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The reduction of computational demands on Restricted Maximum Likelihood (REML) procedures by a diagonaliza-
tion approach is extended to multiple traits by the use of canonical transformations. A computing strategy is
developed for use on large data sets employing two different REML algorithms for the estimation of (co)variance
components. Results from a simulation study indicate that (co)variance components can be estimated efficiently at a
low cost on a wide range of computer systems.

Die vermindering van rekenaarbehoeftes vir Beperkte Maksimum Aanneemlikheid(REML)-prosedures deur 'n diago-
nalisasie benadering word uitgebrei na meervoudige eienskappe deur die gebruik van kanoniese transformasies. 'n
Berekeningstrategie is ontwikkel vir gebruik op groot datastelle deur die aanwending van twee REML-algoritmes vir
die bepaling van (ko)variansie-komponente. Resultate met 'n simulasiestudie dui aan dat (ko)variansie-komponente
doeltreffend en teen lae koste op 'n wye reeks rekenaarstelsels beraam kan word.

Introduction
In practical animal breeding. multiple traits are usually
measured on each individual to collect as much information as
possible about its productivity. These traits are often corre-
lated. In genetic studies, multivariate estimation of (co)-
variance components and genetic values for sire selection has
recently received considerable attention. Although statistically
appealing, it is computationally challenging to apply multi-
variate analyses to large data sets. The difficulty with multi-
variate analyses is the increasing number of equations to be
solved. However, there are situations where canonical trans-
formations can be used to transform all correlated variables to
uncorrelated canonical variables. The proviso is that all traits
are to be recorded on all animals. Typical examples of such a
situation may be milk production traits in dairy cattle and
wool traits in sheep. Several authors have presented algorithms
for Restricted Maximum Likelihood (REML) estimation of
(co)variance components with equal design matrices (Meyer,
1985; Schaeffer, 1986; Jensen & Mao, 1988). There is, how-
ever. roorn for more research in this field in an effort to
decrease computational demands.

The objectives of this study were: (i) to extend the diagonal-
ization approach (Konstantinov & Erasmus, 1992) to multi-
variate analysis using canonical transformations, (ii) to
develop a computing strategy suitable for large data sets, and
(iii) to determine its properties using two different computer
systems.

Consider q traits and let Y be nxq matrix of observations on n
individuals each with records on q traits. Now, let the model
for each trait be denoted as

random effects and el is an nxl vector of random residuals.
The matrices XI and ZI are known with dimensions nxp and
nu, respectively, and relate observations in YI to classes in bl
and UI' If these matrices are equal for all traits, i.e. XI = X
and ZI = Z for all i. then the multivariate model can be
written as (Thompson, 1973):

where '*' denotes direct product operation (Searle, 1982), b' =
[bl', b2', ... , bq'], u' = rUt', U2', ...• Uq'] , and e' = let', e2'.
... , eq']. The expectation and (co)variance matrices are: E(y) =
(Iq*X)b, E(u) = 0, E(e) = 0, Var(y) = G*ZAZ' + R*I.,
Var(u) = G*A, and Var(e) = R*I •• where G and R are
(co)variance matrices of the q traits for the random and
residual factors, respectively, and A is the numerator relation-
ship matrix. Under these assumptions the matrix formulations
of the mixed model equations (MME) of Henderson (1973)
are:

An Expectation Maxirnisation (EM) algorithm of Dempster
el al. (1977) for estimation of the ijllo element of G and R is:

gi/k+l) = ["1,(1<) "?) + tr(KtCij(k»)]Ai (4)

'Vk+l) = [el,(I<) e?) + trBi/
k)] At (5)

where Clj is a submatrix of a generalized inverse of the coeffi-
cient matrix in eqn. (3) corresponding to the illl and jlll

subvectors in u. Blj is a submatrix of WCW', corresponding
to the ij 110 pair of traits, where W = [X: Z] ,s is the number of
classes in U and n is the total number of observations.

In the estimation of (co)variance components, we are not
interested in solutions for the fixed effects and therefore they



can be absorbed to obtain the system:

(R-I * Z'SZ + G-I * A-I)u = (R-I *Z'S)y

where S = I - X(X'XrX' is a projection matrix.

Canonical transformation

It is clear from eqn. (3) that if R = In and G is diagonal
matrix, the multi trait analysis can be divided into q single trait
analyses. Such a transformation, called a canonical transforma-
tion, was first suggested for animal breeding problems by
Thompson (1976) and has been applied to data in several
publications (Meyer, 1985; Schaeffer, 1986; Taylor et al.,
1985; Jensen & Mao, 1988). The different authors presented
different algorithms for transformation of G and R to the
canonical scale. In the present study the algorithm of Golub '&
Van Loan (1983) was chosen.

Suppose that Yk is a vector of q variates measured on
animal k. The (co)variance matrix of Y is Var(y) = V = G +
R. Transformation of Yk is needed to Zk (say, Zk = VYk) such
that VRV' = I and VGV' = D, where V is a transformation
matrix, I is an identity matrix and D is a diagonal matrix.
Because there are no covariances among the elements of Zk,

each element of Zk can be analysed by a single-trait variance-
component method. The appropriate transformation is obtained
as follows:

Given G = G' and R = R', with R positive definite:
(i) Compute Cholesky decomposition of R = LL' and set

B = L-IGL'-I.

(ii) Vse Householder's transformations and the QL algorithm
to calculate eigenvalues and eigenvectors of B. Store
eigenvectors in a matrix, say Q.

(iii) Set V = L'-IQ.
A A

Let Gc and Rc be the estimates of the random factor and
residual (co)variance matrices on the canonical scale. The
inverse transformation is then used to obtain G and R on
the original scale. That is:

G = V-I GcV,-1

R = V-I RcV,-1

EM-REML algorithm

After canonical transformation, the mixed model equations in
(3) contain q diagonal blocks, corresponding to the q
canonical variates. The equation in the jlh block is:

(Z'SZ + ai-I A-I)uci = Z'SYci (9)

where al js the jlh diagonal element of Gc. Let Cc = (Z'SZ +
a-I A-Irl

. Then for the (k + 1) round of iteration, estimators
of the elements of Gc and Rc are:

(10)

(11)

(12)

(13)

Formulae (10) and (13) are presented in Jensen & Mao (1988).
The estimation of the covariances is simplified, because of
the block diagonal structure of the multitrait mixed model
equations on the canonical scale. A further simplification is
possible if the diagonalization algorithm described by Kon-
stantinov & Erasmus (1992) is employed. The computing
strategy using this approach is as follows:
(i) Obtain initial values for G and R, which could be

'guesses' or literature values, for the first round of
iteration.

(ii) Perform absorption and subsequent diagonalization of the
MME coefficient matrix as described by Konstantinov &
Erasmus (1992).

(iii) Determine the transformation to canonical scale, V, such
that G is diagonal and R is identity matrices, using steps
(i) to (iii) in the algorithm described.

(iv) Transform the right-hand side matrix, P'Z'SY and the
matrix of the sums of squares and cross-products Y'SY to
the canonical scale as follows:

P'Z'SYc = P'Z'SYU' (14)

Y'cSYc = UY'SYV' (15)

where P is the transformation matrix used to diagonalize
the MME coefficient matrix.

(v) Obtain estimates for gij and rij for i, j = 1, ..., q accord-
ing to eqns. (10) to (13).

(vi) Obtain estimates for G and R on the original scale
according to eqns. (7) and (8).

Repeat steps (iii)-(vi) until convergence is reached.

Numerical example
Consider the records for two traits for 704 progeny of six
bulls, distributed in 10 herds with a data structure as summar-
ized in Table 1. The six bulls are assumed related according
to the following pedigree:

Bull Sire MGS

2 1 0
3 1 2
4 1 2
5 3 4
6 3 4
7 5 6

where MGS = maternal grand sire and '0' = unknown parent
In order to compute the Cholesky decomposition of the
numerator relationship matrix A, a small modification to the
algorithm of Quaas (1976) was made as shown by Henderson
(1976). For starting values the following (co)variance matrices
were used:

G = [51000.0 7100.0] and R = oo.0סס30] [OO.0סס7
7100.0 5000.0 OO.0סס7 OO.0סס8

Based on these starting values, the transformation to the
canonical scale for the first round of iteration yields eigen-
values of the sire (co)variance matrix Al = 0.05921610 and A2
= 0.18088861 with the transformation matrix and its inverse



v = 1-0·0003362L0.0020188

0.0037817l

-O.001185~

V-I = [163.852 522.640]

l!78.999 46.46j

This yields estimates on the canonical scale g~1 = 0.113880,
g'U = -0.139806, g22 = 0.261649, Tit = 0.734939, T'U =
-0.665665 and Tn = 1.969377 which, after being transformed
back to the original scale, yield the following estimates for the
first round of iteration:

~0900.012 724O.13~

L7240.134 5258.25~

~18872266 73254.481JL73254.481 82259.810

As a convergence criterion, the norm of the matrix of
differences of the parameter estimates was used as suggested
by Jensen & Mao (1988) and Schaeffer (1986), i.e.

II G(k+l) - G(k) II and II R(k+l) - R(k) II
Both norms were required to be less than 10-8. Under these
conditions convergence was reached after 62 rounds of itera-
tion with the following estimates:

"1142982 7118.61~ R.
L7118.611 5188.666J 1318864.396 73272382JL73272382 82963.886

Simulation study
The most time-consuming part of the algorithm presented is
the Householder tridiagonalization and subsequent diagonal-
ization of the MME coefficient matrix using the QL algorithm.
In order to investigate the time required for both transform-
ations with a large data set, a simulation study was conducted.
Three traits were simulated and the following model was fitted
for all traits:

Yijkl = IJ. + hu + Sjl + eljkl (16)

where Yljkl is the 1110 record of the kilo progeny of the JIIo sire,
within the illo herd; hu is a fixed effect for the 1110 record
within the ilh herd; Sjl is a random effect of sire J on his
progeny's 1110 record, and eljld is the random error associated
with each record. The simulation consisted of first through
third record of 127960 progeny of 1000 sires, born over a
period of 20 years and distributed over 100 herds. Within each
year, 5 'proven' and 45 'young' sires were used. The 'proven'
sires were allowed to have from 3 to 5 progeny within each of
20 randomly allocated herds. Sires 1 through 100 were
assumed unrelated and they represented the so-called 'base'
population, and were randomly assigned as sires and MGS to
bulls 101 through 450. For bulls 451 through 1100, sires and
MGS were assigned at random from every year's batch of
bulls, starting from year 1. For example, bulls 451 through

Table 1 Data for the numerical example: numbers of records and totals for sire x herd
subclasses

Sire

2 3 4

Herd n T1 1'2 n T1 1'2 n T1 1'2

1 5 22169.04 84204 20 72608.52 3032.53 15 63574.51 213278
2 20 87038.94 3077.38 16 59858.82 2346.82 14 58570.57 2114.60
3 15 58397.78 2320.47 18 67806.75 2712.51 8 32169.70 1230.42
4 19 79004.69 2756.54 11 43257.35 1931.04 14 54870.16 1827.52
5 15 64660.39 2293.50 17 61505.48 2440.74 7 28741.89 1079.30
6 5 23128.68 687.05 14 55088.63 2091.93 13 53240.39 1952.38
7 11 45877.57 1586.72 19 69520.09 2733.26 6 24767.62 961.54
8 13 56002.25 1934.09 13 49343.14 1910.94 15 61699.61 2515.58
9 20 82026.43 3115.39 5 19064.53 752.01 15 64513.32 2319.18

10 15 64230.84 2611.55 14 51085.83 2096.56 16 65635.60 2376.24

Sire

5 6 7

Herd n T1 1'2 n T1 1'2 n T1 1'2

1 14 56100.34 1887.45 12 52098.71 1915.03 17 68285.66 2606.86
2 13 49726.02 1677.48 8 33330.61 1197.40 17 67152.82 2697.66
3 9 34352.20 1279.98 8 32542.49 1168.55 6 20642.85 760.06
4 5 20399.52 819.34 12 48014.98 1875.83 19 79823.12 3006.25
5 11 42984.14 1678.76 7 27563.95 1068.99 12 51049.62 2105.27
6 20 79168.45 2884.40 5 20916.99 796.87 16 63918.02 2557.09
7 6 25670.19 883.32 11 45710.53 1734.48 15 57405.08 2294.63
8 9 34144.61 1345.47 20 83088.58 3073.69 18 72571.82 2959.69
9 6 21730.02 816.15 15 58748.61 2299.39 6 23267.50 964.72

10 9 34477.63 1275.83 13 50640.71 1874.98 9 37591.49 1467.95



500 were sons of five randomly chosen sires 101 through 150
and grandsons of the rest. The sire and the residual effects
were generated by random sampling from a normal distribu-
tion with zero mean and variance of 1. The following (co)-
variance matrices were used as 'true' values:

[ 8~OG=
symmetric

R= [~.O
symmetrIC

800.0 l
80.0

200.0

300.0
600.0

75000.0
40000.0

8oooo.0J
25000.0
OO.0סס3

Programming and computers
Two versions of the program were developed for conducting
the analysis. Both were written in standard FORTRAN 77.
Two types of computers were employed. The first was a 386
PC with 'Cyrix' high-performance math coprocessor, and the
second was a CONVEX C-120 with special vector capabilities.
Both computers employed FORTRAN compilers with the
highest possible degree of optimisation. The first version of
the program was compiled with a 'LAREY' FORTRAN com-
piler with scalar optimisation, and the second was designed
and compiled with vector optimisation on the CONVEX. Only
default system options were used. For (co)variance compo-
nents estimation two algorithms were used, viz. EM and the
algorithm presented by Meyer (1985). The same convergence
criterion as for the numerical example was used.

Results and Discussion
The REML algorithm presented by Meyer (1985) converges
more rapidly than the EM-REML algorithm. Convergence was
obtained after 26 and 138 rounds of iteration, respectively,
with the following estimates of the (co)variance matrices:

G = [7737'93~

symmetrIC

660.998 J
64.920

330.996

316.583
644.779

[

357044,447 73884.212 79996.391J
R = 36617.216 22027.696

symmetric 28321.521

Although it was not the objective of this study to compare
the speed of convergence of different REML algorithms,
Meyer's algorithm (Meyer, 1985) was employed simply to
show that more complicated algorithms can be handled with
ease using canonical transformations and the diagonalization
approach.

The CPU time required for Householder's tridiagonalization
and the subsequent diagonalization of the MME coefficient
matrix using the QL algorithm were 107.69 and 4.75 min, and
29.28 and 1.78 min for 386 PC and CONVEX, respectively.

Tridiagonalization and subsequent diagonalization require
2n31l and 30n operations, respectively (Golub & Van Loan,
1983). This task is more demanding than the n ~ operations

needed to invert a symmetric matrix. However, once the trans-
formations are completed, the time required for the iterations
is trivial. Only 12 and 63 s were needed for convergence with
Meyer's and the EM algorithm, respectively on the CONVEX.
The corresponding times for the 386 PC were 23 and 121 s,
respectively.

Conclusions
The results from this study show that large data sets can be
analysed with ease and at a low cost using canonical transfor-
mation and the diagonalization approach. However, there are
two aspects which need attention when dealing with multiple
trait estimation of (co)variance components. The first is that in
the analysis of highly correlated traits there is an ever-existing
possibility that, owing to sampling, the estimated (co)variance
matrix of the random factor G could be non-positive definite.
As pointed out by Hill & Thompson (1978), the probability of
this occurring increases with the number of variances included
simultaneously. The algorithm of Golub & Van Loan (1983)
requires R to be positive definite, and hence the trans-
formation to canonical scale is possible only if this is true.
How to deal with negative definite estimates remains an open
question. Meyer (1985) suggested that at convergence negative
roots should be set to zero before transforming estimates to the
original scale. Another possibility would be to impose a
constraint on the parameter space while iterating. Such an
algorithm was proposed by Schaeffer (1986). This algorithm
only estimates genetic and residual variances on canonical
scale. The variance estimates at convergence are then back-
transformed to obtain both variances and covariances on the
original scale by the use of the inverse of the initial trans-
formation matrix (U). Such a procedure would yield estimates
that are dependent on the initial values chosen for G and R as
shown by Jensen & Mao (1988).

The second problem is the choice of convergence criteria.
Jensen & Mao (1988) suggested conservative stopping cri-
terion instead of fixed number of iterations. For the numerical
example in this study we, however, forced the norms of the
matrix differences to zero. The number of iterations then
increased from 62 to 77 and the CPU time from 3 to 4 s for
the EM algorithm on the 386 PC. This result suggests that,
using the algorithm presented, the precision of a conservative
stopping criterion can be increased to a very high level.

References
DEMPSTER, A.P., LARID, N.M. & RUBIN, D.B., 19TI. Maximum

Likelihood from incomplete data via EM algorithm. II R. statist.
Soc., B 39, 1.

GOLUB, G.H. & VAN LOAN, C.F., 1983. Matrix computations. The
John Hopkins University Press, Baltimore, Maryland.

HENDERSON, C.R., 1973. Sire evaluation and genetic trends.
Proc. Anim. Breed. Genet. Symp., in Honor of Dr J.L. Lush. Am. Soc.
Anim. Sci., Champaign, IL.

HENDERSON, C.R., 1976. Inverse of a matrix of relationships due to
sires and maternal grand sires in an inbred population. I. Dairy Sci.
59,1585.

HILL, W.G. & THOMPSON, R., 1978. Probabilities of nonpositive
definite between group or genetic covariance matrices. Biometrics
34,429.

JENSEN, J. & MAO, LL. 1988. Transformation algorithms in analysis of
single trait and multi trait models with equal design matrices and one
random factor per trait: A review. I. Anim. &i. 66, 2750.



KONSTANTINOV, K.V. & ERASMUS, GJ., 1992. Application
of Householder's transfonnations and the QL algoritlun to
REML estimation of variance components. S. Afr. J. Anim. Sci.
22,92

MEYER, KARIN, 1985. Maximum Likelihood estimation of variance
components for multivariate model with equal design matrices.
BiotMtrics 41, 153.

QUAAS, R.L., 1976. Computation of the diagonal elements and inverse
of a large numerator relationship matrix. Biomlltrics 32, 949.

SCHAEFFER, L.R., 1986. Estimation of variances and covariances within
allowable parameter space. J. Dairy Sci. 69, 187.

SEARLE. S.R., 1982. Matrix algebra useful for statistics. Iohn Wiley &
Sons, NY.

TAYLOR, I.F.• BEAN, B.• MARSHAL, C.E. & SULLIVAN, 1.1.,1985.
Genetic and environmental components of semen production traits of
artificial insemination of Holstein bulls. J.Dairy Sci. 68. 2703.

THOMPSON. R., 1973. The estimation of variance and covariance
components with an application when records are subject to culling.
Biometrics 22, 527.

THOMPSON. R., 1976. Estimation of quantitative genetic parameters. In:
Proc. of the InL Conf. on Quantitative Genetics. Eds. Pollak. F .•
Kempthome. O. & Bailey, T.B., Iowa State Univ. Press, Ames.
pp.639-657.




