sizes,
with k defined by (2.6). However, the results from Table 2
strongly suggest that (2.22) is applicable to all situations.

Large subpopulation sizes

For large subpopulation size (N), a large number of islands (n)
and small migration rates (m) the value of the maximum differ-
ence 1 -k (2.23) depends only on the number of migrants, 1 - &
= 1/(4M + 1). From the following table

Number of migrants 1 2 3 4 S 6 8 1225

(1 -k)% 20 11 8 6 5 4 3 2 1

itis clear that as few as two to six migrants per subpopulation per
generation will go a long way to limit inbreeding of subpopula-
tions to a value near to that of a panmictic population of size Nn.

For a small number of subpopulations n, the difference in
inbreeding coefficients between the subpopulations and aggre-
gate population will be less than (2.23). It follows that fewer
migrants will be required for a given value of (1 - k) if the
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number of subpopulations decreases. For n = 3, the number of
migrants needed for a given (1 — k) will be half that required for a
very large value of n.

Small subpopulation sizes

For small subpopulation sizes migrant rates can be large. In this
situation Table 1 provides values of (I — k) in the somewhat
restricted situation of one or two migrants for a representative set
of values for population size (N) and number of subpopulations
(). From Table 1 it is clear that the adjustment in migration
number for constant (1 — k) from (2.23) holds to a fair approxi-
mation for all values of N. For example, forN =8, n-1=00, M
=2, (1 = k) is equal to 7.4%, and this is close to the 8.3% from M
=1,n - 1=2, as one would expect from (n - 1)/(n+ 1) =2, in
(2.23). For N = 32 the approximation is very good.
From (2.23)

(I-k)y={n-D/n+ DH/EAM+ 1)}, (2.25)

approximately. This suggests that (2.24) might be adjusted to

(I-k)y={(n-1D/n+ DI =mUR2N{1 = (1 =m)*+ (1 —m)]
(2.26)

as a quick first approximation for (I — k) with small values of n.
This can be verified for N = 6 from Table | and from additional
computations. Since the equivalent equations (2.24) and (1.2)
(from Roux, 1995) can be approximated by the first table in
Roux (1995), this table can be used for quick first approxima-
tions of (1 — k) by adjusting the limit inbreeding coefficient
= (1 -4k)] by a factor of (n — 1)/(n + 1) according to (2.26).

Conclusion

The foregoing can be summarized by the following conclusion.
As the equilibrium inbreeding coefficient (F) and maximum dif-
ference in inbreeding between the subpopulations and a random
mating total population (1 - k) are equivalent for a large number
of subpopulations (n) (equations 2.24, 1.2), the same conclusions
hold for (1 — k) in this article as for equilibrium F in the previous
article (Roux, 1995). For small values of n, both the number of
migrants (M) and (1 — k) can be adjusted by (n — 1)/(n + 1) to
excellent approximations, except for N = 4 in the case of (1 — k).

Including self-fertilization

The correction in (1 — m)? in (2.1) effectively precludes self-ferti-
lization (Crow & Kimura, 1970). The inclusion of self-fertiliza-
tion with random mating can be achieved by changing (2.1) to

F,=c+[(1-m?=(l —m)]F,_,. (2.27)

Where ¢ = /2N = probability of drawing two gametes carry-
ing copies of the same gene and (1 — m)? - (1 — m)/2N = proba-
bility of drawing two gametes carrying copies of two different
native genes. It is assumed that native and migrant genes cannot
be identical by descent and that migrants are completely unre-
lated and noninbred. The extension of (2.27) to the archipelagic
situation would change a;, in (2.3) to

(2.28)

app=a—g¢,

with ay,, a5, and a,, remaining the same.

The asymptotic solutions (2.9), (2.10) and (2.13) remain the
same, since the symptotic values of @, in (2.28) and (2.3) are
equivalent. The results in Tables 1, 2 and 3, however, are no
longer applicable. In general, it appears that (I — k) from (2.28)
and (2.6) is larger than (2.23) instead of smaller as with self-ferti-
lization excluded. If random mating with the inclusion of self-
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fertilization is important, exact calculations from (2.28), (2.4),
(2.5) and (2.6) are recommended for m large and n,N small.

Sex differences in migration rates and population numbers

In the derivation of (2.24) it was noted that, for a large number of
subpopulations, (1 — k) of this article is equivalent to the compa-
rable equilibrium F in Roux (1995). In Roux (1995) a general
equilibrium F was derived for sex differences in migration rates
and population numbers. Denote male and female migration
rates and population numbers by rm,, m, and N,, N,, and define
I/N, = 1/AN,| + 1/4N,. In the discussion of (1.26) of Roux (1995)
it was noted that replacement of N by N, and (I — m)® by
(I =m)(1 — my) in (2.24) or (1.2) resulted in good approxima-
tions to the general (1.14). This suggests that sex differences in
numbers be taken in consideration in (2.2) from

a=(1-m)(1-my)+mmy(n-1)andc = 1/2N,. (2.29)

Values for (1 - k) can be approximated from Tables 2 and 3 in
Roux (1995) in the same way as indicated for Table 1 from
(2.26). The adjustment by (n — 1)/(n + 1) to migration numbers
for constant (1 — k) is also the same.

Substituting (2.29) in (2.24) is approximately equal to Chesser
et al’s (1993) equation (49), with the approximation involving
only the effective population number, N,. If there are exactly two
offspring per female and if the variance in the number of females
mated to a male is equal to the mean, Chesser et al.’s (1993)
terms involving numbers of males and females per subpopulation
would approximate N,.

Constant family size

The accomodation of different numbers of the two sexes in (2.29)
suggests that ¢ = 1/2N in (2.2) can be generally replaced by ¢ =
1/2N, to handle all sorts of deviations from simplistic initial
assumptions. In the present context the most important is to note
that the maximum difference (1 — k), from (2.22) and (2.23), also
depends on N,. For instance, with constant family sizes N, = 2N,
approximately, with N equal here to the census number (Falconer,
1989). This implies that (2.23) with mN = M changes to | —k =
1/{8M(n — 1)/(n — 1) + 1}, an appreciable gain over the situation
of variable family sizes. If a sire is replaced by a son, and a dam
by a daughter, 1/N, = 3/16N, + 1/16N, (Falconer, 1989). With N,
targe and only male migration, the formula m, = (m, + m,)/2 in
Roux (1994) gives 1 — k = V{(32/3)M(n + 1)/(n — 1) + 1},
instead of 1 —k = 1/{8M(n + 1)/(n - 1) + 1}, for (2.23) with M,
= number of male migrants.

Relationship of (1 — k) to Ggr

The coefficient of gene differentiation, G5, is a measure of sub-
population differentiation explicated by Nei (1975). With an
equilibrium between drift, mutation and migration

Ggp = W[4mN{nl(n - D} + 1], (2.30)

for mutation rates much smaller than migration rates (Takahata
& Nei, 1984; Crow, 1986). This equilibrium value of Ggris pre-
cisely equal to (1 — k) from (2.13). The equivalence between
(2.30) and (1 - k) from (2.13) ultimately derives from a general
correspondence between the definitions of the relative asymp-
totic difference in (2.18) and Nei’s G
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